
HAL Id: hal-02422335
https://inria.hal.science/hal-02422335

Submitted on 21 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Well balanced residual distribution for the ALE spherical
shallow water equations on moving adaptive meshes

Luca Arpaia, Mario Ricchiuto

To cite this version:
Luca Arpaia, Mario Ricchiuto. Well balanced residual distribution for the ALE spherical shallow
water equations on moving adaptive meshes. Journal of Computational Physics, 2020, 405, pp.109173.
�10.1016/j.jcp.2019.109173�. �hal-02422335�

https://inria.hal.science/hal-02422335
https://hal.archives-ouvertes.fr


Well balanced residual distribution for
the ALE spherical shallow water equations on moving adaptive meshes

Luca Arpaia and Mario Ricchiuto

Coastal Risk and Climate Change Unit, French Geological Survey
3 Av. C. Guillermin 45060 Orléans Cedex 2, France
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Abstract

We consider the numerical approximation of the Shallow Water Equations (SWEs) in spherical geometry

for oceanographic applications. To provide enhanced resolution of moving fronts present in the flow we

consider adaptive discrete approximations on moving triangulations of the sphere. To this end, we re-

state all Arbitrary Lagrangian Eulerian (ALE) transport formulas, as well as the volume transformation

laws, for a 2D manifold. Using these results, we write the set of ALE-SWEs on the sphere. We then

propose a Residual Distribution discrete approximation of the governing equations. Classical properties

as the DGCL and the C-property (well balancedness) are reformulated in this more general context. An

adaptive mesh movement strategy is proposed. The discrete framework obtained is thoroughly tested on

standard benchmarks in large scale oceanography to prove their potential as well as the advantage brought

by the adaptive mesh movement.

Keywords: Shallow Water equations; curvilinear coordinates; Arbitrary Lagrangian Eulerian

formulation; Moving Mesh ; Residual Distribution; Well-Balanced

1. Introduction1

sec:intro

The Earth’s curvature has a strong impact on wave propagation at large scales. For this reason, effi-2

cient and accurate techniques to solve flow equations on the sphere are of interest in many fields, such as3

ocean modeling, weather prediction as well as coastal hazards. Our objective is to explore the possibility4

of improving the discrete resolution of flows relevant to large-scale oceanographic applications by adap-5

tively deforming an initial mesh, possibly already adapted to some of the data (e.g. initial depth or depth6
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at rest). Indeed, mesh adaptation is useful to handle not only complex wave patterns, but also complex7

bathymetries and coastlines. In this respect, the possibility of working on triangular grids may be useful8

especially when approaching shallow areas. On these triangulations, in the spirit of the work done in9

ArR:17
[1], we aim to assess the potential of adaptive mesh deformation, as well as its limitations for complex10

multi-scale computations.11

12

To achieve this objective, there are several aspects to be dealt with. The first one is the discrete13

formulation of the Shallow Water Equations (SWEs) on the sphere. The literature on the topic is quite14

large. On structured quadrilateral grids, it is common to formulate the SWEs in covariant curvilinear15

coordinates (with the set of covariant coordinates identified by a patchwise parametrization of the sphere).16

In the finite volume context, a thorough analysis is discussed in
Ros:04,Ros:06
[2, 3] and other formulations are proposed17

e.g. in
UlJ:10,Cas:18
[4, 5]. On triangular meshes most works focus on high order local finite element-like mappings as18

in e.g.
Comb:09,Bern:09
[6, 7], or on a fully 3D formulation with Lagrange multipliers to locally re-project vectors on the19

appropriate basis. A compromise is the initial work of
Ros:13
[8], in which covariant coordinates are combined20

with triangular grids and with a Residual Distribution (RD) discretization. An ad-hoc patching at the21

poles guarantees the C0 continuity of the solution. This provides us with an initial framework to extend22

our previous work. In particular, we have shown in
RiB:09,r11,Ric:15
[9, 10, 11] that RD method allows to handle very23

naturally source terms with a simple design of schemes preserving many known steady equilibria on un-24

structured triangulations. This is relevant when considering the SWEs in curvilinear coordinates which25

embed several geometrical and physical forcing terms. The RD method also allows to combine high order26

with monotonicity and positivity preservation principles. The work of
Ros:13
[8] however is limited to steady27

state problems, on fixed grids, with constant bathymetry, and linear schemes. Here we present a more28

general development of nonlinear second order discrete approximations, for steady and time dependent29

problems on complex bathymetries.30

31

Another important aspect is the design of the adaptation strategy on the sphere. The geophysics32

community has focused on quad-tree AMR techniques based on cell subdivision, see for example
SkK:92
[12]33

or
McU:15,Fer:16
[13, 14], and

LGB:11,Pop:11
[15, 16] for tsunami propagation. Here we consider a different approach, consisting34

in generating an initial grid adapted to the problem’s data (e.g. topography) and then using mesh35

deformation to track more accurately the flow features. An elegant way to deal with the underlying moving36

mesh is to formulate balance laws directly in an Arbitrary Lagrangian Eulerian (ALE) moving reference37

framework attached to the grid, see the original work of
HIRT1974227
[17] and

PS:03,KSD:12,Zho:13,ArR:17
[18, 19, 20, 1] for application in geophysics.38
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Given an ALE map x = A(X, t) between a reference (fixed) domain and an actual (moving) one, there39

are two ways to formulate the PDEs in ALE form: either with respect to the reference coordinates X40

or the actual ones x. In the former case, the derivation of the ALE equations in the reference domain41

becomes immediate in a spacetime setting: the transformation of the 4-divergence differential operator42

under the ALE map introduces an additional ALE transport term. An overview of the fundamental43

relations necessary to achieve this in a spacetime setting are discussed in e.g.
Ba08
[21] (or chapter 2 in44

the book
CFSI12
[22]), see

KSD:12
[19] for applications in geophysics, and

D12,BOSCHERI201648,BOSCHERI2014484,VILAR2014188
[23, 24, 25, 26] for finite volume/element45

formulations on curved meshes based on similar principles. There is certainly a similarity in the use of46

the reference coordinates X to represent the mesh movement and the aforementioned use of curvilinear47

coordinates to represent a geometrical manifold. Such analogy between the ALE form of balance laws and48

e.g. the governing equations of relativistic hydrodynamics, which are written in a time-dependent curved49

spacetime, is discussed in
t16
[27].50

In moving mesh applications, another strategy used very often is to express the differential operators51

in the actual configuration, and thus discretize them on the actual (moving) mesh. Within such approach,52

a special role is played by the Geometric Conservation Law (GCL), which enforces conservation of the53

total volume of the moving domain
ThL:79,LeF:96,GuF:00
[28, 29, 30], In

ThL:79
[28] it was proposed to replace the GCL with the54

constraint of reproducing exactly uniform flows, and in
GuF:00
[30] it has been shown that satisfying the Geometric55

Conservation Law (GCL) is a sufficient condition for first order time accuracy on moving meshes. The56

compliance of the GCL at a discrete level is referred to as Discrete GCL (DGCL). Although rooted in57

fundamental relations of continuous mechanics
Ba08,CFSI12
[21, 22], the practical importance/benefit of the GCL and58

of its discrete counterpart is sometimes controversial, see e.g.
Eti:09
[31].59

The approach that we use is of mixed type
SaA:08
[32]. The spherical map in written with respect to the60

curvilinear covariant coordinates. This means that the parametrization of the sphere is embedded in the61

PDE system with the appropriate metric and source terms as in e.g.
Ros:04,Ros:06,UlJ:10,Ros:13,Cas:18
[2, 3, 4, 8, 5]. The ALE map, on62

the contrary is written in the actual configuration, which does not require the computation of the ALE63

Jacobian matrix. In this setting, the ALE-SWEs on a 2D manifold will be derived using classical transport64

formulas and volume conservation statement. A derivation of the governing equations in spacetime is also65

given in the Appendix. It will be shown that, for the SWEs on the sphere, the satisfaction of a DGCL66

is a necessary condition to retain well-balancedness. To this end, a new ALE closure for RD schemes is67

proposed, since the one of
ArR:14
[33] does not extend to the sphere, and more in general to manifolds.68

69

The schemes obtained are thoroughly tested both on fixed and moving adaptive meshes on classical70
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applications for the shallow water on the sphere, and on a realistic computation of relevance in oceanog-71

raphy: the regional propagation and coastal impact of the 2011 Tohoku-Honsu tsunami.72

73

The paper is organized as follows. The standard SWEs in spherical geometry are recalled in section74

sec:SW-spheresec:SW-sphere
2. Sections

sec:alesec:ale
3 and

sec:ale-SW-spheresec:ale-SW-sphere
4 are then devoted to the ALE-SWEs formulation on the sphere. The main notation75

and ingredients required for the discrete approximation are the introduced in section
eq:not-aseq:not-as
5. These are used in76

section
sec:RDsec:RD
6 to construct well balanced second order residual distribution. The mesh movement strategy is77

discussed in section
sec:mmpdesec:mmpde
7, and section

sec:expsec:exp
8 discusses an extensive evaluation of the schemes. The paper is ended78

by a summary and an outlook on future developments.79

2. SWEs on the sphere80

sec:SW-sphere

In this section we recall the Shallow Water Equations (SWEs) on the sphere in covariant curvilinear

coordinates. At every point of the sphere S2 we fix an orthogonal but not orthonormal reference system

with covariant basis vectors {g1, g2} together with local curvilinear coordinates {x1, x2}. The vectors

g1 and g2 define the tangent plane to the sphere and are used to construct all quantities allowing to

locally describe the manifold. For completeness, in
app:a1.1app:a1.1
Appendix A.1 we recall some basic concepts from

differential geometry, as well as many definitions used throughout the following sections. We will consider

the evolution of the fluid depth h(x, t) measured along the radial axis. The bathymetry/topography

height with respect to a given reference level is denoted by b(x). The fluid free surface is defined here

as η = h + b. We denote hui the components of the discharge vector hu = huigi. We remark that the

velocity components are not defined in a unitary basis. The SWEs in covariant curvilinear coordinates

write1:

∂h

∂t
+

1√
G

∂

∂xj

(√
Ghuj

)
= 0

∂hui

∂t
+

1√
G

∂

∂xj

(√
GT ij

)
+ Si = 0

(1) eq:SW-s

G denotes the determinant of the metric tensor defined in (
eq:Gij_defeq:Gij_def
A.3) in

app:a1app:a1
Appendix A, and T ij = huuij+ 1

2G
ijgh2

81

are the components of the momentum flux T = T ijgigj , involving the components of the inverse metric82

tensor, also defined in the appendix.83

The source term in the momentum balance reads

Si = Gijgh
∂b

∂xj
+ cFhu

i + Siγ − Sic (2)

1standard summation convention is used, for the notation we refer again to
app:a1app:a1
Appendix A
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Besides the effects of bathymetry and friction (first two terms), the source includes also a geometrical force

due to Earth curvature Siγ , and Coriolis term Sic. The geometric source arises from the space variation of

the covariant basis vectors and reads

Siγ = Γijk T
jk (3)

with Γijk being the Christoffel symbols. The Coriolis term is associated to the rotation of the Earth, which

plays an important role in ocean dynamics. It reads

Sic = fGijεjkhu
k (4)

with the parameter f = 2Ω sinλ with λ the latitude and Ω the Earth rotation rate, always taken as84

Ω = 7.292× 10−5 s−1 unless differently specified, and having denoted by ε the 2D Levi-Civita symbol.85

The SWEs system can also be expressed in a compact vector form86

∂u

∂t
+

1√
G

∂Fj

∂xj
+ S(x, u) = 0, (5)

u =

 h

hui

 , Fj =
√
G

 huj

T ij

 , (6)

