D. Bahdanau, K. Cho, and Y. Bengioy, Neural machine translation by jointly learning to align and translate, Proc. ICLR 2015, 2015.

C. Brouard, H. Shen, K. Dührkop, S. Florence-d'alché-buc, J. Böcker et al., Fast metabolite identification with input output kernel regression, Bioinformatics, vol.32, issue.12, pp.28-36, 2016.

P. Gaskell, F. Mcgroarty, and T. Tiropanis, Signal diffusion mapping: Optimal forecasting with time-varying lags, Journal of Forecasting, vol.35, issue.1, pp.70-85, 2015.

C. W. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica, vol.37, issue.3, pp.424-438, 1969.

A. Graves, Generating sequences with recurrent neural networks. CoRR, 2013.

S. Haaland, C. Munteanu, and B. Mailyan, Solar wind propagation delay: Comment on minimum variance analysis-based propagation of the solar wind observations: Application to real-time global magnetohydrodynamic simulations by A. Pulkkinen and L, Raststatter. Space Weather, vol.8, issue.6, 2010.

Y. Kim, C. Denton, L. Hoang, and A. M. Rush, Structured attention networks, Proc. ICLR 2017, 2017.

C. Munteanu, S. Haaland, B. Mailyan, M. Echim, and K. Mursula, Propagation delay of solar wind discontinuities: Comparing different methods and evaluating the effect of wavelet denoising, Journal of Geophysical Research: Space Physics, vol.118, issue.7, pp.3985-3994, 2013.

P. D. Nooteboom, Q. Y. Feng, C. López, E. Hernández-garcía, and H. A. Dijkstra, Using network theory and machine learning to predict el niño, Earth System Dynamics, vol.9, issue.3, pp.969-983, 2018.

D. Pennacchioli, M. Coscia, S. Rinzivillo, F. Giannotti, and D. Pedreschi, The retail market as a complex system, EPJ Data Sci, vol.3, issue.1, p.33, 2014.

J. Peters, D. Janzing, and B. Schölkopf, Elements of Causal Inference -Foundations and Learning Algorithms, 2017.

M. W. Syama-sundar-rangapuram, J. Seeger, L. Gasthaus, Y. Stella, T. Wang et al., Deep state space models for time series forecasting, NeurIPS, pp.7796-7805, 2018.

M. A. Reiss, P. J. Macneice, L. M. Mays, C. N. Arge, C. Möstl et al., Forecasting the ambient solar wind with numerical models. i. on the implementation of an operational framework, The Astrophysical Journal Supplement Series, vol.240, issue.2, p.35, 2019.

J. Runge, Causal network reconstruction from time series: From theoretical assumptions to practical estimation, Chaos, issue.28, p.75310, 2018.

H. Sakoe and S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.26, issue.1, pp.43-49, 1978.

X. Shi and D. Yeung, Machine learning for spatiotemporal sequence forecasting: A survey, ArXiv, 2018.

I. Sutskever, O. Vinyals, and Q. Le, Sequence to sequence learning with neural networks, Advances in Neural Information Processing Systems, vol.27, pp.3104-3112, 2014.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones et al., Attention is all you need, Advances in Neural Information Processing Systems, vol.30, pp.5998-6008, 2017.

X. Zhao and J. Hoeksema, Prediction of the interplanetary magnetic field strength, Journal of Geophysical Research: Space Physics, vol.100, issue.A1, pp.19-33, 1995.

W. Zhou and D. Sornette, Non-parametric determination of real-time lag structure between two time series: The optimal thermal causal path method with applications to economic data, Journal of Macroeconomics, vol.28, issue.1, p.43, 0342.