O. Jorquera, A. Kiperstok, E. A. Sales, M. Embiruçu, and M. L. Ghirardi, Comparative energy life-cycle 415 analyses of microalgal biomass production in open ponds and photobioreactors, Bioresour. Technol, vol.101, pp.1406-1413, 2010.

A. Ozkan, K. Kinney, L. Katz, and H. Berberoglu, Reduction of water and energy requirement of algae 418 cultivation using an algae biofilm photobioreactor, Bioresour. Technol, vol.114, pp.542-548, 2012.

F. Berner, K. Heimann, and M. Sheehan, Microalgal biofilms for biomass production, J. Appl. Phycol, vol.27, pp.420-1793, 2015.

R. Slade and A. Bauen, Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and 422 future prospects, Biomass and Bioenerg, vol.53, pp.29-38, 2013.

F. Di-pippo, N. T. Ellwood, A. Gismondi, L. Bruno, F. Rossi et al.,

, Characterization of exopolysaccharides produced by seven biofilm-forming cyanobacterial strains for 425 biotechnological applications, J. Appl. Phycol, vol.25, pp.1697-1708, 2013.

I. W. Sutherland, The biofilm matrix -an immobilized but dynamic microbial environment, Trends, vol.427

. Microbiol, , vol.9, pp.222-227, 2001.

D. Beer, P. Stoodley, F. Roe, and Z. Lewandowski, Effects of biofilm structures on oxygen distribution and 429 mass transport, Biotechnol. Bioeng, vol.43, pp.1131-1138, 1994.

L. N. Mueller, J. F. De-brouwer, J. S. Almeida, L. J. Stal, and J. Xavier, Analysis of a marine phototrophic 431 biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP, BMC, vol.432

. Ecol, , vol.6, p.1, 2006.

P. S. Stewart and M. J. Franklin, Physiological heterogeneity in biofilms, Nat. Rev. Microbiol, vol.6, pp.199-210, 2008.

A. Bridier, F. Dubois-brissonnet, A. Boubetra, V. Thomas, and R. Briandet, The biofilm architecture of sixty 435 opportunistic pathogens deciphered using a high throughput CLSM method, J. Microbiol. Methods, vol.82, pp.436-64, 2010.

A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov et al., Quantification 438 of biofilm structures by the novel computer program COMSTAT, Microbiology, vol.146, pp.2395-2407, 2000.

C. S. Srinandan, V. Jadav, D. Cecilia, and A. S. Nerurkar, Nutrients determine the spatial architecture of 440 Paracoccus sp. biofilm, Biofouling, vol.26, pp.449-459, 2010.

C. Staudt, H. Horn, D. C. Hempel, and T. R. Neu, Volumetric measurements of bacterial cells and extracellular 442 polymeric substance glycoconjugates in biofilms, Biotechnol. Bioeng, vol.88, pp.585-592, 2004.

P. Desmond, J. P. Best, E. Morgenroth, and N. Derlon, Linking composition of extracellular polymeric 444 substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms, Water Res, vol.445, issue.132, pp.211-221, 2018.

K. Garny, T. R. Neu, H. Horn, F. Volke, and B. Manz, Combined application of 13C NMR spectroscopy and 447 confocal laser scanning microscopy-Investigation on biofilm structure and physico-chemical properties

, Chem. Eng. Sci, vol.65, pp.4691-4700, 2010.

T. Kawaguchi and A. W. Decho, Biochemical characterization of cyanobacterial extracellular polymers (EPS) 450 from modern marine stromatolites (Bahamas), Prep. Biochem. Biotechnol, vol.30, pp.321-330, 2000.

L. Tan, F. Zhao, Q. Han, A. Zhao, P. K. Malakar et al., High correlation between 452 structure development and chemical variation during biofilm formation by Vibrio parahaemolyticus

. Microbiol, , p.9, 2018.

J. K. Cole, J. R. Hutchison, R. S. Renslow, Y. Kim, W. B. Chrisler et al., , p.455

D. Hu, T. O. Metz, and J. K. Fredrickson, Phototrophic biofilm assembly in microbial-mat-derived 456 unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions

. Microbiol, , p.5, 2014.

C. David, K. Bühler, and A. Schmid, Stabilization of single species Synechocystis biofilms by cultivation under 459 segmented flow, J Ind Microbiol Biotechnol, vol.42, pp.1083-1089, 2015.

C. Kernan, P. P. Chow, R. J. Christianson, and J. Huang, Experimental and computational investigation of 461 biofilm formation by Rhodopseudomonas palustris growth under Two Metabolic Modes, PLOS ONE, vol.10, p.129354, 2015.

T. L. Norcy, H. Niemann, P. Proksch, I. Linossier, K. Vallée-réhel et al., Anti-biofilm effect 464 of biodegradable coatings based on Hemibastadin derivative in marine environment, Int. J. Mol. Sci, p.1520, 2017.

L. Norcy, T. Faÿ, F. Obando, C. Z. Hellio, C. Réhel et al., A new method for evaluation of 467 antifouling activity of molecules against microalgal biofilms using confocal laser scanning microscopy-468 microfluidic flow-cells, Int. Biodet. Biodegr, vol.139, pp.54-61, 2019.

C. Barranguet, S. A. Beusekom, B. Veuger, T. R. Neu, E. M. Manders et al.,

, Studying undisturbed autotrophic biofilms: still a technical challenge, Aquat. Microb. Ecol, vol.34, pp.1-9, 2004.