S =

 0

Gijgh ∂b
∂xj


︸ ︷︷ ︸

Sb

+

 0

cFhu
i


︸ ︷︷ ︸

Sf

+

 0

ΓijkT
jk


︸ ︷︷ ︸

Sγ

−

 0

fGijεjkhu
k


︸ ︷︷ ︸

Sc

(7)

Equations (
eq:SW-spheq:SW-sph
5)-(

eq:SW2-spheq:SW2-sph
7) constitute a non-homogeneous hyperbolic system of PDEs. As in

Lev:97
[34] we remark that87

the flux vector depends explicitly on the position making the system non-autonomous.88

3. Arbitrary Lagrangian Eulerian framework on the sphere89

sec:ale

We now introduce an independent configuration A, the Arbitrary Lagrangian Eulerian (ALE) con-

figuration, which we assume to belong to a differentiable manifold (the sphere). For us A will be the

configuration the mesh is attached to. A is composed of points Q identified by the vector x which can be

expressed in the local curvilinear coordinate system x(Q) = xigi, with i = 1, 2. The initial or reference

configuration of the continuous mesh is denoted by A0 and the reference position of the points is denoted

by greek letters χ(Q̂). For this configuration we assign a local covariant vector basis {γ1,γ2} and local

chart {χ1, χ2} of the tangent plane so that χ(Q̂) = χiγi. As the mesh moves, also A does. We assume to

be able to uniquely map the initial configuration to the reference one via the mapping:

A : A0 → A x = A(χ, t) (8)
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The function A is assumed to be continuously differentiable, with a smooth Jacobian JA = ∂x
∂X . Classical90

requirements on the Jacobian JA are invertibility ∃J−1
A , and the positivity of its determinant JA =91

detJA > 0. For a spacetime definition of the ALE transformation see (
app:a1.2app:a1.2
Appendix A.2).92

The fluid is endowed with various physical properties which may be represented by scalar, vector and

tensor fields. These fields and their rate of change in time and space may be defined in the reference

configuration or in the actual one. Here we choose the actual description: that is, in the following, all

spatial derivatives are expressed with respect to the actual coordinates. The ALE time derivative of a

scalar φ is its time rate of change measured by an observer which moves with the mesh point labeled

with χ, where χ(Q̂) is the particle’s position in the reference configuration. We will shorten it ∂φ
∂t

∣∣∣
χ
. The

ALE/mesh velocity of a point Q in the actual vector basis, σ(Q) = σjgj is calculated by applying the

aforementioned definition of ALE derivative, to the position x(Q). Its components write

σj =
∂xj

∂t

∣∣∣∣
χ

(9)

Using chain rule, we can define relations between Eulerian and ALE time derivatives for these properties:93

∂φ

∂t

∣∣∣∣
χ

=
∂φ

∂t
+

∂φ

∂xj
σj (10)

Finally, taking the ALE time derivative of an infinitesimal area on the sphere we obtain the Geometric

Conservation Law on the manifold
Tru:66
[35]:

∂

∂t

∣∣∣∣
χ

(√
GJA

)
= JA

∂

∂xj

(√
Gσj

)
(11) eq:gcl-s

or, more compactly ∂t|χ (
√
GJA)− JA

√
G∇ · σ = 0.94

The GCL (
eq:gcl-seq:gcl-s
11) is a geometrical relation between the ALE Jacobian and the ALE velocity. One can95

check that the integral of (
eq:gcl-seq:gcl-s
11) over the whole computational domain states the conservation of the total96

area. At a discrete level this corresponds to preserve the total area of the mesh during the simulation.97

For this reason in section
sec:dgcl-ssec:dgcl-s
5.3 we will discuss how to preserve also its discrete counterpart.98

4. ALE-SWEs on the sphere99

sec:ale-SW-sphere

Using the relations derived in the previous sections, and more particularly (
eq:tra-a_Ceq:tra-a_C
10) and (

eq:gcl-seq:gcl-s
11), we can easily100

recast the SWEs (
eq:SW-seq:SW-s
1) in an ALE form, obtaining the ALE-SWEs on a 2D manifold with respect to the101
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actual parametric coordinates:102

∂
√
GJAh

∂t

∣∣∣∣∣
χ

+ JA
∂

∂xj

(√
Ghuj −

√
Ghσj

)
= 0 (12)

∂
√
GJAhu

i

∂t

∣∣∣∣∣
χ

+ JA
∂

∂xj

(√
GT ij −

√
Ghuiσj

)
+
√
GJAS

i = 0 (13)

As before, the system can be also cast in compact vector form as103

∂

∂t

∣∣∣∣
χ

(√
GJAu

)
+ JA

∂

∂xj

(
Fj −

√
Gσju

)
+
√
GJAS(x, u) = 0 (14)

Finally, it is useful for the following to recall that the bathymetry, which does not depends explicitly on

time b = b(x), verifies the following identity:

∂b

∂t

∣∣∣∣
χ

=
∂b

∂xj
σj (15)

multiplying by JA
√
G and summing it to the GCL (

eq:gcl-seq:gcl-s
11) (multiplied by b) we obtain the ALE remap on

the 2D manifold
∂
√
GJAb

∂t

∣∣∣∣∣
χ

− JA
∂

∂xj

(√
Gbσj

)
= 0 (16) eq:b_ALE_remap

Please note that scalar, vector, tensor fields and spatial derivatives are written w.r.t. the actual coordinates104

x, in all the expressions above. For completeness in (
app:a2app:a2
Appendix B) we report an alternative derivation of105

the governing equations (
eq:SW1-aseq:SW1-as
14) with a spacetime approach.106

5. Discretization: parametrization and constraints107

eq:not-as

In this section we discuss the basic aspects of the discretization. These involve the main geometrical108

notations as well as the form of the equation used for the discretization. We will introduce an appropriate109

form of the ALE-SWEs allowing to combine well-balancedness with geometric conservation. We then show110

how to embed discrete analogs of these constraints in a residual distribution setting.111

5.1. Unstructured grid representations: main notation112

Points on a manifold are represented by a proper parametrization through the use of geometrical map-113

pings. In particular, when working in ALE formalism, a point i will be expressed in the parametrization114

of the initial configuration by a vector χi = {χ1, χ2}i, while xi = {x1, x2}i will refer to the configuration115

attached to the mesh. Note that the discussion here is general, even though the numerical applications116

will only consider a latitude longitude parametrization of the sphere. This particular choice is known117
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to introduce a singularity at the poles, which is nowadays well handled by meteorologists
Wil:07
[36]. Since we118

are interested in oceanic applications we circumvent this issue by adopting a simple fix. A patch-wise119

parametrization of the sphere (see e.g.
KaS:04
[37]

RoI:96
[38] and references therein) is deployed, namely a polar cap120

defined by a limiting latitude λlim, in which we use a rotated reference system (x′, y′, z′) = (x, z,−y). To121

account for this ”patching”, a rotation operator needs to be applied when updating vectors in elements122

crossing the patch boundary. In our case, this applies both to physical velocities, as well as mesh nodes123

velocities and position. In all right hand side evaluations this is accounted for following
Ros:13
[8] to which we124

refer for details.125

We consider a discretization of S2 composed by non overlapping triangular elements K. To each

element K we can associate an element defined in the parametric space, which we denote by K. For each

element, we define the spherical area and median dual cell of a node as

|K(t)| =
∫
K(t)

√
Gdx, |Ci| =

∑
K∈Di

|K|
3

(17) eq:sp-tr

For moving meshes we also have:

|K(t)| =
∫
K0

JA(t)
√
Gdχ . (18) eq:sp-tr-ALE

denoting by K0 the element in the initial parametric space. Please note that, after the change of coor-126

dinates, we assume in the above expression that
√
G(x(χ, t)). This duality of integral formulas via the127

ALE mapping applies to all integrals and will not be recalled explicitly unless necessary.128

For a given mesh, we label by h the largest element diameter in the parameter space M2. For a

smooth enough initial mesh, and on a smooth manifold, we unduly assume that the number of elements

NK verifies

NK |K| ≤ c|M2| (19) eq:mesh-smooth

for some bounded constant. We also denote by uh the P 1 approximation of a quantity u

uh(x) =
∑
i

uiϕi(x) (20) eq:fem

having denoted by ϕi the standard P 1 bases. We now define elemental contributions to the Galerkin mass

matrix

(mGAL
ij )K :=

∫
K

ϕiϕj
√
G(x) dx , (21) eq:gal-mass

as well as to the lumped mass matrix

(mGAL
ij )L,K := Kiδij , Ki :=

∫
K

√
G(x) ϕidx . (22) eq:gal-mass-L

8



5.2. Well-Balancedness and GCL on the sphere129
sec:wb-dgcl

For shallow water flows, a very important role is played by the lake-at-rest steady state:

hu = 0, h+ b = η0 = const (23) eq:lake_at_rest_SW

The exact preservation of this (initial) steady state at the discrete level is referred to as the C-property,

or Well-Balancedness
BeV:94
[39]. In other words, well-balanced schemes provide a discrete analog of the balance

(cf. equation (
eq:SW-spheq:SW-sph
5))

∂Fj

∂xj
+
√
GS = 0. (24)

Written in the form (
eq:SW1-aseq:SW1-as
14), the ALE-SWEs require the simultaneous satisfaction of several compatibility130

constraints in order to devise well-balanced schemes. These constraints include:131

1. well-balancedness for the Cartesian SWEs on fixed grids: ∂xi(gh
2/2) + gh∂xib = 0, ∀ i ;132

2. a discrete analog of the GCL on moving grids (
eq:gcl-seq:gcl-s
11);133

3. the ALE remap of the bathymetry (
eq:b_ALE_remapeq:b_ALE_remap
16);134

4. the metric relations (
eq:Riceq:Ric
A.6) given in (

app:a1app:a1
Appendix A);135

We will show in the following of the paper how we can embed exactly the first two constraints at a discrete

level. Concerning the third, replacing u = 0 in the first of (
eq:SW1-aseq:SW1-as
14) we get

0 = ∂t(
√
GJA h)

∣∣∣
χ
− JA∂xj (

√
Gσj h)

0 = ∂t(
√
GJA η)

∣∣∣
χ
− JA∂xj (

√
Gσj η)−

[
∂t(
√
GJA b)

∣∣∣
χ
− JA∂xj (

√
Gσj b)

] (25)

If η = η0 we see that a necessary condition for the lake-at-rest to be a solution for system (
eq:SW1-aseq:SW1-as
14) is to verify

both the GCL, and the ALE remap of the bathymetry. Some authors
ZhC:13
[40] have proposed to directly use a

discretization of (
eq:b_ALE_remapeq:b_ALE_remap
16) to evolve the topography on a moving mesh. The drawback of this approach is that

it significantly modifies the bathymetry during the computation, which cannot be accepted in practical

applications. For this reason, here we follow
ArR:17
[1] and modify (

eq:SW1-aseq:SW1-as
14) by solving instead the system obtained

by adding to the first equation the ALE remap of the bathymetry:

∂

∂t

∣∣∣∣
χ

(√
GJAw

)
+ JA

∂

∂xj

(
Fj −

√
Gσjw

)
+
√
GJAS(x, u) = 0 , w =

 η

hu

 (26) eq:SW-aswb

Note that, with this notation, we have Fj(u) = Fj(w; b), as the bathymetry is required to evaluate the flux

starting from the w array. Concerning now the fourth requirement, we consider the momentum balance

9



obtained when replacing the lake-at-rest solution in (
eq:SW-aswbeq:SW-aswb
26). Setting Π = gh2/2 for short, we have

0 = JA

{
∂xj (
√
GGijΠ) +

√
GΓijkG

jkΠ + gh
√
GGij∂xj b

}
0 = JA

{√
GGij (gh∂xj b+ ∂xjΠ) + Π

[
∂xj (
√
GGij) +

√
GΓijkG

jk
]} (27) eq:wbs

The first group in parentheses vanishes if the first property (well-balancedness for Cartesian SWEs on

fixed grids) is satisfied. The remainder is nothing else that the combination of the two metric relations.

