
HAL Id: hal-02422273
https://inria.hal.science/hal-02422273

Submitted on 21 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FreeSpec: Specifying, Verifying and Executing Impure
Computations in Coq

Thomas Letan, Yann Régis-Gianas

To cite this version:
Thomas Letan, Yann Régis-Gianas. FreeSpec: Specifying, Verifying and Executing Impure Compu-
tations in Coq. CPP 2020 - 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, Jan 2020, Nouvelle-Orléans, United States. pp.1-15, �10.1145/3372885.3373812�. �hal-
02422273�

https://inria.hal.science/hal-02422273
https://hal.archives-ouvertes.fr

FreeSpec: Specifying, Verifying and Executing Impure
Computations in Coq

Thomas Letan
Software Security Lab

French Cybersecurity Agency (ANSSI)
France

thomas.letan@ssi.gouv.fr

Yann Régis-Gianas
Université de Paris, IRIF/PPS

France
PiR2, Inria Paris-Rocquencourt

France
yrg@irif.fr

Abstract
FreeSpec is a framework for the Coq theorem prover which
allows for specifying and verifying complex systems as hi-
erarchies of components verified both in isolation and in
composition. While FreeSpec was originally introduced for
reasoning about hardware architectures, in this article we
propose a novel iteration of FreeSpec formalism specifically
designed to write certified programs and libraries. Then, we
present in depth how we use this formalism to verify a static
files webserver. We use this opportunity to present Free-
Spec proof automation tactics, and to demonstrate how they
successfully erase FreeSpec internal definitions to let users
focus on the core of their proofs. Finally, we introduce Free-
Spec.Exec, a plugin for Coq to seamlessly execute certified
programs written with FreeSpec.

• Theory of computation → Program verification.

certified programs, certified libraries, Coq, framework,
proof automation
ACM Reference Format:
Thomas Letan and Yann Régis-Gianas. 2020. FreeSpec: Specifying,
Verifying and Executing Impure Computations in Coq. In Proceed-
ings of the 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP ’20), January 20–21, 2020, New Orleans,
LA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3372885.3373812

1 Introduction
In previous work, we have introduced FreeSpec [23], a frame-
work for compositional reasoning using the Coq proof as-
sistant [18], distributed as Free Software under the terms of

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
CPP ’20, January 20–21, 2020, New Orleans, LA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7097-4/20/01. . . $15.00
https://doi.org/10.1145/3372885.3373812

the GPLv3 license1. FreeSpec’s initial goals were to model
complex systems —e.g., an x86 hardware platform— as hi-
erarchies of components interacting through interfaces. A
component exposes an interface, uses interfaces exposed
by other components, and makes its internal state evolve
each time it is executed. FreeSpec provides reasoning tools
to verify each component in isolation and the necessary ab-
stractions to compose these components and their proofs
into a correctness proof of the overall system. To achieve
this in Coq, FreeSpec models a stateful component as an
impure computation encoded in Gallina with a variant of
the Free monad introduced in the Haskell operational
package. In that formalism, an interface i is defined using
an inductive type where each constructor P has a type of
the form t1 -> .. -> t𝑛 -> i t𝑟 and denotes a primitive
with results of type t𝑟 . Since both interfaces and impure
computations are modeled using algebraic datatypes, it be-
comes possible to write Gallina predicates to specify how
primitives have to be used on the one hand, and to prove
that a given impure computation correctly uses them on the
other hand.

FreeSpec has never been intended to be limited to the mod-
eling of interconnected hardware components that together
form a hardware architecture. In particular, we suspected
that FreeSpec could be well suited to reason about so-called
“impure programs” —that is programs with side effects. In-
deed, monads have long been used to write such programs in
purely functional programming languages, Haskell being
the most famous herald of this approach. Once we started
experimenting with FreeSpec to write and verify impure
programs, we noticed our approach to tackle this new use
case was fundamentally different from what we had experi-
enced when modeling hardware specifications. In the latter
case, the complete architecture of the modeled systems was
already known, in particular in terms of interfaces users.
On the contrary, software development often builds up on
libraries providing general-purpose, reusable functions, and
the first iteration of FreeSpec was poorly equipped to write
certified libraries to be used in a large variety of contexts.

1FreeSpec source code can be downloaded at https://github.com/ANSSI-
FR/FreeSpec.

https://doi.org/10.1145/3372885.3373812
https://doi.org/10.1145/3372885.3373812
https://doi.org/10.1145/3372885.3373812
https://github.com/ANSSI-FR/FreeSpec
https://github.com/ANSSI-FR/FreeSpec

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Thomas Letan and Yann Régis-Gianas

In this article, we report on our progress in turning Free-
Spec into a framework to write certified, “impure” programs
and libraries. More precisely, our contribution is threefold.

• We present a new iteration of the FreeSpec formal-
ism which focuses on allowing to write and verify
general-purpose, reusable functions, i.e., writing certi-
fied libraries. In practice, this means we provide new
facilities to compose both impure programs, and their
correctness proofs (Section 2).

• We introduce FreeSpec.Exec, a proof-of-concept plugin
for the Coq theorem prover which turns coqc, i.e., the
Coq compiler, into an effectful interpreter for Free-
Spec’s impure computations (Section 3).

• We illustrate how FreeSpec can be used in practice to
prove impure computations. Our framework comes
with two key tactics which completely erase the Free
monad-related boilerplate of FreeSpec’s formalism. To
illustrate our rationale, we explain in length a sim-
ple use case: we specify a minimal, single-threaded,
single-connection web server whose only feature is to
serve static files, and we prove this program makes a
correct use of the file descriptors it manipulates. More
precisely, it does not try to read from or close a file
which is not currently open, and it correctly closes
any file descriptor it creates (Section 4). The resulting
project is called MiniHTTPServer, can be executed by
FreeSpec.Exec and is distributed under the terms of
the GPLv3 license 2.

We conclude this article by discussing FreeSpec w.r.t. re-
lated work (Section 5), and by detailing future work (Sec-
tion 6).

2 FreeSpec Formalism
In this section, we recall the basic concepts on top of which
FreeSpec’s users can specify and verify impure computa-
tions in a modular way. Modularity is achieved thanks to
a reasoning framework in line with Floyd-Hoare Logic and
the “design by contract” approach by Meyer [27], where
impure computations interact with stateful external compo-
nents through a well-defined interface. Correctness is then
considered through these interactions: as long as an impure
computation (the caller) uses a given interface “correctly,”
then the component (the callee) computes “correct” results,
which conversely allow the caller to continue to use the in-
terface “correctly.” Caller and callee obligations are grouped
together in an interface contract.
In this paper, we assume that the reader has some basic

knowledge of the Coq proof assistant especially of its type
class mechanisms [32].
2MiniHTTPServer source code can be downloaded at https://github.com/
ANSSI-FR/coq-MiniHTTPServer.

2.1 Specifying Impure Computations
An interface is a set of interdependent primitives expected
to produce a result. In FreeSpec, interfaces are encoded as
parameterized types, that is

Definition interface := Type -> Type.

Given i an interface and t a type, a term of type i t identifies
a primitive of i expected to produce a result of type t. As an
example, we consider the STORE s interface. Primitives of
type STORE s t allow for manipulating a global and mutable
variable of type s and produces a value of type t. Specifying
the STORE s interface is straightforward with an inductive
type.

Inductive STORE (s : Type) : interface :=
| Get : STORE s s
| Put (x : s) : STORE s unit.

This definition reads as follows: impure computations
manipulating a global variable can either retrieve its current
value (hence Get answers a value of type s), or modify it
(hence Put expects a term of type s).

We emphasize that terms of type STORE s identify primi-
tives, and do not implement them. Similarly, we also encode
an impure computation leveraging an interface i to com-
pute results of a type t with an inductive type impure i t
defined as follows:

Inductive impure (i : interface) (t : Type) :=
| local (x : t) : impure i t
| request_then {u} (p : i u)

(f : u -> impure i t)
: impure i t.

An impure computation is either the resulting term x of
a local computation, or the action of requesting the envi-
ronment to handle a primitive p. The second argument of
request_then is a continuation f which expects the result
of p as its argument.
For instance, we can implement an impure computation

which, given a global variable of type nat, increments this
variable and returns its previous value as follows:

Definition get_inc : impure (STORE nat) nat :=
request_then Get

(fun x => request_then (Put (S x))
(fun _ => local x)).

2.2 Composite Interfaces and Polymorphism
The impure type is a variant of the Free monad, and we can
compose impure computations which use the same interface
together using the bind combinator whose type is

https://github.com/ANSSI-FR/coq-MiniHTTPServer
https://github.com/ANSSI-FR/coq-MiniHTTPServer

Specifying, Verifying and Executing Impure Computations CPP ’20, January 20–21, 2020, New Orleans, LA, USA

impure i u -> (u -> impure i t) -> impure i t

and whose definition is straightforward:

Fixpoint impure_bind {i a b}
(p : impure i a) (f : a -> impure i b)

: impure i b :=
match p with
| local x =>

f x
| request_then e g =>

request_then e (fun x => impure_bind (g x) f)
end.