T. R. Neu, G. D. Swerhone, U. Böckelmann, and J. R. Lawrence, Effect of CNP on composition and structure 472 of lotic biofilms as detected with lectin-specific glycoconjugates, Aquat. Microb. Ecol, vol.38, pp.283-294, 2005.

M. F. De-jesus-raposo, A. M. De-morais, and R. M. De-morais, Bioactivity and applications of 474 polysaccharides from marine microalgae, Polysaccharides: Bioactivity and Biotechnology

K. G. Ramawat, , p.475

R. Xiao and Y. Zheng, Overview of microalgal extracellular polymeric substances (EPS) and their applications

, Biotechnol. Adv, vol.34, pp.1225-1244, 2016.

H. W. Bischoff and H. C. Bold, Phycological Studies IV. Some soil algae from enchanted rock and related algal 480 species, vol.6318, p.95, 1963.

J. Lyman and R. H. Fleming, Composition of sea water, J. Mar. Res, pp.134-146, 1940.

P. R. Walne, Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, p.483

. Crassostrea, Mercenaria and Mytilus. Fish. Invest. Ser, vol.2, p.26, 1970.

D. Assaf, D. Steinberg, and M. Shemesh, Lactose triggers biofilm formation by Streptococcus mutans. Int. Dairy 485 J, vol.42, pp.51-57, 2015.

M. I. Klein, S. Duarte, J. Xiao, S. Mitra, T. H. Foster et al., Structural and molecular basis of the role of 487 starch and sucrose in Streptococcus mutans biofilm development, Appl. Environ. Microbiol, vol.75, pp.837-841, 2009.

H. Koo, J. Xiao, M. I. Klein, and J. G. Jeon, Exopolysaccharides produced by Streptococcus mutans 489 glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms, J. Bacteriol, vol.490, pp.3024-3032, 2010.

J. R. Lawrence, G. M. Wolfaardt, and D. R. Korber, Determination of diffusion coefficients in biofilms by 492

, Confocal Laser Microscopy. Appl. Environ. Microbiol, vol.60, pp.1166-1173, 1994.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. 494 Methods, vol.9, pp.671-675, 2012.

N. Otsu, A treshold selection method from gray-level histograms. 5. 496 36. R Core Team R: A language and environment for statistical computing, p.497, 2014.

, Computing

Y. Tsai, Impact of flow velocity on the dynamic behaviour of biofilm bacteria, Biofouling, vol.21, pp.267-499, 2005.

C. Wang, L. Miao, J. Hou, P. Wang, J. Qian et al., The effect of flow velocity on the distribution and 501 composition of extracellular polymeric substances in biofilms and the detachment mechanism of biofilms

, Water Sci. Technol, vol.69, pp.825-832, 2014.

T. Wei and V. Simko, Visualization of a correlation matrix, vol.504, 2017.

E. Kolderman, D. Bettampadi, D. Samarian, S. E. Dowd, and B. Foxman,

, Arginine destabilizes oral multi-species biofilm communities developed in human saliva, PLOS ONE, pp.507-517, 2015.

L. Li, Y. Jeon, S. Lee, H. Ryu, J. W. Santo-domingo et al., Dynamics of the physiochemical and 509 community structures of biofilms under the influence of algal organic matter and humic substances

. Res, , vol.158, pp.136-145, 2019.

C. J. Seneviratne, W. J. Silva, L. J. Jin, Y. H. Samaranayake, and L. P. Samaranayake, Architectural analysis, 512 viability assessment and growth kinetics of Candida albicans and Candida glabrata biofilms, Arch. Oral Biol, vol.513, pp.1052-1060, 2009.

P. J. Schnurr, G. S. Espie, and D. G. Allen, The effect of light direction and suspended cell concentrations on algal 515 biofilm growth rates, Appl. Microbiol. Biotechnol, vol.98, pp.8553-8562, 2014.

S. M. Rincon, N. F. Urrego, K. J. Avila, H. M. Romero, and H. Beyenal, Photosynthetic activity assessment in 517 mixotrophically cultured Chlorella vulgaris biofilms at various developmental stages, Algal Res, vol.518, p.101408, 2019.

T. J. Battin, L. A. Kaplan, J. D. Newbold, X. Cheng, and C. Hansen, Effects of current velocity on the nascent 520 architecture of stream microbial biofilms, Appl. Environ. Microbiol, vol.69, pp.5443-5452, 2003.

C. Picioreanu, M. C. Loosdrecht, and J. J. Van;-heijnen, A theoretical study on the effect of surface roughness 522 on mass transport and transformation in biofilms, Biotechnol. Bioeng, vol.68, pp.355-369, 2000.

C. Picioreanu, M. C. Loosdrecht, and J. J. Heijnen, Effect of diffusive and convective substrate transport on 524 biofilm structure formation: A two-dimensional modeling study, Biotechnol. Bioeng, vol.69, pp.504-515, 2000.

E. Alpkvist, C. Picioreanu, M. C. Loosdrecht, and A. Van;-heyden, Three-dimensional biofilm model with 526 individual cells and continuum EPS matrix, Biotechnol. Bioeng, vol.94, pp.961-979, 2006.

I. A. Freires, B. Bueno-silva, L. C. Galvão, C. De, M. C. Duarte et al., , p.528

S. M. De,

P. L. Rosalen, The effect of essential oils and bioactive fractions on Streptococcus mutans and Candida