Indeed just by replacing the second relation of (
eq:Riceq:Ric
A.6) into Ricci’s Lemma we obtain

0 =
√
G

(
∂Gij

∂xj
+GijΓmmj + ΓijmG

mj

)
0 =

√
G
∂Gij

∂xj
+Gij

∂
√
G

∂xj
+
√
GΓijmG

mj =
∂
√
GGij

∂xj
+
√
GΓijmG

mj

(28)

The symmetry of the Christoffel symbols
Ngu:14
[41] allows to recover exactly the last expression in parentheses in

(
eq:wbseq:wbs
27). The above relation is thus necessary for the lake-at-rest solution to be verified. At the discrete level,

the easiest way to make sure this condition is embedded is to combine high order quadrature with the

direct use of the analytical formulas. Even though low quadrature errors can be obtained with relatively

few quadrature points, due to the smoothness of the functions involved, in this way the C-property would

be satisfied within this quadrature error. Also, compared to the Cartesian case, the necessity of using

higher order quadrature would still give a considerable overhead. For this reason we have chosen to embed

the metric relations analytically. Whenever possible we discretize the momentum balance in the following

form:

∂

∂t

∣∣∣∣
χ

(√
GJAhu

i
)

+ JA
∂

∂xj

(√
Ghui(uj − σj)

)
+ JA

√
GGij

(
∂

∂xj
(gh2/2) + gh

∂

∂xj
b

)
+JA
√
GSi = 0 .

(29) eq:qdm-wb

For later use in the paper, we introduce the short notation

∂(JA
√
Gw)

∂t

∣∣∣
χ

+ JAR(w, b) = 0 (30) eq:ut_lu

for the system obtained with the first in (
eq:SW-aswbeq:SW-aswb
26), plus (

eq:qdm-wbeq:qdm-wb
29).136

5.3. DGCL on the sphere137
sec:dgcl-s

We consider now the satisfaction of the discrete analog of the GCL an a 2D manifold (
eq:gcl-seq:gcl-s
11). As already138

said, differently from the Cartesian case, a uniform flow is not an exact solution of (
eq:SW1-aseq:SW1-as
14) embedded with the139

GCL (
eq:gcl-seq:gcl-s
11), even for constant bathymetries and in absence of friction and Coriolis force. As a consequence140

we cannot define the DGCL through the original characterization of
ThL:79
[28], i.e. the preservation of a uniform141
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flow. On the sphere, we could replace the preservation of uniform flow with some other particular cases,142

as e.g. the preservation of zonal or meridional flows. However, the most relevant characterization of the143

GCL for the applications of this paper is the one we have introduced in the previous section, namely the144

satisfaction of the lake-at-rest state.145

It is thus in the perspective of obtaining well balanced schemes on moving grids that we consider the146

issue of mimicking (
eq:gcl-seq:gcl-s
11) at the discrete level. As we will shortly see, the main issue is properly defining the147

components of the mesh velocity σj along certain directions, as well as an approximation of the divergence148

operator ∂xj (
√
Gσj). The DGCL closure used in previous works by the authors

ArR:14,ArR:17
[33, 1], and inspired by149

LeF:96,GuF:00
[29, 30], is based on a piecewise linear P 1 interpolation of the mesh displacements. This definition allows to150

recover naturally an element-by-element DGCL when integrating the divergence of the displacements over151

the half time step average element Kn+1/2 = (Kn+1 +Kn)/2. Due to the presence of the coefficient
√
G,152

the extension of this approach is not at all straightforward. We have thus chosen to use a generalization153

of the closure originally proposed in
MaY:06
[42].154

Figure 1: Swept area decomposition of area variations for mesh element K. fig:swept-area

To describe this closure, we consider an element K of the mesh, or equivalently its projection in the

parametric space K. We study the discrete approximation of the area variation

|Kn+1| − |Kn| =
[∫

K0

JA
√
Gdχ

]n+1

−
[∫

K0

JA
√
Gdχ

]n
We decompose this variation in components associated to the area swept by each face, as illustrated in

figure
fig:swept-areafig:swept-area
1. We have in particular

|Kn+1| − |Kn| = ∆t
∑
j∈K

υfj . (31) eq:delta-K

11



Denoting by Qj the quadrilateral ({xi,xk}n ; {xi,xk}n+1) (cf. figure
fig:swept-areafig:swept-area
1), υfj is the average edge velocity

tangent to the manifold and normal to the edge defined by

υfj :=
1

∆t

∫
Qj

√
Gdx (32) eq:ivc-s

In practice, the integral is computed by a high order quadrature formula∫
Qj

√
Gdx = |Qj |

∑
xq

ωq
√
G(xq) (33) eq:ivc-s1

where the quadrature grid is built simply by tensorizing 1D quadrature points over each edge, and the155

signed volume |Qj | is evaluated using the surveyor’s (or shoelace) area formula
shoelace
[43].156

To discretize the ALE-SWEs we now need to provide a discrete approximation of the curvilinear157

divergence appearing in the GCL. For the purposes of the paper we would like this definition to be158

compatible with the following relations159

Kn+1 −Kn =

tn+1∫
tn

∫
K0

JA
∂

∂xj
(
√
Gσj)

∣∣∣
K
dχ dt (34)

Kn+1
i −Kni =

tn+1∫
tn

∫
K0

JA ϕi
∂

∂xj
(
√
Gσj)

∣∣∣
K
dχ dt (35)

∫
K0

Jn+1
A

√
Gϕiwh −

∫
K0

JnA
√
Gϕiwh =

tn+1∫
tn

∫
K0

JA ϕi
∂

∂xj
(
√
Gσj)

∣∣∣
K

wh dχ dt (36)

with wh the approximation of the same data on the different meshes associated to the mappings with160

Jacobians Jn+1
A and JnA. The first relation is the spacetime integral of the GCL while the second and the161

third relations are useful to derive a consistent finite element method, and mass lumping. The practical162

evaluation of each of the integrals on the left hand side plays here a fundamental role in our ability to163

satisfy exactly the three relations above. We have the following characterization.164

Proposition 1. (Approximate quadrature on the manifold and DGCL) Consider a one point quadra-

ture approximating the integral over a time step as∫ tn+1

tn

∫
K0

JAf(χ) dχ dt = ∆t

∫
K0

J̄Af(χ) dχ dt = ∆t

∫
K̄

f(x̄) dx̄ dt

and the constant-by-element approximation of the divergence

∂

∂xj
(
√
Gσj)

∣∣∣
K̄

:=
1

|K̄|
∑
j∈K̄

υfj . (37) eq:div-dgcl
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Consider also the approximate quadrature defining full and lumped mass matrices (
eq:gal-mass-Leq:gal-mass-L
22) and (

eq:gal-masseq:gal-mass
21) given by

(mGAL
ij )K ≈ |K|

3

1 + δij
4

, (mGAL
ij )L,K = Kiδij ≈

|K|
3
δij . (38) eq:gal-mass-d

We have the following properties:165

1. Relations (
eq:dgcl-rels1eq:dgcl-rels1
34), (

eq:dgcl-rels2eq:dgcl-rels2
35) and (

eq:dgcl-rels3eq:dgcl-rels3
36) are verified exactly;166

2. For a smooth Cr function, with r ≥ 1, if (
eq:mesh-smootheq:mesh-smooth
19) is true, the projection associated to (

eq:gal-mass-deq:gal-mass-d
38) is at least167

second order accurate.168

Proof. See (
app:a3app:a3
Appendix C). �169

Remark 1. (Higher order quadrature in mass matrices). The approximate quadrature (
eq:gal-mass-deq:gal-mass-d
38) is only170

required to embed exactly the GCL in the scheme. In absence of mesh movement, higher order (or exact)171

quadrature can be used to define the mass matrix entries, which will differ from (
eq:gal-mass-deq:gal-mass-d
38) within the quadrature172

error just proved. In practice we have seen no advantage in using more accurate quadrature in these for-173

mulas. For completeness, the modifications necessary to account (on fixed meshes) for the exact evaluation174

of the mass matrices for Residual Distribution and stabilized finite elements are provided in (
app:a4app:a4
Appendix D).175

176

Note that in practice, when using the sphere with lat-lon parametrization, the gradient of
√
G appearing177

in the error estimate in the appendix is given by R2 sinλ with λ the latitude, which is clearly bounded.178

Finally, note that the choice of J̄A is arbitrary and has no impact on the satisfaction of the DGCL. For179

accuracy reasons, here we have kept a mid-point approximation J̄A = (JnA + Jn+1
A )/2. This means that,180

most geometrical quantities are evaluated as averages on the elements Kn+1 and Kn. This is implicitly181

assumed in all the formulas which will follow. For simplicity, in the text we will drop the superscript182

altogether, unless necessary in the formula.183

6. ALE Residual Distribution on the sphere184

sec:RD

A first extension of Residual Distribution (RD) to general covariant coordinates has been proposed by185

Ros:13
[8]. The work of the reference is limited to steady state computations, with linear schemes and without186

bathymetry. This paper presents a general second order and well balanced formulation allowing time187

dependent computations on moving meshes. The construction proposed here is a generalization of the188

work done in Cartesian coordinates in
ArR:17
[1]. We refer the interested reader to

Dec:17,AR:17
[44, 45] and references therein189

for a thorough discussion of the properties of residual distribution.190

13



The RD discretization of unsteady problems can be described starting with an analogy with stabilized

continuous finite elements. Given a triangulation of the parametric domain S2, to solve L(wh) = 0, one

can formally recast a RD scheme as ∫
S2

wiL(wh) dχ = 0 (39) eq:pg

where wi = ϕi + γi is a Petrov-Galerkin test function, with γi an appropriately defined bubble function.