The monad formalism and its bind combinator in particu-
lar have proven to be an effective abstraction to define and
reuse computations, but from our perspective, forcing com-
putations to use the same interface is a significant limitation.
In practice, we indeed want to define computations which
use more than one interface (e.g., a daemon which serves
static files over TCP sockets). In our previous work [23], we
were addressing this challenge thanks to a dedicated compo-
sition operator for interfaces. In this paper, we introduce a
more general approach, based on so-called composite inter-
faces which allow for defining impure computations over a
polymorphic composite interface.
We say that a composite interface ix provides an inter-

face i if there exists a function inj_p {t} : i t -> ix t.
Conversely, we can determine if a primitive of a composite
interface ix is forwarded to an interface i when we have a
function proj_p {t} : ix t -> option (i t). The defi-
nitions of proj_p and inj_p shall obey two laws:

1. Assuming ix provides i, then given p a primitive of i,
injecting p in ix then projecting the result back in i
gives back p, i.e., proj_p (inj_p p) = Some p

2. Assuming i and j are two different interfaces, if ix
provides i, then given p a primitive of i, injecting p
in ix, projecting the resulting primitive in j returns
None, i.e., proj_p (i:=j) (inj_p e) = None

MayProvide, Provide and Distinguish form a dedicated
type class hierarchy that implements this mechanism in
FreeSpec (Figure 1). These type classes are transparent to
FreeSpec’s users, i.e., they shall not implement their own
instances.
As previously mentioned, impure computations should

be defined over a polymorphic composite interface rather
than a concrete interface type for them to be seamlessly com-
posed together using the bind combinator. As an example,
FreeSpec provides request, a monadic helper which simply
requests the handling of a primitive and returns back its
result. request is defined as follows:

Class MayProvide (ix i : interface) :=
{ proj_p {t} (e : ix t) : option (i t)
}.

Class Provide (ix i : interface)
`{MayProvide ix i} :=
{ inj_p {t} (e : i t) : ix t
; proj_inf_equ {t} (e : i t)

: proj_p (inj_p e) = Some e
}.

Class Distinguish (ix i j : interface)
`{Provide ix i} `{MayProvide ix j} :=
{ distinguish {t} (e : i t)

: proj_p (i:=j) (inj_p e) = None
}.

Figure 1. The inj_p and proj_p type classes hierarchy

Definition request `{Provide ix i} {t} (p : i t)
: impure ix t :=
request_then (inj_p p) local.

Albeit polymorphic, ix is constrained thanks to the argu-
ment written `{ Provide ix i }: this type class constraint
ensures that ix contains at least the primitives of the inter-
face i. We can rewrite the get_inc impure computation pre-
viously defined in a more generic way (using a do-notation
à la Haskell to make the code more readable):

Definition get_inc `{Provide ix (STORE nat)}
: impure ix nat :=
do x <- request Get;

request (Put (S x));
pure x

end.

While convenient, this type class-based mechanism pre-
vents an impure computation to use two distinct implementa-
tions of the same interface. Indeed, the type class resolution
mechanism is directed by the type constructor identifying
the interface. The standard way to circumvent this limitation
is to use newtypes to distinguish between the two implemen-
tations.

2.3 Interface Contracts
In addition to specifying impure computations, FreeSpec
provides tools to verify them. To that end, we rely on a
contract-based verification approach, wherein interface con-
tracts allow for specifying (1) how to use an interface, and
(2) what to expect from the results of its primitives. The
definition of FreeSpec interface contract remains unchanged
compared to previous work. For illustration purpose, we take
the example of the STORE interface introduced earlier. On
the one hand, a reasonable caller obligation can be to only
retrieve the value of the global variable once it has been ini-
tialized. On the other hand, a common callee obligation for

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Thomas Letan and Yann Régis-Gianas

Definition store_contract (s : Type)
: contract (STORE s) (option s) :=
{| witness_update :=

fun ms _ e _ =>
match e with
Get => ms | Put x => Some x
end

; caller_obligation :=
fun ms _ e =>

match e with
Get => is_some ms | Put x => True
end

; callee_obligation :=
fun ms _ e x =>

match e, x with
| Get, x => match ms with

| Some s => s = x
| _ => True
end

| Put _, _ => True
end

|}.

Figure 2. An example of interface contract for the STORE
interface

such an interface would be that only the Put can modify the
value of the global variable. As this example demonstrates,
obligations are likely to evolve along the evaluation because
of side-effects e.g., an impure computation is not allowed
to use Get until a first Put has been performed, and the
expected result of Get changes after a call to Put.

As a consequence, interface contracts are defined against
so-called witness states. A witness state gives an abstract ac-
count of the current state of the component, and is therefore
updated after a primitive call. In FreeSpec, interface contracts
are encoded with the contract type, defined as follows:

Record contract (i : interface) (Ω : Type) :=
{ witness_update (𝜔 : Ω)

: forall (t : Type), i t -> t -> Ω
; caller_obligation (𝜔 : Ω)

: forall (t : Type), i t -> Prop
; callee_obligation (𝜔 : Ω)

: forall (t : Type), i t -> t -> Prop
}.

where witness_update describes the effect of each prim-
itive on the witness state ; caller_obligation describes
which operations are allowed in a given witness state ; and fi-
nally callee_obligation characterizes the answers of each
primitive under a given witness state.
In Figure 2, we propose a concrete definition for the con-

tract previously discussed for the STORE interface. The wit-
ness state of this contract is of type option s, where the
term None encodes the fact that Put has never been called,

and Some x for a certain x of type s means the last call to
Put has had x as a parameter.

Respectful Computations. The general intuition behind
interface contracts is the following: as long as the callers
satisfy their obligations, callees are expected to do as well.
From this perspective, we say that an impure computa-

tion is respectful of a contract when it always satisfies caller
obligations under the hypothesis that callee obligations are
met. Given a term x, the computation local x is always
respectful of c in accordance to 𝜔 , since it does not use any
primitives. Given now a primitive p and a continuation f, the
impure computation request_then p f is respectful of c
in accordance to 𝜔 if:

1. p satisfies c’s caller obligations, and
2. given any x which is a correct result for p (w.r.t. c’s

callee obligation), f x is respectful of c in accordance
to 𝜔 ′, where 𝜔 ′ is the witness after p’s execution.

Before entering into the formal definitions of respect-
fulness, we need first to emphasize that, since the impure
monad and polymorphic composite interfaces allow for spec-
ifying and composing impure computations together, an ar-
bitrary impure computation may use other primitives which
do not belong to the interface referred by c, or even use none
of the primitives of this interface at all. We therefore use
the MayProvide type class to generalize the three compo-
nents of an interface contract. For instance, we can use the
proj_p function to distinguish between relevant and irrel-
evant primitives, and update the witness state only in the
former case:
Definition gen_witness_update `{MayProvide ix i}

{Ω t} (c : contract i Ω) (𝜔 : Ω)
(p : ix t) (x : t) : Ω :=

match proj_p i with
| Some e => witness_update c 𝜔 e x
| None => 𝜔

end.

Similarly, we generalize both caller_obligation and
callee_obligation to handle an arbitrary composite inter-
face ix, such that the predicates are automatically satisfied
when considering a primitive of ix which cannot be pro-
jected to i. In other words, these proof obligations automat-
ically exploit the fact that interfaces are separated by con-
struction. Thus, they cannot interfere and we can separately
reason about their correct usage even though a program can
use several interfaces simultaneously.
Using these functions, we can reason about the respect-

fulness of an impure computation leveraging a polymorphic
composite interface ix w.r.t. a contract about the interface i.
In the previous iteration of FreeSpec [23], the predicate of
respectfulness was not polymorphic. As a consequence, it
was not possible to seamlessly reuse a proof of respectful-
ness for an impure computation using an interface i to prove

Specifying, Verifying and Executing Impure Computations CPP ’20, January 20–21, 2020, New Orleans, LA, USA

the respectfulness of a host computation which uses more
interfaces. The respectfulness predicate is defined as follows:
Inductive respectful_impure `{MayProvide ix i} {t Ω}

(c : contract i Ω) (𝜔 : Ω)
: impure ix t -> Prop :=

| respectful_local (x : t)
: respectful_impure c 𝜔 (local x)

| respectful_request {u}
(e : ix u) (f : u -> impure ix t)
(* We must respect e's requirements on 𝜔. *)
(ocaller : gen_caller_obligation c 𝜔 e)
(ocallee : forall (x : u),
(* The answer validates the requirements. *)
gen_callee_obligation c 𝜔 e x ->
(* We continue with the next witness 𝜔 ′. *)
let 𝜔 ′ := gen_witness_update c 𝜔 e x in
respectful_impure c 𝜔 ′ (f x))

: respectful_impure c 𝜔 (request_then e f).

