K. M. Mital, Biogas systems: policies, progress and prospects, vol.427, 1997.

G. Luo, S. Johansson, K. Boe, L. Xie, Q. Zhou et al., Simultaneous hydrogen 428 utilization and in situ biogas upgrading in an anaerobic reactor, Biotechnol Bioeng, vol.429, issue.4, pp.1088-94, 2012.

A. Bensmann, R. Hanke-rauschenbach, R. Heyer, F. Kohrs, D. Benndorf et al.,

, Biological methanation of hydrogen within biogas plants: A model-based feasibility 432 study, Appl Energy, vol.134, pp.413-438, 2014.

G. Gahleitner, Hydrogen from renewable electricity: An international review of power-434 to-gas pilot plants for stationary applications, Int J Hydrogen Energy [Internet], vol.435, issue.5, pp.2039-61, 2013.

H. Spanjers and J. B. Van-lier, Instrumentation in anaerobic treatment-research and practice

, Water Sci Technol, vol.53, issue.4-5, pp.63-76, 2006.

J. Steyer, J. C. Bouvier, T. Conte, P. Gras, and P. Sousbie, Evaluation of a four year 440 experience with a fully instrumented anaerobic digestion process, Water Sci Technol, vol.441, issue.4-5, pp.495-502, 2002.

F. Molina, M. Castellano, C. García, E. Roca, and J. M. Lema, Selection of variables for on, p.443

, monitoring, diagnosis, and control of anaerobic digestion processes, Water Sci, p.444

, Technol, vol.60, issue.3, pp.615-637, 2009.

K. Boe, D. J. Batstone, J. Steyer, and I. Angelidaki, State indicators for monitoring the 446 anaerobic digestion process, Water Res, vol.44, issue.20, pp.5973-80, 2010.

A. Pauss and S. R. Guiot, Hydrogen monitoring in anaerobic sludge bed reactors at various 448 hydraulic regimes and loading rates, Water Environ Res, vol.65, issue.3, pp.276-80, 1993.

P. Biechele, C. Busse, D. Solle, T. Scheper, and K. Reardon, Sensor systems for bioprocess 450 monitoring, Eng Life Sci, vol.15, issue.5, pp.469-88, 2015.

M. Pohlscheidt, S. Charaniya, C. Bork, M. Jenzsch, T. L. Noetzel et al., Bioprocess 452 19 19 and fermentation monitoring, Encycl Ind Biotechnol Bioprocess, vol.453, pp.1469-91, 2009.

I. Bassani, P. G. Kougias, L. Treu, and I. Angelidaki, Biogas upgrading via hydrogenotrophic 455 methanogenesis in two-stage continuous stirred tank reactors at mesophilic and 456 thermophilic conditions, Environ Sci Technol, vol.49, issue.20, pp.12585-93, 2015.

G. Luo and I. Angelidaki, Co-digestion of manure and whey for in situ biogas upgrading by 458 the addition of H 2: process performance and microbial insights, Appl Microbiol, p.459

, Biotechnol, vol.97, issue.3, pp.1373-81, 2013.

G. Luo and I. Angelidaki, Hollow fiber membrane based H 2 diffusion for efficient in situ 461 biogas upgrading in an anaerobic reactor, Appl Microbiol Biotechnol, vol.462, issue.8, pp.3739-3783, 2013.

M. R. Martin, J. J. Fornero, R. Stark, L. Mets, and L. T. Angenent, A single-culture bioprocess of 464

, Methanothermobacter thermautotrophicus to upgrade digester biogas by CO 2-to-CH 4 465 conversion with H 2, Archaea, 2013.

S. Sarker, J. J. Lamb, D. R. Hjelme, and K. M. Lien, Overview of recent progress towards in-situ 467 biogas upgradation techniques, Fuel, vol.226, pp.686-97, 2018.

G. Luo and I. Angelidaki, Integrated biogas upgrading and hydrogen utilization in an 469 anaerobic reactor containing enriched hydrogenotrophic methanogenic culture

, Biotechnol Bioeng, vol.109, issue.11, pp.2729-2765, 2012.

L. M. Agneessens, L. Ottosen, N. V. Voigt, J. L. Nielsen, N. De-jonge et al.,

, In-situ biogas upgrading with pulse H2 additions: the relevance of methanogen 473 adaption and inorganic carbon level, Bioresour Technol, vol.233, pp.256-63, 2017.

L. Rachbauer, G. Voitl, G. Bochmann, and W. Fuchs, Biological biogas upgrading capacity of 475 a hydrogenotrophic community in a trickle-bed reactor, Appl Energy, vol.180, pp.483-476, 2016.