For consistency, on each element K ∑
j∈K

wj = 1 , (40) eq:rd-consiistency0

which implies
∑
j γj = 0. We define the element residual associated to (

eq:SW-aswbeq:SW-aswb
26) as the area integral over the

element of the full differential operator:

ΦK =

∫
K0

L(wh) dχ . (41)

The consistency (
eq:rd-consiistency0eq:rd-consiistency0
40) allows to define the distributed residuals

ΦKi :=

∫
K0

wiL(wh) dχ (42) eq:rd-split0

which verify the consistency condition ∑
j∈K

ΦKj = ΦK . (43) eq:rd-consiistency1

In actual computations, the main component of the distributed residuals is evaluated by means of distri-

bution matrices βKi which also verify consistency∑
j∈K

βKj = I . (44) eq:rd-consiistency1

The bridge with finite elements is completed by the requirement

βKi =
1

|K0|

∫
K0

wi dχ = w̄Ki . (45)

which leads to form of the distribution used in practice:

ΦKi = βKi ΦK +

∫
K0

(wi − w̄Ki )L(wh) dχ (46) eq:rd-split1

The formula above shows the key design elements of the method which are the integration strategy used191

to evaluate ΦK , and the definition of the distribution matrices and of the associated test functions. Note192

that the first term in the above formula is enough to have a consistent and conservative method (in the193

sense of (
eq:rd-consiistency1eq:rd-consiistency1
44)). The second term has an impact on the accuracy and stability, but none on consistency as194

clearly
∑
j(wj − w̄Kj ) = 0.195

196
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6.1. Two-step explicit method197

Concerning the time marching technique, we consider here a fully explicit multi-stage strategy, relying198

on the ideas discussed in
RiA:10,Ric:15
[46, 11]. For recent implicit space-time strategies we refer to

hr11,shr13,hrs20
[47, 48, 49].199

Concerning the scheme used here, we recall for completeness in (
app:a4app:a4
Appendix D) its construction which,200

starting from (
eq:pgeq:pg
39), relies on the following steps:201

1. replacing L(wh) by (
eq:ut_lueq:ut_lu
30);202

2. mapping integrals on the reference domain and their evaluation on the current configuration (mesh);203

3. use of a simplified residual based stabilization involving an extrapolation of the time derivative;204

4. use of Proposition 1, as well as of (
eq:dgcl-rels1eq:dgcl-rels1
34), (

eq:dgcl-rels2eq:dgcl-rels2
35), and (

eq:dgcl-rels3eq:dgcl-rels3
36);205

5. lumping of the Galerkin mass-matrix.206

In its final form, the scheme evolves nodal values of the state vector w with a two-step procedure, in which

the new solution value is obtained from:

|Cn+1
i |(wn+1

i − w∗i ) = −∆t
∑
K3i

ΦKi (47) RC-corr

where the nodal residuals ΦKi are a splitting of the element residual∑
j∈K

ΦKj = ΦK =
1

∆t

∫
K0

(Jn+1
A

√
Gw∗h − JnA

√
Gwnh)dχ+

1

2
ΦK(w∗h, b

n+1
h ) +

1

2
ΦK(wnh , b

n
h) (48) phi-corr

with ΦK(w, b) the fluctuation (the area integral over the element K of only advective and source terms)

ΦK =

∮
∂K

√
G

 (huj − ησj)

hui(uj − σj)


h

nj ds+

∫
K

√
G

 0

Gij(∂xj (gh
2/2) + gh∂xj b)


h

dx

+

∫
K

√
G

 0

Sf + Sγ + Sc


h

dx

(49) phi

Please note that the fluctuation integral is evaluated with respect to the actual parametric coordinates

after using dx = J̄Adχ. The predicted nodal values w∗i are computed from

|Cn+1
i |(w∗i − wni ) = −∆t

∑
K3i

Φ̃K
i (wnh , b

n
h) (50) RC-pred

with the Φ̃K
i defining a splitting of the geometrically non-conservative fluctuation (cf. (

app:a4app:a4
Appendix D))

∑
j∈K

Φ̃K
j = Φ̃K =

∮
∂K

√
G

 huj

huiuj


h

nj ds+

∫
K

√
G

 0

Gij(∂xj (gh
2/2) + gh∂xj b)


h

dx

−
∫
K

√
Gσj

∂wh

∂xj
dx+

∫
K

√
G

 0

Sf + Sγ + Sc


h

dx

(51) phi-t

207
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6.2. Evaluation of the integrals208

To begin with, unless explicitly specified, in all quadrature formulas we have used analytical expressions

for both the Jacobian
√
G, and the metric tensor Gij . At the quadrature points, the mass flux components

(hui)h are evaluated simply using the P1 expansion, while velocity components are obtained from the

interpolated values of momentum (hui)h and depth hh. The wet/dry region is handled as discussed in
RiB:09,Ric:15
[9, 11]. Consistently with the approximation (

eq:gal-mass-deq:gal-mass-d
38) of Proposition 1, volume integrals of the unknown are

computed as ∫
K0

Jn+1
A

√
Gwh dχ =

∑
j∈K
|Kn+1
j |wj =

|Kn+1|
3

∑
j∈K

wj (52) eq:vol-int

In all boundary integrals, scaled constant-by-face values of the normal mesh velocity σjnj are computed

consistently with the DGCL closure (
eq:ivc-seq:ivc-s
32) and (

eq:div-dgcleq:div-dgcl
37), namely

(
√
Gσj nj)f := υf (53) eq:sigma-n

Concerning the non-conservative ALE term in Φ̃K , this has been evaluated as209 ∫
K

√
Gσj

∂wh

∂xj
dx =

∮
∂K

√
Gwhσ

jnjds−
∫
K

wh
∂
√
Gσj

∂xj
dx (54)

where the face values (
eq:sigma-neq:sigma-n
53) are used in the boundary integral, while the element integral is evaluated by210

means of the constant divergence of the DGCL (
eq:div-dgcleq:div-dgcl
37):211 ∫

K

√
Gσj

∂wh

∂xj
dx =

∑
i∈K

υfiwfi − wK
|Kn+1| − |Kn|

∆t
=
∑
i∈K

υfi(wfi − wK) (55)

where the average values wf and wK are simple arithmetic averages over the faces and over the element.

The integrals of the source terms in (
phiphi
49) and (

phi-tphi-t
51) are computed as∫

K

√
GS dx ≈ |K|

3

∑
j∈K
Sj (56)

Finally, the hydrostatic term is computed as

∫
K

√
GGij(∂xj (gh

2
h/2) + ghh∂xj bh)dx =

∫
K

√
GGijghh(

∂xj ηh︷ ︸︸ ︷
∂xjhh + ∂xj bh)dx

=
(∫

K

√
GGijghhdx

)
∂xjηh

∣∣
K
≈ |K|

(∑
q

ωq
√
GGij(xq)ghh(xq)

)
∂xjηh

∣∣
K

(57) eq:hyd

Several (second or higher order) quadrature formulas have been tested for the term in parentheses without212

any visible impact on the results.213

6.3. Distribution of the residual and main properties214

In RD schemes stability and accuracy properties depends on how the residual is distributed. The

computation of the split residuals for the two RK steps ΦKi and Φ̃K
i is performed following exactly the
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steps discussed in
Ric:15
[11]. In particular, following the construction in the reference, the residual splitting

(
eq:rd-split1eq:rd-split1
46) can be more explicitly written as

ΦKi = βKi ΦK + δ(wh)βSD
i ΦK + δ(wh)

∑
j∈K

m∗ij
w∗j − wnj

∆t (58) eq:RD

In the above expression, the first term is the consistent one, namely the one satisfying
∑
j β

K
j = 1. The

last two terms do not contribute to the consistency of the method, as indeed one can show that
Ric:15,RiA:10
[11, 46]∑

j∈K
βSD
j∈KΦK +

∑
j∈K

∑
k∈K

m∗jk
w∗k − wnk

∆t
= 0 (59)

These additional terms are essentially stabilization terms allowing to avoid spurious modes appearing in215

smooth regions (cf.
Abg:06,RiB:09
[50, 9] for details), and can be embedded in the last integral in (

eq:rd-split1eq:rd-split1
46). The first one is a216

streamline upwind type stabilization, the second is a correction to a mass-lumping operator. These terms217

are in practice evaluated exactly as discussed in
Abg:06,RiB:09,Ric:15
[50, 9, 11] to which we refer for details. Concerning the218

first term, as in
Ric:15
[11] it is a distribution based on a blending, via the smoothness sensor δ(wh), between219

a central splitting and a limited nonlinear splitting. The latter is obtained using a standard procedure220

in RD schemes involving the application of a bounded and sign-preserving mapping to a first order and221

positivity preserving Lax-Friedrich’s like distribution (see for example
Abg:06
[50] or the chapters

AR:17,Dec:17
[45, 44]). This222

allows to combine formal second order of accuracy with depth non-negativity preservation.223

Finally note that the distribution functions for the predictor step (
RC-predRC-pred
50) are easily deduced from (

eq:RDeq:RD
58) setting224

w∗ = wn, and replacing ΦK by Φ̃K .225

226

Remark 2. (Metric terms treatment, accuracy, stability). It is worth noting that the scheme is227

formally identical to the one obtained in the planar case. The treatment of the geometric source term228

boils down to the modification of the cell residual. This is a substantial simplification when conceiving and229

coding the scheme compared to other methods (e.g Finite Volume).230

231

Concerning the properties of the final discretization, the two main tools of analysis are a consistency232

property w.r.t. a variational form evaluated for smooth solutions, and a positivity preserving property233

rooted in the positive coefficient schemes theory (see
AR:17,Dec:17
[45, 44] and references therein). For the schemes234

used here, high order of accuracy is formally ensured by the boundedness of the distribution matrices, and235

more generally of the test functions {wj}j∈K in (
eq:rd-split1eq:rd-split1
46). For the analysis of the depth positivity-preservation236

property of this Lax-Friedrich’s-type scheme (as well as of the one obtained applying the limiter), the237

interested reader can refer to
Ric:15
[11] for the Eulerian case. In the ALE case, an additional limiting step is238
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required, as proposed in
ArR:17
[1]. This is to control the mismatch between the update in the mass equation,239

performed in terms of η, and the one of the bathymetry based on (
eq:bataleeq:batale
65) and not on the ALE remap.240

241

6.3.1. Well-balancedness, DGCL and mass conservation242

The first property we can easily show is the following.243

244

Proposition 2. (DGCL and well-balanced on the sphere) For any given mesh displacement on the245

sphere, the residual distribution prototype (
RC-corrRC-corr
47)-(

phi-tphi-t
51), with the quadrature strategy defined in Proposition 1246

and by (
eq:aletermeq:aleterm
55) and (

eq:hydeq:hyd
57), and with the distribution functions (

eq:RDeq:RD
58) verifies the C-property on moving and fixed247

meshes, as well as for Cartesian and curvilinear coordinates.248

249

Proof. The proof is obtained by applying the scheme to the initial solution w0 = [η0, 0, 0]t. With250

the hypotheses made, and by virtue of (
eq:aletermeq:aleterm
55) combined with (

eq:delta-Keq:delta-K
31), and using (

eq:hydeq:hyd
57) with η constant over the251

mesh, we deduce immediately that Φ̃K = 0, thus Φ̃K
i = 0, and w∗i = w0

i .252

In the corrector step the element residual, evaluated with constant η and invoking (
eq:hydeq:hyd
57), reduces to

ΦK =
|K|n+1 − |K|n

∆t
w0 −

∑
j∈K

υfjw0 = 0 (60)

due to the definition of υf . Combined with the previous results and (
eq:RDeq:RD
58) this implies wn+1 = w0 . �253

This proposition corroborates the choices made in the previous sections concerning the form of the

SWEs. As already mentioned, however, the choice of w as a main unknown has a drawback concerning

mass conservation. Indeed if we sum both (
RC-corrRC-corr
47) and (

RC-predRC-pred
50) over all the mesh nodes we obtain∑

i

|Cn+1
i |wn+1

i −
∑
i

|Cn+1
i |w∗i = −∆t

∑
i

∑
K3i

ΦKi = −∆t
∑
K

∑
i∈K

ΦKi = −∆t
∑
K

ΦK (61)

Using (
phi-corrphi-corr
48) and (

eq:vol-inteq:vol-int
52) we can further modify the mass balance to∑
i

|Cn+1
i |wn+1

i −
∑
i

|Cni |wni = −∆t

2

∑
K

ΦK(wnh , b
n
h)− ∆t

2

∑
K

ΦK(w∗h, b
n+1
h ) (62)

If we only consider the mass equation, the right hand side gives

−∆t

2

[∑
K

(∮
∂K

√
G(huj − ησj)nhnj +

∮
∂K

√
G(huj − ησj)∗hnj

)]
= 0 (63)

face integrals of neighbor elements canceling each other. As a consequence we end with∑
i

|Cn+1
i |hn+1

i =
∑
i

|Cni |hni −
(∑

i

|Cn+1
i |bn+1

i −
∑
i

|Cni |bni
)

(64) mass-error
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As remarked in
ArR:17
[1] the error in total mas conservation is related to the error in satisfying a discrete ALE

remap of the bed. To minimize the mass error, we use here the same technique proposed in
ArR:17
[1]. We set:

|Cn+1
i |bn+1

i :=

∫
C0
i

Jn+1
A

√
Gb̂(χ) dχ (65) eq:batale

where b̂(χ) is a high resolution (analytical, or reconstructed using a finer mesh) description of the topog-

raphy. We then evaluate the last integral using a higher order quadrature as done in
ArR:17
[1]. In particular, if

the quadrature is of order κ we have, considering a smooth enough manifold:∑
i

|Cn+1
i |bn+1

i =
∑
i

∫
Ci

Jn+1
A

√
Gb̂(χ) dχ+

∑
i

O(hκ+3) =

∫
M2

√
Gb(x) dx+O(hκ+1) (66)

where the O(hκ+3) is the local error modeled as a polynomial of degree (at least) κ+ 1, readily obtained

using e.g. a truncated Taylor series, and accounting for the fact that |K| = O(h2). The second equality

uses (
eq:mesh-smootheq:mesh-smooth
19). Note now that the first term in the final expression is actually time independent as long as

M2 = M2
0 , which is in practice the case. Since also the integrand is a time independent quantity, we have

∣∣∣∑
i

|Cn+1
i |bn+1

i −
∑
i

|Cni |bni
∣∣∣ = O(hκ+1) (67)

which combined with (
mass-errormass-error
64) shows that we can conserve h within an arbitrary accuracy.254

7. Adaptive mesh movement strategy255

sec:mmpde

The mesh adaptation technique used here is based on an error dependent mesh movement. The main

principle is to define a mapping A(χ, t) from a reference/initial configuration, described by the coordinate

χ, to a physical mesh described by coordinate x, such that the error associated to a certain density is

equi-distributed. The error density is often referred to as a monitor function m(x)
DeB:73
[51]. The differential

form of this principle is referred to as Moving Mesh Partial Differential Equation or MMPDE for short.