Asserting that an impure computation p is respectful of
a contract c requires to prove that p will always satisfy c’s
caller obligation, under the sole hypothesis that c’s callee
obligation is satisfied. From this perspective, the impure
monad is boilerplate, and FreeSpec provides a dedicated
tactic called prove_impure to completely erase it. More
precisely, prove_impure identifies the proof obligations re-
lated to caller_obligation necessary to conclude about a
given impure computation respectfulness. To achieve that,
prove_impure performs a delicate symbolic execution of the
program, in the same spirit as the CFML condition genera-
tor [7]. The obligations that Coq auto command is not able
to handle are then left for the user to solve.
As a consequence, reasoning about the respectfulness of

an impure computation p eventually boils down to an enu-
meration of all the contexts under which p calls a primitive,
and to a proof that each of these calls is licit. As p grows in
complexity, this enumeration becomes cumbersome. Besides,
p can be a composition (by means of the bind operator of
the impure monad) of several smaller computations, and
sometimes the same computation can be used several times.
In such a case, in addition to a large number of proof obliga-
tions about caller_obligation, many of these obligations
will be very similar. More precisely, to prove that p >>= f
is respectful of a contract c for a witness state 𝜔 , we cannot
reuse a proof that p is respectful of c for 𝜔 as-is, but rather
need to enumerate the primitive calls of p once again.
To enable proof reuse, we need a way to reason about

computation outcomes, both in terms of result and witness
state updates. In FreeSpec, this is primarily achieved with
the so-called respectful runs.

Respectful Runs. A respectful run (w.r.t. a contract c about
an interface i) of an impure computation p encodes an exe-
cution of p during which both p and the callee which handles
primitives of i satisfy their respective obligations. This pred-
icate is supposed to occur as an hypothesis to reason about

the behavior of an impure computation which is assumed to
execute safely. From this hypothesis, we can typically decom-
pose the impure computation as a sequence of requests and
make explicit the intermediate witness states that occur after
each effects. During this decomposition, the proofs of the
conformance to the contract’s callee and caller obligations
are also made available.

Given a term x, and an initial witness 𝜔 , then there exists
only one respectful run of the computation local x. The
latter returns x as a result, and preserves the witness state 𝜔
since it does not perform any effectful operation.

Consider an initial witness 𝜔 , a primitive p which satisfies
c’s caller obligations, and a continuation f. We say that
“there exists a respectful run for request_then p f which
leads to a result y and a witness state 𝜔 ′” if (i) there is some
result x for p which satisfies c’s callee obligations ; and (ii)
there exists a respectful run for f x which leads to a result y
and a witness state 𝜔 ′. In other words, we make explicit the
intermediate witness state 𝜔 ′′ which intervenes just before
the request continuation is triggered.

Inductive respectful_run `{MayProvide ix i}
{t Ω} (c : contract i Ω)

: impure ix t -> Ω -> Ω -> t -> Prop :=
| run_local (x : t) (𝜔 : Ω)

: respectful_run c (local x) 𝜔 𝜔 x
| run_request {u} (𝜔 ′ : Ω)

(p : ix u) (f : u -> impure ix t)
(𝜔 : Ω) (x : u) (y : t)
(ocaller : gen_caller_obligation c 𝜔 p)
(ocallee : gen_callee_obligation c 𝜔 p x)
(rec :
let 𝜔 ′′ := gen_witness_update c 𝜔 p x in
respectful_run c (f x) 𝜔 ′′ 𝜔 ′ y)

: respectful_run c (request_then p f) 𝜔 𝜔 ′ y.

Probably because they are closely related, the difference
between respectful_impure and respectful_run has prov-
en to be difficult to grasp.

On the one hand, respectful_impure c 𝜔 p states that
as long as the underlying callee satisfies its obligations,
then p behaves in accordance with its own obligations as well.
On the other hand, respectful_run c p 𝜔 𝜔 ′ x states
that there exists an execution of p (1) such that p and the
underlying callee have both satisfied their obligations, (2)
where the witness state was updated to 𝜔 ′, and (3) resulting
in the production of the term x. It is possible to prove the
existence of a respectful run for a computation p which is
not always respectful of a contract c. Indeed, even if this
computation does not behave in accordance with c’s caller
obligations in the general case, it may exist a callee whose
results happen to make it behave respectfully occasionally. It
is also possible to prove the existence of two respectful runs
of p starting from the same witness state, but leading to the
production of different results. We can prove, however, that
if an impure computation p is respectful of a contract c, then

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Thomas Letan and Yann Régis-Gianas

all its executions with a callee which satisfies its obligations
w.r.t. c can be encoded as a respectful run.

Therefore, given a computation p and a continuation f,
if we have (1) a proof that p is respectful of c for 𝜔 , and (2)
a proof that, for every result x and witness state 𝜔 ′ that p
execution can lead to, f x is respectful of c for 𝜔 ′, then we
can conclude that p >>= f is respectful of c for 𝜔 without
being forced to enumerate the primitive calls made by p.
Lemma respectful_bind_respectful_run

`{MayProvide ix i} {t u Ω}
(c : contract i Ω) (𝜔 : Ω)
(p : impure ix u) (f : u -> impure ix t)
(trust : respectful_impure c 𝜔 p)
(run : forall (x : u) (𝜔 ′ : Ω),

respectful_run c p 𝜔 𝜔 ′ x
-> respectful_impure c 𝜔 ′ (f x))

: respectful_impure c 𝜔 (p >>= f).

The prove_impure tactic mentioned previously leverages
this lemma when it encounters an opaque impure computa-
tion as the first parameter of a bind combinator. This results
in the production of two goals. The first one—p is respectful—
is left for the user to prove (typically by means of an already
existing lemma). The second one —f x is respectful, under
the hypothesis that x is the result of a respectful run of p—
is recursively handled by the prove_impure tactic.
The respectful_run predicate is expected to be used

exclusively as an hypothesis. A common pattern in FreeSpec
developments is to provide general-purpose lemmas of the
following form:
forall 𝜔 ′ x,

respectful_run c p 𝜔 𝜔 ′ x -> P 𝜔 ′ x

which can be later used in goals generated by prove_impure,
in conjunction with lemmas of the following form:
forall 𝜔 x,

P 𝜔 x -> respectful_impure c 𝜔 (f x)

To leverage hypotheses of the form respectful_run, we
provide a dedicated tactic called unroll_respectful_run.
The goal of this tactic is to destruct the run of p to expose to
the user which primitives and associated results led to this
run, as well as the obligations they satisfy.
Additionally, respectful_run can be used to exhibit in-

teresting properties of respectful impure computations be-
yond their respectful usage of a given interface. For instance,
coming back to the STORE interface and the store_contract
contract, we can prove that a respectful computation always
restores the value of the global mutable variable before re-
turning its result with the following predicate:
Definition store_preserving {s a}

`{MayProvide ix (STORE s)}
(p : impure ix a) (x : a)
(init final : option s)

: respectful_run store_contract p init final x
-> init = final.

Contracts Composition. Contracts can be conveniently com-
posed thanks to the following operator.
Definition contract_plus

`{Provide ix i, Provide ix j} {Ω𝑖 Ω 𝑗}
(ci : contract i Ω𝑖)
(cj : contract j Ω 𝑗)

: contract ix (Ω𝑖 * Ω 𝑗) :=
{| witness_update :=

fun 𝜔 _ e x =>
(gen_witness_update ci (fst 𝜔) e x,
gen_witness_update cj (snd 𝜔) e x)

; caller_obligation :=
fun 𝜔 _ e =>

gen_requirements ci (fst 𝜔) e
∧ gen_requirements cj (snd 𝜔) e

; callee_obligation :=
fun 𝜔 _ e x =>

gen_promises ci (fst 𝜔) e x
∧ gen_promises cj (snd 𝜔) e x

|}.

There are two interesting properties of contract_plus
that we want to emphasize. First, nothing prevents i and j
to be the same interface. Second, contract_plus is commu-
tative and associative. This entails that the way we compose
a set of contracts together does not matter.

3 FreeSpec.Exec
3.1 Effectful semantics
The previous section has introduced impure computations
which rely on an interface to implement the effectful primi-
tives they use. For now, we have pushed back the problem
of implementing impurity to another layer of the program.
If we want to actually execute these impure programs, we
cannot push back the implementation of impure primitives
ad infinitum, we must complete them with an effectful se-
mantics. We define this notion as follows.
CoInductive semantics (i : interface) : Type :=
| mk_semantics :

(f : forall (t : Type), i t -> interp_out i t)
: semantics i

with interp_out (i : interface) : Type -> Type :=
| mk_out {t} (x : t) (sem : semantics i)

: interp_out i t.

A semantics for an interface i provides an interpretation
for each primitive p of type i a by returning a value of type t
as well as a new semantics. This new semantics corresponds
to the previous semantics modified by the effects of p.

From the perspective of an interface i, a semantics is the
stream of primitive results produced by an implementation
of i. For this reason, it is defined as a coinductive object.
There are four ways to realize an effectful semantics: by

simulation, by delegation, by extraction, and by interpreta-
tion. First, one can simulate the effectful semantics directly
within Coq, e.g. a STORE can be implemented as follows:

Specifying, Verifying and Executing Impure Computations CPP ’20, January 20–21, 2020, New Orleans, LA, USA

CoFixpoint store {s} (init : s)
: semantics (STORE s) :=
mk_semantics (fun (t : Type) (e : STORE s t) =>

match e with
| Get => mk_out init (store init)
| Put next => mk_out tt (store next)
end).