S. Hattori, Syntrophic acetate-oxidizing microbes in methanogenic environments

, Microbes Environ, vol.23, issue.2, pp.118-145, 2008.

E. G. Hörnsten, I. Lundström, Å. Nordberg, and B. Mathisen, The use of palladium metal oxide 480 20 20 semiconductor structures in quantitative studies of H2 and H2S in processes related to 481 biogas production, Bioprocess Eng, vol.6, issue.5, pp.235-275, 1991.

D. Mi?lov, M. Cifrek, I. Krois, and H. D?apo, Measurement of dissolved hydrogen 483 concentration with clark electrode, IEEE, pp.1-5

L. Björnsson, E. G. Hörnsten, and B. Mattiasson, Utilization of a palladium-metal oxide 485 semiconductor (Pd-MOS) sensor for on-line monitoring of dissolved hydrogen in 486 anaerobic digestion, Biotechnol Bioeng, vol.73, issue.1, pp.35-43, 2001.

C. Huck, A. Poghossian, P. Wagner, and M. J. Schöning, Combined amperometric/field-effect 488 sensor for the detection of dissolved hydrogen, Sensors Actuators B Chem, vol.489, pp.168-73, 2013.

J. R. Clark, . Lc, R. Wolf, D. Granger, and Z. Taylor, Continuous recording of blood oxygen 491 tensions by polarography, J Appl Physiol, vol.6, issue.3, pp.189-93, 1953.

L. Bjornsson, E. G. Hornsten, and B. Mattiasson, Utilization of a Pd-MOS sensor for on-line 493 monitoring of dissolved hydrogen in anaerobic digestion, Biotechnol Bioengng

G. Bastin and D. Dochain, Adaptive control of bioreactors, 1990.

O. Bernard, Z. Hadj-sadok, and D. Dochain, Software sensors to monitor the dynamics of 497 microbial communities: application to anaerobic digestion, Acta Biotheor, vol.48, pp.197-205, 2000.

A. Rodríguez, G. Quiroz, R. Femat, M. Ho, and J. De-león, An adaptive 500 observer for operation monitoring of anaerobic digestion wastewater treatment, Chem, vol.501

J. Eng, , vol.269, pp.186-93, 2015.

R. Flores-estrella, G. Quiroz, M. Ho, and R. Femat, H? control of anaerobic 503 digester for winery industry wastewater treatment, Ind Eng Chem Res, vol.504, issue.7, pp.2625-2657, 2013.

. Gouzé-j-l, A. Rapaport, and M. Z. Hadj-sadok, Interval observers for uncertain biological 506 systems, Ecol Modell, vol.133, issue.1-2, pp.45-56, 2000.

F. Mazenc and O. Bernard, Interval observers for linear time-invariant systems with 508 disturbances, Automatica, vol.47, issue.1, pp.140-147, 2011.

O. Bernard and J. Gouzé, Closed loop observers bundle for uncertain biotechnological 510 models, J Process Control, vol.14, issue.7, pp.765-74, 2004.

V. Alcaraz-gonzález, J. P. Steyer, J. Harmand, A. Rapaport, and V. González-alvarez, , p.512

C. Ortiz, Application of a robust interval observer to an anaerobic digestion process
URL : https://hal.archives-ouvertes.fr/hal-01000434

, Dev Chem Eng Miner Process, vol.13, issue.3-4, pp.267-78, 2005.

E. A. Jáuregui-medina, V. Alcaraz-gonzález, and M. Ho,

, Observer-based input estimation in continuous anaerobic wastewater treatment 516 processes, Water Sci Technol, vol.60, issue.3, pp.805-817, 2009.

C. Delattre, D. Dochain, and J. Winkin, Observability analysis of nonlinear tubular (bio) 518 reactor models: a case study, J Process Control, vol.14, issue.6, pp.661-670, 2004.

E. Aguilar-garnica, D. Dochain, V. Alcaraz-gonzález, and V. González-Álvarez, A 520 multivariable control scheme in a two-stage anaerobic digestion system described by 521 partial differential equations, J Process Control, vol.19, issue.8, pp.1324-1356, 2009.

J. Jiang, G. Ma, C. Li, H. Song, Y. Luo et al., Highly sensitive dissolved 523 hydrogen sensor based on side-polished fiber Bragg grating, IEEE Photonics Technol, vol.524

. Lett, , vol.27, pp.1453-1459, 2015.

T. Mak, R. J. Westerwaal, M. Slaman, H. Schreuders, A. W. Van-vugt et al.,

, Optical fiber sensor for the continuous monitoring of hydrogen in oil, Sensors, vol.527

B. Actuators and . Chem, , vol.190, pp.982-991, 2014.

. Rj, S. Gersen, P. Ngene, H. Darmeveil, H. Schreuders et al.,

, Fiber optic hydrogen sensor for a continuously monitoring of the partial hydrogen 530 pressure in the natural gas grid, Sensors Actuators B Chem [Internet], vol.531, pp.127-159, 2014.