The simplest method in the multidimensional case is the elliptic generator based on the MMPDE:

∂

∂χi

(
m
∂xα

∂χi

)
= 0 α = 1, 2 (68) eq:mmpde-ch

This PDE is the Euler-Lagrange equation corresponding to the minimization of the energy functional
CeH:01
[52]:

E(x) =
1

2

∫
Ωχ

m||∇x||2 dχ =
1

2

∫
Ωχ

m
∂xα

∂χi
∂xα

∂χi
dχ . (69) eq:efun-ch

It consists in a set of decoupled quasi-linear elliptic equations mapping each coordinate. Many efficient256

numerical methods are available to solve (
eq:mmpde-cheq:mmpde-ch
68). The counterpart of its simplicity is that special care must257
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be taken to avoid the degeneration of the quality of the mesh, or mesh tangling. If carefully implemented,258

the MMPDE (
eq:mmpde-cheq:mmpde-ch
68) can be quite effective (see, e.g.

TaT:03,JIN200668,ChT:08,XuN:13,Zho:13,ZhC:13,PAN2015207
[53, 54, 55, 56, 20, 40, 57] and references therein).259

The design of moving mesh methods on the sphere is a relatively recent subject of research. Optimal

transport method have been discussed in
WeB:16,McR:18
[58, 59] using finite differences or finite-elements to solve the

Monge-Ampere type nonlinear PDEs involved. The results shown in terms of mesh quality and mesh

refinement are very interesting. It is however unclear whether the error reduction compensates the CPU

time overhead of mesh adaptation. Based on our previous experience, here we have opted for a simpler

version of mesh movement on the sphere, trying to remain as much as possible close to the simplicity of

(
eq:mmpde-cheq:mmpde-ch
68). It is known that functional (

eq:efun-cheq:efun-ch
69) can be generalized to model a mapping A : S2

A0
→ S2

A x = A(χ, t),

from a computational sphere with metric tensor Gij and local coordinates χ to a physical sphere with

metric Hαβ and local coordinates x:

E(x) =
1

2

∫
Ωχ

mGijHαβ
∂xα

∂χi
∂xβ

∂χj

√
Gdχ . (70) eq:hm-e

Unfortunately, the above functional is similar to the harmonic map energy of
DiL:06
[60] where it is shown that

the minimization problem associated may lack a unique solution. This is what has led several authors

to consider more complex techniques
DiL:06,WeB:16,McR:18
[60, 58, 59] To obtain a simpler formulation, we propose to use a

mapping form the reference sphere to the parametrization of the adapted one. So we map the sphere to

a plane A : SA0
→ E2 x = A(χ, t). This corresponds to a flat target metric is Hαβ = δαβ and to an

energy functional:

E(x) =
1

2

∫
Ωχ

mGij
∂xα

∂χi
∂xα

∂χj

√
Gdχ =

1

2

∫
Ωχ

mGii
∂xα

∂χi
∂xα

∂χi

√
Gdχ (71) eq:hm-e2

having used the fact that Gij is diagonal. In practice, all goes similarly to when mapping two planes.

The catch is that when minimizing (
eq:hm-e2eq:hm-e2
71), we will obtain an adapted mesh which will depend on the

parametrization. In our opinion this is not a problem as long as the same parametrization is used for the

flow equations. The MMPDE obtained in this case is

1√
G

∂

∂χi

(
m
√
GGii

∂xα

∂χi

)
= 0 (72) eq:mmpde-chs

which, as in the Cartesian case, constitutes a decoupled system of PDEs in which the only non-linearity260

is associated to the monitor function m = m(x) which will depend on the solution (as in the Cartesian261

case). We use a straightforward P 1 Finite Element method to discretize the MMPDE, and a Newton-262

Jacobi iteration to update nodal displacements reading263

δk+1
i = δki −

(∑
K3i

aKii

)−1 ∑
K3i

∑
j∈K

aKij (xkj )K , xk+1
i = xni + δk+1

i , (73)
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with aKij the entries of the stiffness matrix arising from a straightforward finite element approximation264

of (
eq:mmpde-chseq:mmpde-chs
72), with the only source of nonlinearity being the monitor function m = m(x). In some of the265

computations a standard Laplacian mesh smoothing step is also added
HuR:97,BuH:09
[61, 62].266

To test the moving mesh algorithm we use a benchmark from
McR:18
[59]. The monitor function is:267

m = 1 + 10 sech2

(
5

(
||x− x1||2 −

π2

4

))
+ 10 sech2

(
5

(
||x− x2||2 −

π2

4

))
(74)

with x1,2 = (±
√

3
2 , 0,−

1
2 ). The resulting mesh in shown in figure

fig:t5-t6fig:t5-t6
2. The mesh is highly compressed268

around the bands. The result is quite close to those presented in
McR:18
[59], although clearly the optimal269

transport method of the reference gives a smoother mesh. Somewhat nicer results are obtained when270

including Laplacian smoothing, as shown on the right picture on the same figure.271

Figure 2: Adaptation to the monitor function (
eq:test_mmpdeeq:test_mmpde
74). Left: computational (icosahedral) mesh. Center: adaptation without

smoothing. Right: adaptation with Laplacian smoothing with smoothing coefficient 1/2. fig:t5-t6

7.1. Monitor function272
subsec:mon

In this paper we use the arc-length type monitor function of
Win:67
[63]:

m =
√

1 + αif2
i∗, fi∗ = min

(
1,

fi
βmaxx∈Ω fi

)
(75) eq:omega

In the tests of section
sec:expsec:exp
8, the physical quantities fi have been chosen depending on the phenomenon under273

study. For gravity waves, we have selected, as in
ZhC:13
[40], only one term f1 = ||∇η|| the free surface gradient,274

in order to detect free surface wave patterns and bore development. In presence of wet/dry transitions as275

in
ArR:17
[1] we have added a second term f2 = F (h) where the function F is a regularized Heaviside function276

going from 1 to zero in vicinity of dry regions. When considering barotropic instability we have taken277

f1 = ||∇×u|| and f2 = ||∇∇×u|| in order to follow roll-up of the vorticity field. For all other details on278

our implementation of the MMPDE method please refer to
ArR:17
[1] and references therein. The values of the279

tuning coefficients αi, β are given for each test in section
sec:expsec:exp
8.280
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7.2. Moving Mesh PDE-ALE algorithm281

For adaptive computations, the MMPDE-ALE algorithm starts with a triangulation at time n and282

the solution wnh . Setting the initial conditions for the MMPDE m1
h = mn

h and x1 = xn, where mn
h is the283

monitor function evaluated with wnh , we proceed as follows.284

DO k=1,kmax285

Step 1. Move the mesh according to the Newton-Jacobi iteration (69).286

Step 2. Use the ALE schemes to get a remap on the new mesh as discussed e.g. in
ArR:17
[1] and re-evaluate287

the monitor function using the new solution288

ENDDO289

Step 3 Let xn+1 = xkmax+1 define the new triangulation, evolve the underlying balance law in ALE290

framework on the half time step mesh as discussed in section
sec:RDsec:RD
6291

Step 5. IF (t = Tfinal) EXIT ELSE GO TO Step 1.292

As remarked in
ArR:17
[1], the remap from one mesh to the new one here is only needed to evaluate the error293

function. This allows to simplify the mapping if necessary. The interested reader can refer to
ArR:17
[1] for a294

discussion.295

8. Numerical experiments296

sec:exp

In all computations presented hereafter we have set, unless otherwise stated, R = 6371.22 × 103m,297

g = 9.80616m2s−1 and Ω = 7.295×10−5 s−1. Meshes with two topologies have been tested: one generated298

with the unstructured mesh generator Gmsh
GuR:97
[64], and more regular icosahedral grids. The typical mesh299

topologies are illustrated on figure
fig:sphere-meshfig:sphere-mesh
3. Adaptation is performed with 5 iteration of the Newton-Jacobi300

method (
eq:relaxeq:relax
73). Whenever additional smoothing steps are used, this is explicitly said.301

8.1. Fixed grid: zonal flows of Williamson et al.302
sec:zon

In this paragraph we test only the Eulerian (fixed grid) RD on some classical benchmarks taken from303

the test suite of
Wil:92
[65]. Grid convergence studies gave been conducted on 5 meshes generated with Gmsh304

and with reference sizes starting from hKR
−1 = 0.16 and halved from one mesh to the other. The meshes305

thus obtained are composed of 1306, 4990, 19568, 75478, and 300426 triangles respectively.306

Relative errors are evaluated following
Wil:92
[65] as:307

l2 =
||e||L2

||hex||L2
(76)
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Figure 3: Computational grids on the sphere. Top row: mesh #1 generated with gmsh. Bottom row: third level of refinement

for icosahedral mesh. fig:sphere-mesh

with hex the exact solution and308

||e||L2 =

√∫ 2π

0

∫ π/2

−π/2
(h(x)− hex)

2
√
Gdx (77)

Case #2 is an exact steady geostrophic equilibrium allowing to measure the order of accuracy in presence309

of Earth rotation. The velocity ( given directly in covariant basis) and height fields are initially given by:310

h(x, 0) = h0 −
1

g

(
ΩRu0 +

u2
0

2

)
(− cosλ cosϕ sinα+ sinλ cosα)

2

u1(x, 0) = u0 (cosα+ cosϕ tanλ sinα) (78)

u2(x, 0) = −u0 sinϕ sinα

with gh0 = 2.94×104m2s−2 and u0 = 2πR
12days . Two orientations are tested α = 0 and α = π/4. The errors311

obtained at day 5 are reported on table
tab:ch-cputab:ch-cpu
2 below. The total error obtained on unstructured triangulations312

is comparable to previous results such as the Lax-Wendroff scheme on a cubed staggered grid of
Ros:06
[3]. The313

expected second order of accuracy is obtained.314

As it is customary we report on figure
fig:zon-errfig:zon-err
4 the error maps after 5 days of simulation on the fourth grid315