Second, the realization of a semantics for an interface i
can be delegated to another impure computation which it-
self exploits another interface j. This technique allows for
a hierarchical decomposition of large effectful systems as
explained in our previous paper about FreeSpec. The present
paper focuses on effectful programming-in-the-small rather
than effectful programming-in-the-large [11]: for this reason,
we omit the description of FreeSpec’s notion of component
which allows for modular development of certified large
systems.

These first two realizations of semantics are useful to sim-
ulate or to organize effectful computations. However, when
it comes to actually run the program, we need executable
realizations of semantics.

3.2 Executable Realizations of Semantics
The extraction [24] is the standard way to turn a Coq devel-
opment into a runnable executable. This method can be used
with FreeSpec as well, except that the semantics of effects
must be explicitly realized by OCaml expressions, e.g.:
Axiom ocaml_scan : unit -> string.
Axiom ocaml_echo : string -> unit.

CoFixpoint ocaml_semantics :=
mk_semantics (fun {t} (x : CONSOLE t) =>

match x with
| Scan =>

mk_out (ocaml_scan tt) ocaml_semantics
| Echo s =>

mk_out (ocaml_echo s) ocaml_semantics
end).

This technique does not fit well the interactive workflow
of Coq since it requires leaving the current user session to
issue some batch commands to build an executable and to run
it afterward. Each experimentation interrupts the interactive
user session, which can be cumbersome in the long run.
FreeSpec.Exec is a Coq plugin that introduces a Vernac-

ular command written Exec t that takes a term t of type
impure ix t and executes it within Coq. This execution
technique does not require the user to leave its interactive
session and therefore smoothly integrates the user work-
flow. Here is how an Hello World program can be executed
within Coq (echo being a wrapper for a request for the
Echo primitive):
Definition hello `{Provide ix CONSOLE}
: impure ix unit :=
echo "Hello, world!".

Exec hello.

The FreeSpec.Exec is meant to give a smooth development
experience and to provide a simple interpretation mecha-
nism, similar the Python interpreter for instance. Of course,
for performance sensitive applications, we plan to provide a
compilation scheme for FreeSpec based software.

3.3 Implementation
Inspired by Mtac [19, 36] and MetaCoq [2], FreeSpec.Exec is
a bi-interpreter, i.e., an interpreter that interleaves two inter-
preters. One of these two interpreters is the reduction engine
of Coq: when it is provided a term of type impure ix t,
this interpreter makes the head constructor appear using the
weak-head reduction strategy. Then, it is the turn of the other
interpreter that we wrote to deal with the impure parts of the
computation: it has an evaluation rule for each constructor
of impure. When the constructor is Pure, the computation is
done. Otherwise, when the constructor is Request, this sec-
ond interpreter performs the requested operation using the
impure facilities of OCaml and calls the first interpreter back
by passing the continuation instantiated with the operation
answer.

Definition 3.1 (Evaluation strategy of FreeSpec.Exec).
Let t be of type impure ix t.

1. Compute w, the weak-head normal form of t.
2. If w is Pure u, returns u.
3. If w is Request e f, pass the normal form c of e to an

effect handler g written in OCaml, go back to (1) with
t = f (g c).

3.4 FreeSpec.Exec plugin system
FreeSpec.Exec is a Coq plugin but it also enjoys a plugin
system of its own. Thanks to this plugin system, any Coq
library that defines a FreeSpec interface can also provide
some OCaml code to concretely realize the effects of this
interface. This piece of code is registered quite easily by
calling the register_interface function as shown by the
implementation of the Console interface as found in Free-
Spec standard library:
let path = "freespec.stdlib.console"

let install_interface =
let scan = function

| [] -> string_to_coqstr (read_line ())
| _ -> assert false

and echo = function
| [str] -> print_bytes (bytes_of_coqstr str);

coqtt
| _ -> assert false

in
register_interface path [

("Scan", scan); ("Echo", echo)
]

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Thomas Letan and Yann Régis-Gianas

Exec provides a basic set of conversion functions to turn
OCaml values into Coq terms, and conversely. Hence, the
programmer can easily wrap OCaml functions to lift them to
effect handlers semantics in Coq. For FreeSpec, Exec there-
fore plays the role of a Foreign Function Interface to OCaml.
Since Coq 8.10, the use of the Register vernacular command
is required in order for plugins to interact with named con-
stants. For instance, for the CONSOLE interface, the following
statements are necessary:
Register CONSOLE as freespec.stdlib.console.type.
Register Scan as freespec.stdlib.console.Scan.
Register Echo as freespec.stdlib.console.Echo.

4 MiniHTTPServer
MiniHTTPServer is a “minimal web server” implemented
and verified in Coq thanks to FreeSpec. MiniHTTPServer is
inspired from the SimpleHTTPServer module of Python:
its purpose is to serve static files over HTTP. In its current
state, MiniHTTPServer works as follows. First, it opens a
TCP socket, and waits for an incoming connection. Once
established, MiniHTTPServerwaits for a TCP packet, then it
parses the content of this packet as a HTTP request to extract
a resource identifier (e.g. index.html, css/style.css, etc.).
If the HTTP request is well-formed, and if the requested
resource exists in the file system, MiniHTTPServer fetches
its content, and sends it back to the client as a valid HTTP
response. Otherwise, it sends back the relevant HTTP sta-
tus (that is, 400 if the request is ill-formed or 404 is the
resource does not exist). MiniHTTPServer canonicalizes re-
source identifiers and prefixes it with a base directory (e.g.,
../../etc/passwd becomes /srv/etc/passwd) to protect
itself against directory traversal attacks [15]. In its current
state, MiniHTTPServer will only accept a finite number of
connections before exiting gracefully, due to the inductive
nature of the impure type.
There is plenty of room for improvement, but our goal

with MiniHTTPServer is neither features completeness, nor
efficiency. On the contrary, we aim to keep this project rela-
tively small and simple to be easily understood, while making
it an appealing demonstrator for the FreeSpec framework.

4.1 Implementing a web server in Coq
The MiniHTTPServer implementation can be divided into
three elementary tasks: (1) waiting for arbitrary incoming
inputs and sending back outputs to TCP sockets (thanks
to the TCP interface), (2) interpreting incoming packets as
HTTP requests, and (3) fetching resources content from the
file system (thanks to FILESYSTEM interface).

Handling TCP Connections. The tcp_server computa-
tion is the only impure computations of MiniHTTPServer
which directly uses the following TCP interface:
Inductive TCP : interface :=
| NewTCPSocket

Definition tcp_server `{Provide ix TCP}
(handler : string -> impure ix response) (n : nat)

: impure ix unit :=
do server <- new_tcp_socket "localhost:8080";

listen_incoming_connection server;
repeatM n do

client <- accept_connection server;
req <- read_socket client;
res <- handler req;
write_socket client res;
close_socket client;

end
close_socket server

end.

Figure 3. The tcp_server definition

: string -> TCP socket_descriptor
| ListenIncomingConnection

: socket_descriptor -> TCP unit
| AcceptConnection

: socket_descriptor -> TCP socket_descriptor
| ReadSocket

: socket_descriptor -> TCP string
| WriteSocket

: socket_descriptor -> string -> TCP unit
| CloseTCPSocket

: socket_descriptor -> TCP unit.

More precisely the TCP-related impure computations called
by tcp_server are all simplewrappers upon a call of request
with a TCP primitive. tcp_server takes two arguments: the
number of incoming connections it has to handle, and an
arbitrary handler which computes responses to send back to
the clients. This function is used to define the HTTP server
as follows:
Definition http_server

`{Provide ix FILESYSTEM, Provide ix TCP}
: impure ix unit :=
tcp_server (tcp_handler [Dirname "tmp"]).

where tcp_handler is interpreting TCP packets as HTTP
requests under the "tmp" directory. Readers familiar with
Haskell or other purely functional languages relying on
monads to encode side-effects will find the implementation
of tcp_server (in Figure 3) familiar.

InterpretingHTTPRequests. Interpreting incomingHTTP
requests is two-fold.
First, MiniHTTPServer parses the raw packets, in order

to extract resource identifiers from a GET HTTP request.
The parsing function is implemented with a homegrown
parser combinators library we called coq-comparse simi-
lar to Haskell parsec package or Rust nom crate 3. Then,

3coq-comparse source code can be downloaded at https://github.com/
ANSSI-FR/coq-comparse. It is distributed under the terms of the GPLv3
license.

https://github.com/ANSSI-FR/coq-comparse
https://github.com/ANSSI-FR/coq-comparse

Specifying, Verifying and Executing Impure Computations CPP ’20, January 20–21, 2020, New Orleans, LA, USA

MiniHTTPServer canonicalizes this resource identifier to re-
move the . and .. special directories. This second step is
mandatory to avoid MiniHTTPServer to be subject to traver-
sal directories attacks.

Serving Static Files. Once the resource identifier has been
extracted and sanitized, MiniHTTPServer checks if the re-
source exists. In such a case, it fetches its content from the
file system, then crafts a valid HTTP response for the client.
Otherwise, it sends back to the client the famous “404 Not
found” HTTP error.

To achieve this, MiniHTTPServer relies on the FILESYSTEM
interface, defined as follows:

Inductive FILESYSTEM : interface :=
| Open (path : string) : FILESYSTEM file_descriptor
| FileExists (file : string) : FILESYSTEM bool
| Read (file : file_descriptor) : FILESYSTEM string
| Close (file : file_descriptor) : FILESYSTEM unit.