H. Yan, X. Zhao, C. Zhang, Q. Li, J. Cao et al., A fast response hydrogen 534 sensor with Pd metallic grating onto a fiber's end-face, Opt Commun, vol.359, pp.157-61, 2016.

Y. Zhang, H. Peng, X. Qian, Y. Zhang, G. An et al., Recent advancements in optical 538 fiber hydrogen sensors, Sensors Actuators B Chem, vol.244, pp.393-416, 2017.

P. R. Ohodnicki, J. P. Baltrus, and T. D. Brown, Pd/SiO2 and AuPd/SiO2 nanocomposite-based 542 optical fiber sensors for H2 sensing applications, Sensors Actuators B Chem, vol.543, pp.159-68, 2015.

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders et al., A 545 reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon 546 resonance, Opt Express, vol.21, issue.1, pp.382-90, 2013.

C. Wadell and C. Langhammer, Drift-corrected nanoplasmonic hydrogen sensing by 548 polarization, Nanoscale, vol.7, issue.25, pp.10963-10972, 2015.

L. Coelho, J. De-almeida, J. L. Santos, and D. Viegas, Fiber optic hydrogen sensor based 550 on an etched Bragg grating coated with palladium, Appl Opt

F. Downes and C. M. Taylor, Optical Fibre Surface Plasmon Resonance Sensor Based on a 554

P. Alloy, Procedia Eng, vol.120, pp.602-607, 2015.

Y. Luo, H. Wang, G. Ma, H. Song, C. Li et al., , vol.557

, D-Shaped FBG Hydrogen Sensors in Power Transformer Oil, Sensors, vol.16, issue.10, 2016.

G. M. Ma, J. Jiang, C. R. Li, H. T. Song, Y. T. Luo et al., Pd/Ag coated fiber Bragg 559 grating sensor for hydrogen monitoring in power transformers, Rev Sci Instrum, vol.560, issue.4, p.45003, 2015.

A. Uddin, U. Yaqoob, and G. Chung, Dissolved hydrogen gas analysis in transformer 562 oil using Pd catalyst decorated on ZnO nanorod array, Sensors Actuators B Chem, vol.563, p.23

S. Sivakesava, J. Irudayaraj, and D. Ali, Simultaneous determination of multiple components 566 in lactic acid fermentation using FT-MIR, NIR, and FT-Raman spectroscopic 567 techniques, Process Biochem, vol.37, issue.4, pp.371-379, 2001.

H. Martens, J. P. Nielsen, and S. B. Engelsen, Light scattering and light absorbance separated 569 by extended multiplicative signal correction. Application to near-infrared transmission 570 analysis of powder mixtures, Anal Chem, vol.75, issue.3, pp.394-404, 2003.

Å. Rinnan, F. Van-den-berg, and S. B. Engelsen, Review of the most common pre-processing 572 techniques for near-infrared spectra, TrAC Trends Anal Chem, vol.28, issue.10, pp.1201-1223, 2009.

N. D. Lourenço, J. A. Lopes, C. F. Almeida, M. C. Sarraguça, and H. M. Pinheiro, Bioreactor 574 monitoring with spectroscopy and chemometrics: a review, Anal Bioanal Chem, vol.575, issue.4, pp.1211-1248, 2012.

M. Evyapan, B. Kadem, T. Basova, I. Yushina, and A. K. Hassan, Study of the sensor 577 response of spun metal phthalocyanine films to volatile organic vapors using surface 578 plasmon resonance, Sensors Actuators B Chem, vol.236, pp.605-618, 2016.

P. G. Prabhash, V. S. Haritha, S. S. Nair, and R. Pilankatta, Localized surface plasmon resonance 580 based highly sensitive room temperature pH sensor for detection and quantification of 581 ammonia, Sensors Actuators B Chem, vol.240, pp.580-585, 2017.

C. Boulart, M. C. Mowlem, D. P. Connelly, J. Dutasta, and C. R. German, A novel, low-cost, 583 high performance dissolved methane sensor for aqueous environments, Opt Express, vol.584, issue.17, pp.12607-12624, 2008.

S. K. Mishra, S. Rani, and B. D. Gupta, Surface plasmon resonance based fiber optic hydrogen 586 sulphide gas sensor utilizing nickel oxide doped ITO thin film, Sensors Actuators B, p.587

, Chem, vol.195, pp.215-237, 2014.