(hKR
−1 = 0.02). Particular attention should be put along the interface line (it is a discontinuity for the316

coordinates). Error iso-countours are very smooth for the RD scheme proposed, with seemingly no effect317

of the patching treatment used for the poles. For comparison we also report on figure
fig:zon-icoerrfig:zon-icoerr
5 the error plot318
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grid # (α = 0) RD grid # (α = π
4 ) RD

1 4.176589e-03 1 1.656259e-02

2 9.286403e-04 2 3.496469e-03

3 1.846086e-04 3 9.512542e-04

4 4.462182e-05 4 2.466671e-04

5 1.028603e-05 5 6.292595e-05

Order 2.17 Order 2.00

Table 1: Steady zonal flow. l2 error. tab:ch-cpu

relative to the computation on the fourth-level icosahedral mesh (81920 nodes) which has roughly the319

same reference size. The error (||e||L2 = 4.084761e − 05 for α = 0, ||e||L2 = 2.634469e − 04 for α = π
4 )320

result is very close, showing no impact of the mesh topology.321

Figure 4: Steady zonal flow. Absolute value of local error on gmsh grid hKR
−1 = 0.02. Black areas correspond to 2m error,

white areas to zero error. Left: α = 0. Right: α = π/4.fig:zon-err

Figure 5: Steady zonal flow. Absolute value of local error on icosahedral grid (forth-level refinement) hKR
−1 ≈ 0.02. Black

areas correspond to 2m error, white areas to zero error. Left: α = 0. Right: α = π/4.fig:zon-icoerr
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Case #5 is a perturbation of the previous one. The initial velocity and height fields are given by (
eq:wil-2eq:wil-2
78)

with α = 0, h0 = 5960m and u0 = 20m/s. An isolated mountain is now added with the profile:

b = b0

(
1− r

R

)
(79)

with b0 = 2000m, R = π/9, r2 = min(R2, (ϕ − ϕ0)2 + (λ − λ0)2) and with the center of the cone in

(ϕ0, λ0) = (3/2π, π/6). Simulations are performed on the fourth mesh of the gmsh suite (hKR
−1 = 0.02).

Figure
fig:mou-1fig:mou-1
6 provides the contour lines of the water height after 5, 10, and 15 days of physical time. For this

case one typically checks the conservation of total mass and energy:

E = h

(
1

2
||u||2 + g

h

2
+ gb

)
, (80)

Note that mass error is only related to the change of the coordinate system across the edges that delimit322

the polar cap. Regarding energy, none of the schemes proposed have provable energy conservation prop-323

erties, which makes the definition of the actual discrete evaluation of the energy somewhat arbitrary. In324

practice, here the energy is computed directly from nodal quantities, and then integrated using a linear325

approximation. The resulting error evolution is reported on figure
fig:mou-2fig:mou-2
7. The evolution obtained, as well326

as errors obtained, for the mass and energy are comparable to or better than those typically reported327

in literature for computations on structured grids, and with the high resolution results by the German328

Weather Service (DWD) http://icon.enes.org/swm/stswm/node5.html.329

Figure 6: Zonal flow over an isolated mountain. Snapshot of the numerical solution for fixed grid simulation on gmsh mesh

hKR
−1 = 0.02 at day 5,10 and 15. Contour levels are from 5050m to 5950m in intervals of 50m. fig:mou-1

8.2. Advection of cosine bell330

To assess the numerical accuracy of our algorithm for unsteady problems and in presence of mesh331

movement, we revisit test #1 of the Williamson suite
Wil:92
[65]. For this test, the advective component is332

tested in isolation: only the mass equation is a prognostic equation while the wind (always expressed in333
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Figure 7: Zonal flow over an isolated mountain. Relative conservation error for mass (left) and energy (right) on gmsh mesh

hKR
−1 = 0.02. fig:mou-2

covariant components) is constant and given by334

u1(x, 0) = u0 (cosα+ cosϕ tanλ sinα) (81)

u2(x, 0) = −u0 sinϕ sinα (82)

We compute the transport of a cosine bell given by:335

h(x, 0) =


h0

2
(1 + cos(3r)) + h0 if r < π/3

h0 otherwise

(83)

where h0 = 1000, u0 = 2πR
12days , and r is the great circle distance from the center of the bell (ϕC , λC):336

r = R arccos (sinλC sinλ+ cosλC cosλ cos(ϕ− ϕC)) (84)

We have tested two different wind directions α = 0, and α = π/2 for which the bell is transported337

through the north and south poles, crossing four times a polar cap interface. To test the accuracy of the338

ALE formulations we have added an independent unsteady motion of the mesh nodes according to the339

transformation:340

ϕ(t) = Φ + 0.5 cos (Φ) cos (Λ) sin
(

4πt
T

)
(85)

λ(t) = Λ + 0.5 cos (Φ) cos (Λ) sin
(

4πt
T

)
(86)

with Φ,Λ the computational or reference coordinates. The typical deformations obtained can be seen on341

figure
fig:cb-meshfig:cb-mesh
8. This motion will act as a background perturbation to the cosine bell advection.342

The mesh convergence for fixed and moving meshes is reported on figure
fig:cb-convfig:cb-conv
9. The expected second order343

of accuracy is recovered. Moreover, we see roughly the same level of error for the two configurations (zonal344

and meridional advection). This suggests that the polar patching does not affect significantly the error345

constant, nor the slope. We also observe that the unsteady mesh distortion does not spoil neither the346

order of accuracy nor the error level. This validates the ALE formulation, at least in terms of accuracy347
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Figure 8: Advection of cosine bell. Transformed meshes number 2 at three different instants. At day 12 (final time) the

transformed mesh coincides with the computational mesh. fig:cb-mesh
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Figure 9: Advection of cosine bell: grid convergence. Left: α = 0. Right: α = π/2 fig:cb-conv

8.3. Circular hump348

This is a test proposed in
Ros:04
[2]. The initial condition is a circular depth disturbance at the equator:349

h(x, 0) =

 2 if arccos(cos(x1) cos(x2)) ≤ 0.2

0.2 otherwise
, u(x, 0) = 0 (87)

This initial condition is symmetric about the point (x1, x2) = (0◦, 0◦), and should remain symmetric in350

absence of rotation. We run computations on two half sphere meshes generated with gmsh: a coarse one351

with 7122 points and 14034 elements; a fine one with 39699 and 78900 elements. Adaptive computations352

on the coarse grid are performed using the MMPDE of section
sec:mmpdesec:mmpde
7 and the ALE formulation. We report353

the solution contours obtained with the RD scheme on figure
fig:ch-isofig:ch-iso
10. We can see on all meshes good shock354

capturing and good symmetry in all radial directions. We can observe that the mesh adaptation itself also355

preserves a good symmetry of the grid, and allows an extremely sharp resolution of the inner and outer356

shocks.357
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Figure 10: Circular hump on a sphere: depth iso-contours (RD solutions, 20 levels between 0 and 0.55) at times t = 0.6

(top) and t = 0.9 (bottom). From left to right: fixed coarse mesh solution, fixed fine mesh solution, ALE adaptive mesh

solution, adaptive mesh. fig:ch-iso

To further evaluate the results on figure
fig:ch-cutfig:ch-cut
11 we plot the line cuts of the fluid depth along the equator.358

In the same figure our RD implementation is compared against the numerical solution of
Ros:04
[2], obtained with359

high-resolution FV (Lax-Wendroff flux with MC limiter) on a Cartesian grid composed of 34680 points.360

We can see the sharp capturing of the discontinuities on all grids, and the improvement brought by the361

MMPDE adaptation on the coarse one. In these plots the adaptive mesh solution is indistinguishable362

from the fine mesh one.363

Finally on table
tab:ch-cputab:ch-cpu
2 we report the CPU times for all computations. We compute the overall time and364

also isolate the time associated to the MMPDE part (both mesh equation, and solution projections). We365

can see that the moving adaptive mesh computations are twice less expensive than the fine mesh ones,366

and also that even with our simplified formulation adaptation counts for non-negligible component of the367

simulation, mode than half for the RD scheme.368

We repeat the same test adding the effects of the rotation. We set the dimensionless rotation rate to369

Ω = 5. In figure
fig:chc-isofig:chc-iso
12 we report snapshots of the depth contour lines on fixed (coarse and fine) and adaptive370

meshes. As in the previous case, we see the higher resolution obtained with the adaptive moving mesh371

and the ALE formulation. This time mesh nodes are clustered both around the shock waves and also in372

correspondence of smoother features where high gradients appear. On table
tab:chc-cputab:chc-cpu
3 we report the CPU times.373
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Figure 11: Circular hump on a sphere. Solution along the equator. fig:ch-cut

ALG Mesh (Nodes) RD[s] (%MMPDE)

FIX-COARSE 7122 46.89

FIX-FINE 39699 674.66

ADAPT-ALE 7122 368.57 (51.5%)

Table 2: Circular hump on a non rotating sphere. CPU times. tab:ch-cpu

8.4. Barotropic instability374

This test, contained in
Gal:04
[66], consists of a geostrophically balanced mid-latitude jet, to which a small375

perturbation is added to initiate an instability. Here we test the RD scheme on a fine mesh with reference376

size of hKR
−1 = 0.01, and compare with adaptive simulations on coarse grids with hKR

−1 ≈ 0.02.377

The fine mesh has roughly 300k triangles, while the coarse ones have approximately 80k triangles. For378

the adaptive simulations we compare results on the icosphere as well as on a gmsh mesh. In particular,379

adaptation has been performed using in the monitor function relative vorticity and its gradient through the380

formula of section
subsec:monsubsec:mon
7.1 with α1 = 10, α2 = 40, β = 0.1. One iteration of Laplacian smoothing (smoothing381

coefficient 0.25) is used.382

ALG Mesh (Nodes) RD[s] (%MMPDE)

FIX-COARSE 7122 81.39

FIX-FINE 39699 1056.39

ADAPT-ALE 7122 638.22 (50.2%)

Table 3: Circular hump on a rotating sphere. CPU times. tab:chc-cpu
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Figure 12: Circular hump on a rotating sphere: depth iso-contours (RD solutions, 20 levels between 0 and 0.55) at times

t = 0.8 (top) and t = 1.2 (bottom). From left to right: fixed coarse mesh solution, fixed fine mesh solution, ALE adaptive

mesh solution, adaptive mesh. fig:chc-iso
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Figure 13: Circular hump on a rotating sphere. Solution along the equator. fig:chc-cut
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ALG Mesh (Nodes) RD [s] (%MMPDE)

FIX-FINE gmsh 150215 246629.4

ADAPT-ALE gmsh 41681 116126 (53.3%)

ADAPT-ALE icosahedral 40962 86642.7 (52.8%)

Table 4: Barotropic instability. CPU times. tab:jet-cpu

In figure
fig:galfig:gal
14 we show the vorticity field corresponding to a physical time of 6 days. The top figure383

reports the field obtained with the fine mesh, which is very similar to the results typically reported in384

literature (e.g. see the high-order FV of
UlJ:10
[4]) and it is considered here as a reference solution. The last385

row on the bottom show the same fixed mesh computation on the coarse grid. We can clearly see that386

the onset of the instability as well as its evolution are wrongly reproduced on this mesh level. Note that387

the result is the same independently on the mesh topology, the icosahedral mesh providing very similar388

results to the one generated with gmsh.389

Second and third rows report the adaptive simulations on the coarse meshes. We can clearly see that390

the adaptive mesh movement allows to correctly reproduce the global instability process, with a slight391

smoothing of last part of the instability (ϕ ≤∼ −180◦) for the gmsh mesh, while the result on the coarse392

adaptive icosahedral is almost identical to the fine mesh one. 3D visualization of the vorticity fields on393

the adaptive meshes and the corresponding meshes obtained are reported on figure
fig:gal1fig:gal1
15, showing a nice394

capturing of the instability. Finally, we report the computational times on table
tab:jet-cputab:jet-cpu
4: adaptive computations395

cost more then one third of the fine mesh simulation. This is an encouraging result confirming the potential396

of the schemes and of the mesh adaptation technique proposed here.397

8.5. Adaptive simulation of the Tohoku 2011 tsunami398
sec:toho

As a last application we consider the simulation of the 2011 Tohoku-Honsu tsunami with the RD scheme399

and the MMPDE-ALE approach proposed. The computational domain is a relatively large chunk of the400

Pacific ocean (650 [km] × 650 [km]), on which an initial waveform computed in
brgm:17
[67] with the approach401

of
SaF:13
[68] is imposed. To asses the potential of the MMPDE-ALE approach on a multiscale problem, we402

consider the initial propagation from the source to the coast, and the runup and flooding of the complex403

bathymetry of the coast. Both topographic data and initial wave elevation and currents are provided404

by BRGM within the research program TANDEM (see http://www-tandem.cea.fr). A sketch of the405

domain and of the initial solution is reported on figure
fig:toho0fig:toho0
16. Friction is based on a constant Manning406

coefficient of n = 0.03125 [sm−1/3]
GaL:10
[69].407
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Figure 14: Barotropic instability. Vorticity field at day 6. Contour lines are from −1.1e− 4 s−1 to −1.5e− 4 s−1 in intervals

of 2e − 5 s−1. Top: fixed fine mesh. Second and third rows: adaptive (respectively icosahedral and gmsh) coarse mesh.