4.2 Verifying MiniHTTPServer implementation
As discussed in Section 2, FreeSpec introduces two key com-
ponents to reason about impure computations: (1) inter-
face contracts which assign proof obligations to callers and
callees, and (2) tactics to erase the impure monad. We are
convinced, after using FreeSpec for verifying increasingly
complex use cases, that (2) is mandatory for (1) to be tractable.
This technique based on a verification condition generator
written in Ltac has already proven its relevancy in other
tools for program verification in Coq, e.g., CFML [7].
We now explain how we have used FreeSpec in order to

prove two properties of MiniHTTPServer, that is our server
correctly manages its file descriptors (e.g., it does not try to
read a file with a closed file descriptor) and it does not leave
any file descriptors open. Albeit simple, these two properties
are good candidates to demonstrate FreeSpec formalism and
automation capabilities benefits.

Interface Contract. As a mandatory first step, we define an
interface contract to encode the two targeted properties of
MiniHTTPServer. As a reminder, an interface contract for an
interface i is parameterized with witness states and consists
in three components: two predicates to specify the callers
and callees obligations, and a function to update the witness
state after each primitive call.
We define the witness state of our contract as the set of

currently open file descriptors. The witness state is only
used for reasoning about an impure computation, and is not
involved during the execution of an impure computation.
It is therefore similar to a phantom parameter as found for
instance in Dafny [22] or Why3 [13]. Since the choice of
the witness state representation is not subject to any per-
formance or memory consumption considerations, we use
functions of type t -> bool to encode sets of terms of type t.
In our experience, this representation is straightforward and

eases the reasoning on set manipulation, partly because Coq
efficiently reduces them in practice.

The definitions of three components of our interface con-
tract fd_set_contract are given in Figure 4:

• When the witness state update function is given a
primitive of the form Open path resulting in a file
descriptor fd (resp. a primitive of the form Close fd),
it inserts (resp. removes) fd from the witness state. The
other primitives leave the witness state untouched.

• Caller obligations constrain file descriptors passed as
arguments to primitives to inhabit the witness state.

• Callee obligations only constrain the Open primitive to
produce file descriptors that do not inhabit the witness
state. Notice that this obligation does not forbid callees
to reallocate closed file descriptors. If wewanted to pre-
vent such a behavior, we could have enforced a stricter
freshness policy by using a dedicated type in place of
bool with three values Fresh, Open and Closed, and
modify the callee obligations accordingly.

Theorems Statements. On the one hand, we use the pred-
icate respectful_impure to model the property that our
server correctly manages its file descriptors.
Theorem fd_set_contract_http_server

`{Provide ix FILESYSTEM, Provide ix TCP}
(s : fd_set)

: respectful_impure fd_set_contract s http_server.

On the other hand, we use the respectful_run predicate
to model the property that MiniHTTPServer closes every
file it opens. To that end, we first define a predicate we call
fd_set_preserving, following the same approach as the
store_preserving predicate we have discussed earlier (in
Subsection 2.3).
Definition fd_set_preserving {t}

`{MayProvide ix FILESYSTEM}
(p : impure ix t) :=

forall (s s' : fd_set) (x : t),
respectful_run fd_set_specs p s s' x
-> forall fd, s fd = s' fd.

The fd_set_preserving predicate states that, for every
respectful run of p, any file descriptor open (resp. closed)
before the execution of p remains open (resp. closed) after-
wards. As a consequence, if p opens a file, it closes it before
the end of its execution.

Therefore, we can use the fd_set_preserving predicate
to encode the fact that http_server closes any file it opens.
Theorem fd_set_preserving_http_server

`{Provide ix FILESYSTEM, Provide ix TCP}
: fd_set_preserving http_server.

Conducting proofs within FreeSpec. We now give a high-
level overview of how proofs related to impure computations
are conducted using FreeSpec. The fd_set_contract con-
tract only defines obligations for the FILESYSTEM interface.

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Thomas Letan and Yann Régis-Gianas

Definition fd_set : Type := file_descriptor -> bool.

Definition fd_set_update (S : fd_set) (a : Type) (e : FILESYSTEM a) (x : a) : fd_set :=
match e, x with
| Open _, fd => add_fd S fd
| Close fd, _ => del_fd S fd
| Read _, _ => S
| FileExists _, _ => S
end.

Inductive fd_set_caller_obligation (S : fd_set) : forall (a : Type), FILESYSTEM a -> Prop :=
| fd_set_open_caller (p : string)
: fd_set_caller_obligation S file_descriptor (Open p)

| fd_set_read_caller (fd : file_descriptor) (is_member : member S fd)
: fd_set_caller_obligation S string (Read fd)

| fd_set_close_caller (fd : file_descriptor) (is_member : member S fd)
: fd_set_caller_obligation S unit (Close fd)

| fd_set_is_file_caller (p : string)
: fd_set_caller_obligation S bool (FileExists p).

Inductive fd_set_callee_obligation (S : fd_set) : forall (a : Type), FILESYSTEM a -> a -> Prop :=
| fd_set_open_callee (p : string) (fd : file_descriptor) (is_absent : absent S fd)
: fd_set_callee_obligation S file_descriptor (Open p) fd

| fd_set_read_callee (fd : file_descriptor) (s : string)
: fd_set_callee_obligation S string (Read fd) s

| fd_set_close_callee (fd : file_descriptor) (t : unit)
: fd_set_callee_obligation S unit (Close fd) t

| fd_set_is_file_callee (p : string) (b : bool)
: fd_set_callee_obligation S bool (FileExists p) b.

Definition fd_set_contract : contract FILESYSTEM fd_set :=
{| witness_update := fd_set_update
; caller_obligation := fd_set_caller_obligation
; callee_obligation := fd_set_callee_obligation

|}.

Figure 4. The interface contract fd_set_contract.

The unique place where MiniHTTPServer uses this inter-
face is after it has extracted a canonical resource identifier
from an incoming well-formed HTTP request. In such a case,
MiniHTTPServer first checks if the resource identifier is a
path to an existing file with a primitive called FileExists.
When this primitive produces the value true, the server
opens, reads the content, then closes the file.
From our perspective, this routine of MiniHTTPServer

is critical since this is the place where something bad may
happen: if a bug prevents serving the requested file content,
the web server is useless. The verification effort amounts to
prove a statement of the form:
forall (s : fd_set),

respectful_impure
fd_set_contract s
(do var isf <- file_exists path in

if (isf : bool)
then do

var fd <- open path in

var content <- read fd in
close fd;
pure (Some content)

end
else pure None

end)).

In this code snippet, the treatment of the file content is
enclosed by the opening and the closing of the file. In such a
scenario, FreeSpec users are entitled to expect an automatic
proof using the tactic prove_impure mentioned earlier. In-
terestingly enough, FreeSpec is able to solve this goal auto-
matically when the appropriate Hints has been registered.
In a nutshell, the tactic proceeds as follows:

1. prove_impure uses cbn to reduce the current goal, and
inspects the current form of the impure computation
only to realize the latter uses the FileExists path
primitive; prove_impure generates a subgoal to prove

Specifying, Verifying and Executing Impure Computations CPP ’20, January 20–21, 2020, New Orleans, LA, USA

this primitive satisfies fd_set_contract’s caller obli-
gation and if auto does not succeed in solving it (it
does with the appropriate Hint), prove_impure leaves
this goal to be solved by the user.

2. It applies the constructor of respectful_impure to
the main goal, and calls itself recursively.

3. The current form of the impure computation to prove
is now if isf then ... else ...; prove_impure
uses destruct to explore both alternatives. It calls
itself recursively.

4. Assuming isf = true:
a. the impure computation now uses the primitive

Open. prove_impure produces a dedicated subgoal,
applies the appropriate constructor to the main goal,
and recursively calls itself.

b. In the main goal, the fact that the result of Open
satisfies fd_set_contract contract now appears as
an hypothesis. We therefore know that (1) the file
descriptor was not in the witness state before, and
also (2) the file descriptor is now in the new witness
state thanks to the witness state update function.
Besides, the impure computation now uses the prim-
itive Read, so prove_impure yet again generates a
subgoal related to the caller obligation of Read. This
subgoal is easily solved with the hypothesis (2).

c. Then comes the primitive Close, which is handled
exactly like Read since they have the same caller
obligation.

5. Assuming now isf = false, the impure computation
ends without further usage of the FILESYSTEM primi-
tives.

Since we have now formally established the respectfulness
of MiniHTTPServer simple “open, read, then close” routine,
we can reason about its outcomes. More precisely, we show
this routine satisfies the fd_set_preserving predicate.

forall (s s' : fd_set) (res : unit),
respectful_run fd_set_preserving

(do var isf <- file_exists path in
if (isf : bool)
then do

var fd <- open path in
var content <- read fd in
close fd;
pure (Some content)

end
else pure None

end) s s' res -> forall fd, s fd = s' fd.