Bottom: fixed coarse. fig:gal

32



Figure 15: Barotropic instability. Relative vorticity field with corresponding adapted mesh at day 5, 5.5 and 6. fig:gal1

Figure 16: Tohoku-Honsu tsunami: domain with position of the GPS probes (left) and initial wave height (right). Colour

legend in meters. fig:toho0

A reference computation has been run on a fine unstructured mesh strongly refined in proximity of408

the coast, where the mesh size is reduced from 5 km used offshore to 120 [m]. The coarse mesh used for409

the MMPDE-ALE method has local mesh size respectively of 360 [m] in the proximity of the coast, and410

an offshore size of 15 km. This allows to cut by a half the number of mesh elements resulting in a mesh411

composed by 364864 nodes and 728874 elements. Mesh adaptation is performed as discussed in section412

subsec:monsubsec:mon
7.1 with tuning parameters α1 = 20, α2 = 60 and β = 0.1.413

Figures
fig:ml-10fig:ml-10
17,

fig:ml-20fig:ml-20
18, and

fig:ml-30fig:ml-30
19 provide visualizations of the first 10, 20, and 30 minutes of propagation, showing414

water height and the adaptive meshes obtained in vicinity of the Japanese coast. We can see how the415
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Figure 17: Tohoku tsunami. Snapshot of the free surface level (close up of the Iwate and north of the Miyagi prefectures,

same colour legend of previous figures) at t = 0:10’ (time origin is 11 March 2011 14:51:18 LT). fig:ml-10

Figure 18: Tohoku tsunami. Snapshot of moving mesh (close up of the Iwate and north of the Miyagi prefectures, same

colour legend of previous figures) at t = 0:20’ (time origin is 11 March 2011 14:51:18 LT). fig:ml-20
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Figure 19: Tohoku tsunami. Snapshot of the free surface level (close up of the Iwate and north of the Miyagi prefectures,

same colour legend of previous figures) at t = 0:30’ (time origin is 11 March 2011 14:51:18 LT). fig:ml-30

mesh adapts to the complex tsunami wave pattern. This becomes visible especially when the wave shoals416

and the mesh points gather in correspondence of the largest gradients of the incoming waves train. To417

further evaluate the quality of the adaptive computations we compare on figure
fig:sshfig:ssh
20 the time series of the418

water elevation in the GPS gauges. Both the fine mesh and the adaptive ones agree quite well with the419

GPS observations, with an accurate computation of the arrival time and of the peak of the leading wave.420

The complex interaction between incoming and trapped waves that follows is also well reproduced, see421

others published results
Che:14,LoK:12,ShS:12
[70, 71, 72]. We remark that the adaptive computations allow to reproduce the422

fine mesh results with half of the mesh elements.423

We now consider the approximation of the flooding of the Japan coastal prefectures. We focus on three424

bays in the south of the Iwate prefecture: they are the Kesennuma, Hirota and Ofunato bay, as they appear425

in figure
fig:floo-1fig:floo-1
21, from south to north. The figure shows on the left the fine mesh with the initial coastline426

superimposed, a visualization of the initial coastline in the middle and the position of the inundation front427

after 40 minutes from the beginning of the event. The figures give an idea of the geometrical complexity428

of the front line, with inundation scales of the order of magnitude of 10 meters, which can be compared429

with the propagation scales of several hundreds of kilometers.430

The handling of this complexity with the MMPDE is represented on figure
fig:floo-2fig:floo-2
22 showing the meshes431

adapted to the initial coastline and to the coastline after 40 minutes. We can see here the limitations432

of the moving mesh approach which is stretched here to its maximum. For some of the features, as for433

example the thinner lands close to the Osimaseto Strait and those around Hirota bay, clearly the density434
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Figure 20: Simulated sea level displacement recorded at GPS buoys with fixed embedded mesh and moving embedded mesh. fig:ssh
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Figure 21: Tohoku tsunami. Flooding of the Iwate prefecture computed with RD scheme on fine fixed grid mesh. Left: zoom

of the mesh, Right: snapshot of the inundated areas at at t = 0:00’ and t = 0:40’ (time origin is 11 March 2011 14:51:18 LT). fig:floo-1

of mesh nodes is not enough to allow a capturing of all the interfaces present. This results in parts of435

the emerged coast to be represented essentially with one stretched element. This is especially true for the436

mesh at 40 minutes (right picture), and has of course an impact on the approximation of the moving wet437

dry front in these areas. From the same picture we can also already see that the mesh follows well the438

inundation front obtained on the fine mesh, and visible on the rightmost picture on figure
fig:floo-1fig:floo-1
21.439

Figure 22: Tohoku tsunami. Flooding of the Iwate prefecture computed with RD scheme. Snapshot of the mesh at t = 0:00’

and t = 0:40’ (time origin is 11 March 2011 14:51:18 LT). fig:floo-2

To go further in the comparison, we consider the runup plot in the same area. On figure
fig:floo-3fig:floo-3
23 we report440
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Figure 23: Tohoku tsunami. Green zones are flooded areas in Iwate prefecture. Left: fix coarse simulation. Middle: fix fine

simulation. Right: adaptive ALE simulation on coarse mesh. Red dots denotes surveyed points, from
Che:14
[70]. fig:floo-3

the runup obtained on the fine mesh (left picture), and with the adaptive computation (right picture).441

In both pictures the flooded computational areas are represented in green, while red symbols denote the442

surveyed inundation in the real event. The fixed fine mesh computation gives a good prediction of the443

runup process, with exception of some fine detail as the inundation of two narrow channels at the end of444

Hirota bay, which remain dry throughout the simulation.445

The result of the MMPDE-ALE scheme is acceptable as it does cover most of the surveyed inundation446

areas. However, there is no improvement w.r.t. the fine mesh, and we clearly see the main limitation of447

the approach: the effect of the mesh stretching introduced in the dry region close to the wet/dry areas448

(cf. right picture on figure
fig:floo-2fig:floo-2
22) is that as soon as a point becomes wet, the inundated region covered449

geographically is unrealistically large. To cope with this phenomenon one could either look for a recipe to450

a-priori tune the density of mesh nodes, so that all features may be resolved. One may also try to move451

more points in the dry region to improve the resolution, however for such multi scale problems, a more452

realistic path is to combine the MMPDE with a re-meshing step. We think the result obtained here is a453

good example of the how much MMPDE can be stretched for this type of problems.454
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9. Conclusions and outlook455

We have discussed approximations of the rotating shallow water equations on the sphere using fixed456

and moving meshes. The main principles of the ALE form of the equations have been derived, and the457

relations between the GCL and well balancedness have been shown. A numerical approximation based458

on residual distribution has been proposed, with a numerical closure allowing to combine DGCL and C-459

property. A simplified elliptic PDE for mesh adaptation has been proposed and tested as a basis for a time460

dependent MMPDE-ALE method. The numerical results have shown that on fixed unstructured meshes461

the RD scheme proposed achieves accuracy close to te one usually presented in literature on structured462

grids. For flows with discontinuities and unstable fronts the MMPDE-ALE adaptation allows to enhance463

this accuracy, allowing in principle a considerable reduction in CPU time. For the cases considered here464

this reduction goes from 30% to 50%. We have also shown that for genuinely multi-scale problems, as the465

Tohoku-Honsu tsunami computation of section
sec:tohosec:toho
8.5, this technique reaches its limitations and a re-meshing466

phase is clearly necessary.467

This work is a first step toward several generalizations which will involve both higher order approx-468

imations based on stabilized continuous polynomial approximations, an ad hoc combination of mesh469

movement and local remeshing, and possibly improved treatments of the pole problem, following e.g. the470

finite element mixed 3D/2D approximation proposed in
Bern:09
[7].471
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Appendix A. Notation and concepts from differential geometry479

app:a1

This appendix recalls some basic concepts from differential geometry, and used in the main body of480

the paper. We adopt a spacetime formalism which is better suited to time-deforming frame of reference.481

In particular, we work with spacetime coordinates {x0, x1, x2}, where the first is understood to be time482
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x0 = t, while {xj}j=1,2 are purely spatial ones. In all the formulas that will follow, standard summation483

convention is implied, unless otherwise stated.484

Appendix A.1. Spherical transformation485app:a1.1

We consider a steady transformation from the set of Cartesian coordinates r = {r1, r2, r3} to a set of486

curvilinear coordinates x = {x1, x2}. The curvilinear coordinates describe a sphere embedded in R3 with487

covariant vector basis which are tangent to the sphere {g1, g2}. The transformation reads:488

r = F (x) (A.1)

We can define the Jacobian matrix of this mapping, and of the inverse mapping, as

JF =
[

∂ri

∂xj

]
, J−1

F =
[

∂xi

∂rj

]
(A.2)

An important role is played by the metric tensor G, which is a symmetric tensor that allows to define a

measure of length on the sphere ds = Gijdx
idxj , with

Gij = gi · gj (A.3) eq:Gij_def

The metric tensor can also be evaluated directly from the mapping Jacobian using the relation

G = JTFJF (A.4) eq:G_J_relation

The determinant of G will be denoted by G = detG. The determinant of the transformation then reads489

JF =
√
G. We use the inverse metric tensor G−1 whose entries are denoted by Gij . We also introduce for490

later use the second-kind Christoffel symbols:491

Γijk = gi ·
∂gj
∂xk

(A.5)

with gi the contravariant vector basis. We recall two important properties of the Christoffel symbols:

∂Gij

∂xj
+GijΓmmj + ΓijmG

mj = 0 (Ricci’s Lemma), and
√
GΓiij =

∂
√
G

∂xj
(A.6) eq:Ric

for the demonstration, see
Ngu:14
[41].492

Even though the above relations are valid on general 2D manifolds, all the numerical results in this paper

are obtained for a latitude longitude (lat-lon or λ-ϕ) parametrization of the sphere for which the metric

tensor and Christoffel symbols of second kind write respectively as:

G =

 R2 cos2 λ 0

0 R2

, Γ1 = g1 · ∂gi
∂zj

=

 0 − tanλ

− tanλ 0

, Γ2 = g2 · ∂gi
∂zj

=

 sinλ cosλ 0

0 0


(A.7)

with R the sphere radius.493
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Appendix A.2. ALE transformation494
app:a1.2