As mentioned earlier, the respectful_run is here used as
an hypothesis. We use the tactic unroll_respectful_run
to explore the set of respectful runs automatically. In this
context, we consider two scenarios:

1. There is one respectful run where FileExists returns
false, and the computations ended. In such a case, we

can conclude s fd = s' fd for all fd, since s = s'
by definition of the witness update function.

2. The rest of the respectful runs of our routine proceeds
as follows: the FileExists primitive has returned
true. This leads to the primitive Open being called,
and its result being passed as an argument for the
primitives Read and Close.
a. In practice, after the call to Open, the returned file

descriptor is added to the witness state.
b. Then, the call to Read leaves the witness state
c. Finally, after the call to Close, the file descriptor pre-

viously returned by Open is removed from the wit-
ness state.We can conclude about s fd = s' fd for
any fd because, thanks to fd_set_contract callee
obligations, we know the file descriptor returned
by Open was not in the witness state to begin with,
so adding it and removing it eventually leaves the
witness state in the same state it was initially.

The rest of MiniHTTPServer only uses the file system in-
terface via this routine. To reuse our two previous proofs,
we thereafter treat this computation as an opaque constant,
meaning prove_impure and unroll_respectful_run will
not unfold them (i.e., the tactic prove_impure will leverage
the respectful_bind_respectful_run lemma). Besides,
prove_impure proves the subgoals related to primitives ir-
relevant to the targeted contract automatically (they are
always satisfied, by definition of gen_caller_obligation
and Distinguish).
That being said, FreeSpec tactics cannot automatically

solve the two main theorems we aim to prove. These tac-
tics erase the FreeSpec internal boilerplate to sequentialize
calls of primitives or opaque impure computations, but they
are not equipped to deal with conditional branching in the
general case. In Coq, this is modeled with datatypes induc-
tive principles (and the match ... with ... end syntactic
sugar).With the notable exception of the bool type, FreeSpec
tactics will leave to the user the choice of a strategy to reason
about inductive principles (e.g., performing an induction, a
case analysis, etc.).
For MiniHTTPServer, there are two uses of an induction

principle: (1) with sum type to reason about what to do with
the result of the HTTP request parsing which can be ei-
ther a parsing error or a resource identifier, and (2) with
the nat type whether the server can still accept incoming
connections or not (inside the repeatM helper appearing in
Figure 3). We can tackle case (1) with a simple case analy-
sis. Case (2) requires more work, but interestingly we can
provide general-purpose lemmas to be reused not only for
our server, but for any impure computation which relies on
repeatM.

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Thomas Letan and Yann Régis-Gianas

4.3 Executing MiniHTTPServer

As we discussed in Section 3, FreeSpec introduces a Coq
plugin called FreeSpec.Exec, which acts as a callee for an ex-
tensible set of interfaces. Therefore, it is capable of executing
impure computations which uses these interfaces directly
within Coq. This allows us to run our server in a coqtop
session and to interact with it with a standard web browser.

In theory, this execution model should not be significantly
less efficient than other interpreted languages, e.g. Python.
However, the current implementation of MiniHTTPServer
suffers from the impractical representation of Coq strings.
Indeed, the standard strings of Coq are implemented as list of
ASCII characters which are themselves made of 8 booleans.
This limitation will hopefully be addressed by the forth-
coming integration of native arrays in Coq’s internal term
representations.

4.4 Discussion
In this section, we have implemented, verified w.r.t. an inter-
face contract about the FILESYSTEM contract, and executed
a minimal HTTP server. This development is made of 600
lines of specifications and 350 lines of proof scripts.
Albeit MiniHTTPServer remains a proof of concept in

its current state, and is in no mean usable in a production
environment, the project has been highly instructive.

Coq as a Programming Language. Programming langua-
ges are tools software developers use to build software com-
ponents. In its core and to this day, Coq remains a theorem
prover rather than a development environment. The fact that
there is no canonical way to write a “Hello, world!” program
using Coq by the end of 2019 (more than 30 years after its ini-
tial release) is a clear evidence of this fact. As a consequence,
developers seeking to use Coq as their primary tool to write
software expose themselves to the frustration of having to
implement a lot of utilitary functions other languages tend to
integrate in their standard library. Besides, they will probably
feel in need for a better tooling ecosystem (e.g., to this day,
coqdoc is more a source pretty printer than a documentation
tool comparable to haddock for Haskell or cargo doc for
Rust). We believe these issues are not inherent to Coq, but
rather the consequences of the Coq community priorities.
Interestingly, turning Coq into a “real” programming lan-
guage has been an increasing trend in recent years, and as a
consequence Coq 8.10 has introduced native integers (and
native array support is planned).

As a development environment, Coq definitely has unique
and valuable features to put forth beyond allowing to assert
the correctness of the produced software. The interactive
development style allowed by coqide and its siblings com-
bined with the Proof mode —where users can easily interact
with and manipulate Coq terms— provide a very pleasant
programming experience. It is reminiscent of the Common
Lisp way of programming, based on a powerful REPL and

hot code reloading, but is more robust in practice. Besides,
Claret et al. has demonstrated how the Proof mode can be
used to turn Coq into a powerful debugger for impure com-
putations [10].

Certain properties of the Calculus of Constructions, which
may seem limiting at first, can easily be advertised as selling
points. For instance, the fact that Coq requires functions
to terminate should be seen as a desirable feature, rather
than an inconvenient necessity to avoid logic inconsistency.
From MiniHTTPServer perspective, for instance, we know
by construction that the handler we have defined to handle
incoming TCP packets will terminate (provided that the un-
verified parts implemented in OCaml terminate, which is
reasonable since the OCaml interpreter is defined by induc-
tion and since the OCaml primitives are simple system calls).
Of course, the same requirement has forced us to limit the
incoming connections our server accepts to a finite number,
while a daemon by definition is expected to run indefinitely.
We believe non-termination as the exception is a desirable
property (similarly to Rust favoring immutability by default).
We also ambition to provide abstractions to specify, verify
and execute infinite computations in FreeSpec, but the best
approach to achieve this goal is still unclear to us. The fact
that the semantics of an interface is coinductive paves the
way for obtaining non-termination thanks to a global loop,
in the spirit of the so-called Folk theorem [16]. Anyway, each
evaluation of an impure computation will still continue to
terminate.

FreeSpec as a Verification Framework. Beyond the satis-
faction to implement a web server run by coqc, the main
motivation for MiniHTTPServer was to provide a large use
case for FreeSpec updated formalism and verification frame-
work. In practice, the properties we have aimed to prove
in Subsection 4.2 are straightforward. In our opinion, the
interface contract we have defined to encode these proper-
ties is easy to read, and reading the code of our web server
is sufficient to be convinced MiniHTTPServer is indeed re-
spectful. What we find interesting —and encourage us to
consider this experience to be a success— is that the size of
the proofs necessary to assert the respectfulness of our web
server reflects that fact.

Besides, because interface contracts are defined alongside
interfaces, rather than embedded into them, we can in prac-
tice introduce new contracts, then prove the respectfulness
of MiniHTTPServer w.r.t. these contracts without the need to
modify existing proofs. Thanks to the contract composition
operator (see Subsection 2.3), we can also reuse our previous
proofs to prove complementary result. The validity of the
overall approach has been discussed in the original paper
presenting FreeSpec [23].

FreeSpec.Exec andDependent Types. Coq dependent types
allow for encoding the specification of a function directly
into the types of its arguments and its expected result. In

Specifying, Verifying and Executing Impure Computations CPP ’20, January 20–21, 2020, New Orleans, LA, USA

Coq, such a function will necessarily have to compute not
only a resulting term, but also a proof of correctness for this
term. Several approaches are possible to write such algo-
rithms, most notably the Russel framework developed by
Sozeau [31].
The computation of proofs in addition to regular results

tends to dramatically reduce the performance of Coq evalu-
ation mechanisms, most commonly because theorems and
lemmas are traditionally defined as opaque constants, which
leads to the production of huge terms even for simple compu-
tations. To our opinion, it remains too easy to write functions
which cannot be evaluated in practice, and too hard to diag-
nose the origin of the issue when such scenario arises.
Avoiding dependent types for pure functions used by

an impure computations (i.e., favoring “regular” functions
with separate lemmas) may appear as a reasonable com-
promise, but this is not always possible in practice, as we
dolorously discovered during the development of the project
MiniHTTPServer. Our parsing library features two recursive
functions which cannot be defined by means of structural
recursions. In such a case, the approach imposed by Coq
is to rely on “well-founded recursion”, which imposes the
computation of a proof at each recursion step. Our experi-
ments has tended to show that the weak-head normal form
reduction strategy used by FreeSpec.Exec to find the next
primitives to execute behaves poorly with such functions.
On the contrary, the normal form reduction strategy later
used to reduce the primitive terms provides way better per-
formances. We have been able to improve MiniHTTPServer
performance by leveraging the internals of FreeSpec.Exec to
our advantage, by introducing an identity primitive (i.e., of
type forall {a : Type}, a -> IDENTITY a). This prim-
itive can be used to force Coq to evaluate a given term us-
ing the normal form reduction strategy (in the context of
MiniHTTPServer, the parsing of incoming HTTP requests).
Readers familiar with Haskell may find this situation

reminiscent of the process of optimizing Haskell programs
by locally enabling strictness (using the ! annotation).

5 Related Work
FreeSpec tackles two questions already studied in the liter-
ature: how to reason about effectful computations in type
theory? how to organize the verification of large systems?

5.1 Effecful computations in type theory
The DeepSpec project recently introduced a new representa-
tion of effecful programs in Coqwith the so-called interaction
trees [21, 35]. This approach shares a lot of similarities with
ours as both are variants of the Free monad. However, inter-
action trees represent effectful computations through a coin-
ductive datatype while, in contrast, impure computations are
defined inductively. Hence, interaction trees denotes poten-
tially diverging computations while impure computations

always converge. Interaction trees are therefore expressive
enough to express general recursion and mutual recursion
between effectful computations. This expressiveness comes
at a cost: interaction trees do not compute inside Coq which
makes reasoning about them less convenient. By contrast,
impure computations can compute inside Coq since their
realization is a mere inductive function. This implies that
FreeSpec is not limited to equational reasoning as Interaction
Trees are: in FreeSpec, a proof can be conducted by symbolic
execution of the impure program (as demonstrated by the
macro prove_impure). This usually results in shorter proofs.

In addition, we have explained in Section 4.4 that FreeSpec
can in theory represent diverging computations too thanks
to coinductive semantics but we are still looking for the right
design to integrate primitives for non-termination and the
corresponding reasoning principles.

Using interaction trees, the DeepSpec project also certified
a web server [21]. For the moment, MiniHTTPServer cannot
be seriously challenge this achievement for many reasons.
First, the DeepSpec web server is a realistic C program with
necessarily better performances than MiniHTTPServer’s. Sec-
ond, the verification challenge of this project is more diffi-
cult since it tackles the problem of interleaved interactions
between the clients and the server through multiple connec-
tions. Third, it is based on an interface to a CertiKOS’ socket
model which is quite sophisticated.
Dylus et al. [9, 12] investigate the problem of reasoning

about effectful computations in Coq where effects are mod-
eled using monads. Like us, their final representation for
effectful computations is based on a free monad but the pa-
rameterization of this free monad is slightly different. Instead
of parameterizing the free monad with a parameterized type
as in FreeSpec, they use a container [34] whose role is to
abstract away a functor. It is unclear if this approach can
model as many effects since there is no notion of effecful
semantics. Besides, this piece of work does not tackle the
problem of contract verification and composition.
Maillard et al. [26] recently showed that monad mor-

phisms can be used to build very general relation between
computational monads and specification monads. In Free-
Spec, the relationship between an impure computation and
its specification is implemented at the meta-level by the
prove_impure tactic, which indeed follows the structure
of the (free) monadic computations just like a monad mor-
phisms would do, except that FreeSpec provides no guar-
antee that the tactic will actually succeed at removing the
monadic layer of the computations. Therefore, we would
probably gain more generality and more confidence into
the program logic of FreeSpec by transporting these ideas
in our framework. Besides, we would then be able to offer
other standard verification techniques, typically based on
predicate transformers [33].

Jomaa et al. have developed a protokernel (i.e., a minimal
microkernel) in Coq, by means of a state monad equipped

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Thomas Letan and Yann Régis-Gianas

with pre- and post-conditions to enable Hoare Logic reason-
ing. On the contrary, FreeSpec contracts are not embedded
inside impure computations, but defined as separate objects
against interfaces. This means FreeSpec users can easily
modify or add contracts, without breaking existing develop-
ment. To execute their microkernel, they rely on an ad-hoc
translation process to turn their monadic specification into
a readable C program.

Algebraic effects and effect handlers led to a lot of research
about verification of programs with side effects [5, 6], but
to our surprise, we did not find any approach to write and
verify programs with effects and effect handlers written for
Gallina. However, other approaches exist. Ynot [28] is a
framework for the Coq proof assistant to write, reason with
and extract Gallina programs with side effects. Ynot side
effects are specified in terms of Hoare preconditions and post-
conditions parameterized by the program heap, and does not
dissociate the definition of an effect and properties over its
realization. To that extent, FreeSpec abstract specification is
more expressive (thanks to the abstract state) and flexible (we
can define more than one abstract specification for a given
interface). Claret et al. have proposed Coq.io, a framework
to specify and verify interactive programs in terms of use
cases [10]. The proofs rely on scenarioswhich determine how
an environment would react to the program requests. These
scenarios are less generic and expressive than FreeSpec ab-
stract specifications, but they are declarative and match a
widely adopted software development process. They may be
easier to read and understand for software developers.

Previous approaches from theHaskell community tomodel
programs with effects using Free monads [3, 17, 20] are the
main source of inspiration for FreeSpec.

5.2 Verification of large systems
FreeSpec’s concept of abstract specification takes its root
into the seminal work of Parnas [29] in which the author
states that “the main goal is to provide specifications suffi-
ciently precise and complete that other pieces of software
can be written to interact with the piece specified without
additional information. The secondary goal is to include in
the specification no more information than necessary to
meet the first goal”. While Parnas [29] considers a module
as “a device with a set of switch inputs and readout indica-
tors”, we extend the interaction with a module to be based
on any type, including higher-order types, like functions.
Moreover, FreeSpec’s impure computations are first-class
while modules Parnas [29] are second-class: thus, more com-
position patterns are possible within FreeSpec. Parnas [29]
“do not insist that machine testing be done, only that it could
conceivably be done”: FreeSpec (and other similar systems)
shows that machine testing of interface specification can
now be done, thanks to the advent of proof assistants.

Contract-based software development[27] or verification[4,
14, 25] introduced many reasoning mechanisms to verify

object-oriented systems, especially to enforce as much proof
reuse as possible along class hierarchies. Dealing with object-
oriented programming mechanisms lead to the introduction
of concepts – like contravariant subtyping relations or own-
erships – which are hard to grasp for software engineers,
the aim of FreeSpec is to avoid as much of this complexity
by avoiding late binding, indirect recursions or implicitly
shared states. On the contrary, the “default” computational
mechanisms offered by Coq and FreeSpec are simpler to ver-
ify than the ones of imperative settings, typically like the
object-oriented systems. From that perspective, FreeSpec
resembles the B-method [1] and it is also designed to enforce
a refinement-based method of verification. Finally, FreeSpec
also share this idea of restricting computational mechanisms
with FoCaLiZe [30], a proof environment where proofs are
attached to components and where programs are “functional
programs with some object-oriented features”.

Kami [8] shares many concepts with FreeSpec, but imple-
ments them in a totally different manner: impure computa-
tions are defined as labeled transition systems and can be
extracted into FPGA bitstreams. Kami is hardware-specific,
thus is not suitable to reason about systems which also in-
clude software components.

6 Future Work & Conclusion
In this article, we have presented the latest iteration of Free-
Spec, our framework for implementing, specifying, verifying
and as of now executing impure computations in Coq. The
changes we have operated in our formalism enable a better
composition of proofs about impure computations, which we
believe is a key feature to consider writing certified programs
and libraries with FreeSpec. To challenge our framework,
we have also developed MiniHTTPServer, a minimal HTTP
server written almost exclusively in Coq.

In a near future, we aim to provide an “IO standard library”
(e.g., a POSIX client library) including a collection of general-
purpose interface contracts, so that FreeSpec users can build
certified applications and libraries within Coq. We also plan
to provide an efficient execution model for FreeSpec.

References
[1] Jean-Raymond Abrial and Jean-Raymond Abrial. 2005. The B-Book:

Assigning Programs to Meanings. Cambridge University Press.
[2] Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and

Nicolas Tabareau. 2018. Towards Certified Meta-Programming with
Typed Template-Coq. In Interactive Theorem Proving - 9th International
Conference, ITP 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 9-12, 2018, Proceedings (Lecture Notes in Com-
puter Science), Jeremy Avigad and Assia Mahboubi (Eds.), Vol. 10895.
Springer, 20–39. https://doi.org/10.1007/978-3-319-94821-8_2

[3] Heinrich Apfelmus. 2010. The operational package. https://hackage.
haskell.org/package/operational.

[4] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter Müller,
Wolfram Schulte, and Herman Venter. 2011. Specification and ver-
ification: the Spec# experience. Commun. ACM 54, 6 (2011), 81–91.
https://doi.org/10.1145/1953122.1953145

https://doi.org/10.1007/978-3-319-94821-8_2
https://hackage.haskell.org/package/operational
https://hackage.haskell.org/package/operational
https://doi.org/10.1145/1953122.1953145

Specifying, Verifying and Executing Impure Computations CPP ’20, January 20–21, 2020, New Orleans, LA, USA

[5] Andrej Bauer and Matija Pretnar. 2015. Programming with Algebraic
Effects and Handlers. Journal of Logical and Algebraic Methods in
Programming 84, 1 (2015), 108–123.

[6] Edwin Brady. 2014. Resource-dependent algebraic effects. In Inter-
national Symposium on Trends in Functional Programming. Springer,
18–33.

[7] Arthur Charguéraud. 2011. Characteristic formulae for the verifica-
tion of imperative programs. In Proceeding of the 16th ACM SIGPLAN
international conference on Functional Programming, ICFP 2011, Tokyo,
Japan, September 19-21, 2011, Manuel M. T. Chakravarty, Zhenjiang
Hu, and Olivier Danvy (Eds.). ACM, 418–430. https://doi.org/10.1145/
2034773.2034828

[8] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman,
Adam Chlipala, et al. 2017. Kami: A Platform for High-Level Paramet-
ric Hardware Specification and Its Modular Verification. Proceedings
of the ACM on Programming Languages 1, ICFP (2017), 24.

[9] Jan Christiansen, Sandra Dylus, and Niels Bunkenburg. 2019. Ver-
ifying effectful Haskell programs in Coq. In Proceedings of the 12th
ACM SIGPLAN International Symposium on Haskell, Haskell@ICFP 2019,
Berlin, Germany, August 18-23, 2019, Richard A. Eisenberg (Ed.). ACM,
125–138. https://doi.org/10.1145/3331545.3342592

[10] Guillaume Claret and Yann Régis-Gianas. 2015. Mechanical Verifica-
tion of Interactive Programs Specified by Use Cases. In Proceedings of
the Third FME Workshop on Formal Methods in Software Engineering.
IEEE Press, 61–67.

[11] Frank DeRemer and Hans H. Kron. 1976. Programming-in-the-Large
Versus Programming-in-the-Small. IEEE Trans. Software Eng. 2, 2
(1976), 80–86. https://doi.org/10.1109/TSE.1976.233534

[12] Sandra Dylus, Jan Christiansen, and Finn Teegen. 2019. One Monad
to Prove Them All. Programming Journal 3, 3 (2019), 8. https://doi.
org/10.22152/programming-journal.org/2019/3/8

[13] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 - Where
Programs Meet Provers. In Programming Languages and Systems -
22nd European Symposium on Programming, ESOP 2013, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes
in Computer Science), Matthias Felleisen and Philippa Gardner (Eds.),
Vol. 7792. Springer, 125–128. https://doi.org/10.1007/978-3-642-37036-
6_8

[14] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. 2013. PLDI 2002: Extended static
checking for Java. SIGPLAN Notices 48, 4S (2013), 22–33. https:
//doi.org/10.1145/2502508.2502520

[15] Víctor H. García, Raúl Monroy, and Maricela Quintana. 2006. Web
Attack Detection Using ID3. In Toward Category-Level Object Recogni-
tion (Lecture Notes in Computer Science), Jean Ponce, Martial Hebert,
Cordelia Schmid, and Andrew Zisserman (Eds.), Vol. 4170. Springer,
323–332. https://doi.org/10.1007/978-0-387-34749-3_34

[16] David Harel. 1980. On Folk Theorems. Commun. ACM 23, 7 (1980),
379–389. https://doi.org/10.1145/358886.358892

[17] Ralf Hinze and Janis Voigtländer (Eds.). 2015. Mathematics of Program
Construction - 12th International Conference, MPC 2015, Königswinter,
Germany, June 29 - July 1, 2015. Proceedings. Lecture Notes in Computer
Science, Vol. 9129. Springer. https://doi.org/10.1007/978-3-319-19797-
5

[18] Inria. [n.d.]. The Coq Proof Assistant. https://coq.inria.fr/.
[19] Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas,

and Derek Dreyer. 2018. Mtac2: typed tactics for backward reasoning
in Coq. PACMPL 2, ICFP (2018), 78:1–78:31. https://doi.org/10.1145/
3236773

[20] Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible
Effects. In ACM SIGPLAN Notices, Vol. 50. ACM, 94–105.

[21] Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf
Honoré, William Mansky, Benjamin C. Pierce, and Steve Zdancewic.

2019. From C to interaction trees: specifying, verifying, and testing a
networked server. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal,
January 14-15, 2019, Assia Mahboubi and Magnus O. Myreen (Eds.).
ACM, 234–248. https://doi.org/10.1145/3293880.3294106

[22] K. Rustan M. Leino. 2017. Accessible Software Verification with Dafny.
IEEE Software 34, 6 (2017), 94–97. https://doi.org/10.1109/MS.2017.
4121212

[23] Thomas Letan, Yann Régis-Gianas, Pierre Chifflier, and Guillaume
Hiet. 2018. Modular Verification of Programs with Effects and Effects
Handlers in Coq. In 22st International Symposium on Formal Methods
(FM 2018). Springer.

[24] Pierre Letouzey. 2008. Extraction in Coq: An Overview. In Logic and
Theory of Algorithms, 4th Conference on Computability in Europe, CiE
2008, Athens, Greece, June 15-20, 2008, Proceedings (Lecture Notes in
Computer Science), Arnold Beckmann, Costas Dimitracopoulos, and
Benedikt Löwe (Eds.), Vol. 5028. Springer, 359–369. https://doi.org/10.
1007/978-3-540-69407-6_39

[25] Barbara Liskov and Jeannette M. Wing. 1994. A Behavioral Notion of
Subtyping. ACM Trans. Program. Lang. Syst. 16, 6 (1994), 1811–1841.
https://doi.org/10.1145/197320.197383

[26] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Catalin
Hritcu, Exequiel Rivas, and Éric Tanter. 2019. Dijkstra monads for all.
PACMPL 3, ICFP (2019), 104:1–104:29. https://doi.org/10.1145/3341708

[27] Bertrand Meyer. 1992. Applying "Design by Contract". IEEE Computer
25, 10 (1992), 40–51. https://doi.org/10.1109/2.161279

[28] Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Gov-
ereau, and Lars Birkedal. 2008. Ynot: Dependent Types for Imperative
Programs. In ACM Sigplan Notices, Vol. 43. ACM, 229–240.

[29] David Lorge Parnas. 1983. A Technique for Software Module Specifi-
cation with Examples (Reprint). Commun. ACM 26, 1 (1983), 75–78.
https://doi.org/10.1145/357980.358011

[30] François Pessaux. 2014. FoCaLiZe: inside an F-IDE. arXiv preprint
arXiv:1404.6607 (2014).

[31] Matthieu Sozeau. 2008. Un environnement pour la programmation avec
types dépendants. Ph.D. Dissertation. Paris 11.

[32] Matthieu Sozeau and Nicolas Oury. 2008. First-Class Type Classes.
In Theorem Proving in Higher Order Logics, 21st International Con-
ference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Pro-
ceedings (Lecture Notes in Computer Science), Otmane Aït Mohamed,
César A. Muñoz, and Sofiène Tahar (Eds.), Vol. 5170. Springer, 278–293.
https://doi.org/10.1007/978-3-540-71067-7_23

[33] Wouter Swierstra and Tim Baanen. 2019. A predicate transformer
semantics for effects (functional pearl). PACMPL 3, ICFP (2019), 103:1–
103:26. https://doi.org/10.1145/3341707

[34] Tarmo Uustalu. 2017. Container Combinatorics: Monads and Lax
Monoidal Functors. In Topics in Theoretical Computer Science - Second
IFIP WG 1.8 International Conference, TTCS 2017, Tehran, Iran, Sep-
tember 12-14, 2017, Proceedings (Lecture Notes in Computer Science),
Mohammad Reza Mousavi and Jirí Sgall (Eds.), Vol. 10608. Springer,
91–105. https://doi.org/10.1007/978-3-319-68953-1_8

[35] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory
Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2020. Interac-
tion Trees: Representing Recursive and Impure Programs in Coq. In
The 47th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’20, New Orleans, USA - January 22 -
24, 2013. ACM.

[36] Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar
Nanevski, and Viktor Vafeiadis. 2013. Mtac: a monad for typed tactic
programming in Coq. In ACM SIGPLAN International Conference on
Functional Programming, ICFP’13, Boston, MA, USA - September 25
- 27, 2013, Greg Morrisett and Tarmo Uustalu (Eds.). ACM, 87–100.
https://doi.org/10.1145/2500365.2500579

https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/3331545.3342592
https://doi.org/10.1109/TSE.1976.233534
https://doi.org/10.22152/programming-journal.org/2019/3/8
https://doi.org/10.22152/programming-journal.org/2019/3/8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/2502508.2502520
https://doi.org/10.1145/2502508.2502520
https://doi.org/10.1007/978-0-387-34749-3_34
https://doi.org/10.1145/358886.358892
https://doi.org/10.1007/978-3-319-19797-5
https://doi.org/10.1007/978-3-319-19797-5
https://doi.org/10.1145/3236773
https://doi.org/10.1145/3236773
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/3341708
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/357980.358011
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.1145/3341707
https://doi.org/10.1007/978-3-319-68953-1_8
https://doi.org/10.1145/2500365.2500579

	Abstract
	1 Introduction
	2 FreeSpec Formalism
	2.1 Specifying Impure Computations
	2.2 Composite Interfaces and Polymorphism
	2.3 Interface Contracts

	3 FreeSpec.Exec
	3.1 Effectful semantics
	3.2 Executable Realizations of Semantics
	3.3 Implementation
	3.4 FreeSpec.Exec plugin system

	4 MiniHTTPServer
	4.1 Implementing a web server in Coq
	4.2 Verifying MiniHTTPServer implementation
	4.3 Executing MiniHTTPServer
	4.4 Discussion

	5 Related Work
	5.1 Effecful computations in type theory
	5.2 Verification of large systems

	6 Future Work & Conclusion
	References