In section
sec:alesec:ale
3 we have considered an ALE transformation in the parametric domain from the actual495

curvilinear coordinates x = {x1, x2} with covariant basis {g1, g2} to a set of reference/ALE curvilinear496

coordinates χ = {χ1, χ2} with covariant basis {γ1,γ2}:497

x = A(χ, t) (A.8)

Two different time derivatives have been introduced: the Eulerian time derivative ∂
∂t and the ALE one

∂
∂t

∣∣
χ
. Then, the spacetime Jacobian matrix and its inverse for the ALE transformation are

JA =

 1 ∂t
∂χj

∂xi

∂t

∣∣∣
χ

∂xi

∂χj

 =

 1 0

σi ∂xi

∂χj

 , J−1
A =

 1 ∂t
∂xj

∂χi

∂t
∂χi

∂xj

 =

 1 0

−Σi ∂χi

∂xj

 (A.9) eq:ale_jac

In the above expression we have used the definitions of covariant mesh velocity, in actual covariant com-498

ponents σi and in reference ones Σi. The relationships between the two is given by Σi = ∂χi

∂xj σ
j . One499

can show that the determinant of the ALE Jacobian reduces to the determinant of the spatial Jacobian500

JA = det(∂χ
i

∂xj ).501

For the time-dependent ALE transformation, Christoffel symbols change with time. We can express502

them with respect to the actual components such as in (
eq:a1-christeq:a1-christ
A.5) or with respect to the reference/ALE503

components:504

Γ̄ijk = gi ·
∂gj(A(χ, t))

∂χk
(A.10)

the relationship between the two being505

Γijm = gi ·
∂gj
∂xm

= gi ·
∂gj(A(χ, t))

∂χk
∂χk

∂xm
(A.11)

= Γ̄ijk
∂χk

∂xm
(A.12)

Moreover Christoffel symbols relative to the time derivative (denoted by the index 0) can be expressed by

chain rule

Γ̄ij0 = gi ·
∂gj(A(χ, t))

∂t

∣∣∣∣
χ

= gi ·
∂gj
∂xm

∂xm

∂t

∣∣∣∣
χ

= Γijmσ
m = Γ̄ijk

∂χk

∂xm
σm = Γ̄ijkΣk (A.13)

Finally we distinguish tensor quantities in actual covariant components T = T ijgigj from tensor quantities506

in reference covariant components T = T̄ ijγiγj .507
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Appendix B. ALE-SWEs on a 2D manifold derived with a spacetime approach508

app:a2

With the definitions of (
app:a1app:a1
Appendix A), the derivation of the ALE-SWEs in curvilinear coordinates

is immediate. We consider only momentum conservation since the mass equation is a particular case.

Momentum conservation is expressed in terms of the 4-divergence of a second order tensor T . We denote,

as it is custom, the first row of the tensor as the momentum vector which represents the conserved quantity,

e.g. T i0 = hui. Then the divergence in curvilinear reference/ALE coordinates writes

∇ · T =
1

J

∂

∂t

∣∣∣∣
χ

(
J h̄u

i
)

+
1

J

∂

∂χj
(
J T̄ ij

)
+ Γ̄ij0h̄u

j
+ Γ̄ijkT̄

jk (B.1) eq:div2

Note that the total Jacobian J comes from the composition of the spherical and of the ALE transfor-509

mations, J = JAJF with determinant J = JA
√
G. Moreover we have separated the Christoffel symbols510

related to time and space variation of the basis vectors.511

The last step consists in transforming each {h̄ui, T̄ i1, T̄ i2} into actual components {hui, T i1, T i2}512

through the inverse Jacobian J−1
A (

eq:ale_jaceq:ale_jac
A.9)513

h̄u
i

= hui (B.2)

T̄ ij =
∂χj

∂xk
T ik − Σjhui (B.3)

If we replace the transformed variables (
eq:vartranseq:vartrans
B.3) into (

eq:div2eq:div2
B.1) we note that ALE terms related to Christoffel514

symbols cancel out. This leads to the ALE-SWEs in the reference parametric coordinates:515

1

JA
√
G

∂

∂t

∣∣∣∣
χ

(
JA
√
Ghui

)
+

1

JA
√
G

∂

∂χj

(
JA
√
G
∂χj

∂xk
T ik − JA

√
GΣjhui

)
+ Γ̄ijk

∂χk

∂xm
T jm = 0 (B.4)

which appear in the same form of
PS:03
[18] except that momentum components are covariant and not physical.516

To get the counterpart of (
eq:ALE-SWEs-refeq:ALE-SWEs-ref
B.4) into actual components it suffices to apply chain rule to each term.517

The advective term then reads518

∂

∂χj

(
JA
√
G
∂χj

∂xk
T ik
)

= JA
∂χj

∂xk
∂

∂χj

(√
GT ik

)
+
√
GT ik

∂

∂χj

(
JA

∂χj

∂xk

)
= JA

∂

∂xk

(√
GT ik

)
(B.5)

The second term on the right hand side is set to zero thanks to the metric identity. The ALE term goes519

similarly:520

∂

∂χj

(
JA
√
GΣjhui

)
= JA

∂χj

∂xk
∂

∂χj

(√
Gσkhui

)
+
√
Gσkhui

∂

∂χj

(
JA

∂χj

∂xk

)
= JA

∂

∂xk

(√
Gσkhui

)
(B.6)

42



Replacing (
eq:adv1eq:adv1
B.5), (

eq:adv2eq:adv2
B.6) and (

eq:chriseq:chris
A.12) in (

eq:ALE-SWEs-refeq:ALE-SWEs-ref
B.4) we get the ALE-SWEs on a 2D manifold with respect to the

actual parametric coordinates:

∂

∂t

∣∣∣∣
χ

(√
GJA hu

i
)

+ JA
∂

∂xj

(√
GT ij −

√
Ghuiσj

)
+
√
GJA ΓijkT

jk = 0 (B.7)

Except for the physical source terms, the above set of equations coincides with (
eq:mom-aseq:mom-as
13) which is the momentum521

equation discretized in this article. In section
sec:ale-SW-spheresec:ale-SW-sphere
4 it has been obtained by a more classical procedure522

combining transport formulas and the GCL.523

524

Appendix C. Proof of proposition 1525

app:a3

The validity of (
eq:dgcl-rels1eq:dgcl-rels1
34), (

eq:dgcl-rels2eq:dgcl-rels2
35) and (

eq:dgcl-rels3eq:dgcl-rels3
36) as a consequence of the constant definition (

eq:div-dgcleq:div-dgcl
37) is trivially shown

using (
eq:delta-Keq:delta-K
31) and the definition of the integrated edge velocities (

eq:ivc-seq:ivc-s
32)-(

eq:ivc-s1eq:ivc-s1
33). Concerning the accuracy of the

projection, we remark that by virtue of the mean value theorem

|K̄| =
∫
K̄

√
G(x̄) dx̄ = |K̄|

√
G(x̄∗)→

∫
K̄

(√
G(x̄)−

√
G(x̄∗)

)
dx̄ = 0 (C.1) eq:relG

for some x̄∗ within the element. Estimating the error of (
eq:gal-mass-deq:gal-mass-d
38) is equivalent to estimating the error of∫

K̄

ϕi(x̄)fh(x̄)
√
G(x̄)dx̄ ≈

∫
K̄

ϕi(x̄)fh(x̄)
√
G(x̄∗)dx̄

To this end, we follow the consistency analysis used e.g. in
AR:17,Dec:17
[45, 44]: we take the difference between the two

expressions, sum over all the elements, multiply by the sampled nodal values of an arbitrary test function

ψ ∈ Cr (r ≥ 1), and sum over all the nodes. We end up with the following global error

ε :=
∣∣∣∑
K

∑
j∈K̄

∫
K̄

ψjϕj(x̄)fh(x̄)
(√
G(x̄)−

√
G(x̄∗)

)
dx̄
∣∣∣ =

∣∣∣∑
K

∫
K̄

ψh(x̄)fh(x̄)
(√
G(x̄)−

√
G(x̄∗)

)
dx̄
∣∣∣

The trick is now to use (
eq:relGeq:relG
C.1) to remove nodal values ψjfj , leading to

ε =
∣∣∣∑
K

∑
j∈K

∫
K̄

ψh(x̄)fh(x̄)− ψjfj
3

(√
G(x̄)−

√
G(x̄∗)

)
dx̄
∣∣∣

We now use the relation (ab)2− (ab)1 = (a2 + a1)(b2− b1)/2 + (a2− a1)(b2 + b1)/2 and recast the error as

ε =
∣∣∣∑
K

∑
j∈K

∫
K̄

(ψh + ψj
6

(fh(x̄)− fj) + (ψh − ψj)
fh(x̄) + fj

6

)(√
G(x̄)−

√
G(x̄∗)

)
dx̄
∣∣∣

We can now use standard arguments to bound this quantity as

ε ≤
∑
K

∑
j∈K

∫
K̄

( |ψh + ψj |
6

|fh(x̄)− fj |+ |ψh − ψj |
|fh(x̄) + fj |

6

)∣∣∣√G(x̄)−
√
G(x̄∗)

∣∣∣dx̄
≤ c1|S2|

(
‖ψ‖L∞ sup

j
‖∂xjf‖L∞ + sup

j
‖∂xjψ‖L∞‖f‖L∞

)
sup
j
‖∂xj
√
G‖L∞h2
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Appendix D. Stabilized FEM and RD in moving curvilinear coordinates526

app:a4

We sketch here the derivation of the predictor corrector scheme (
RC-predRC-pred
50)-(

eq:RDeq:RD
58), and provide some details527

concerning the computation of the mass matrices with and without the simplified quadrature of proposition528

1.529

We start with the following explicit unstabilized predictor:530

∫
S2

ϕi
√
GJn+1

A w∗dχ−
∫
S2

ϕi
√
GJnAwndχ+ ∆t

∫
S2

ϕiJ̄A

{
∂xj (Fj −

√
Gσjw)n +

√
GSn

}
dχ = 0 (D.1) eq:a1

which we recast as531

∫
S2

ϕi
√
GJn+1

A (w∗ − wn)dχ+∆t

∫
S2

ϕi
√
G
Jn+1
A − JnA

∆t
wndχ

+∆t

∫
S2

ϕiJ̄A

{
∂xj (Fj −

√
Gσjw)n +

√
GSn

}
dχ = 0 .

(D.2) eq:a2

For a fixed mesh, JA = 1 and σj = 0. For a moving mesh (and only for a moving mesh) we assume532

that the mass matrices are computed following proposition 1. Otherwise, on fixed meshes we can either533

use the approximate quadrature of the proposition, or exact (or higher order) quadrature of (
eq:sp-treq:sp-tr
17), (

eq:gal-masseq:gal-mass
21)534

and (
eq:gal-mass-Leq:gal-mass-L
22). In any case, either by cancellation, or by virtue of (

eq:dgcl-rels3eq:dgcl-rels3
36), we can recast the scheme as535

∫
S2

ϕi
√
GJn+1

A (w∗ − wn)dχ+ ∆t

∫
S2

ϕiJ̄A

{
∂xj (Fj)n −

√
Gσj∂xjwn +

√
GSn

}
dχ = 0 . (D.3) eq:a3

As in
ArR:14
[33] we 1) stabilize the predictor step using an incomplete residual which does not involve the536

time increment, and 2) lump the Galerkin mass matrix to obtain:537

(
∑
K3i

Ki)(w∗i − wni )+∆t

∫
S2

ϕiJ̄A

{
∂xj (Fj)n −

√
Gσj∂xjwn +

√
GSn

}
dχ

+∆t
∑
K3i

∫
K0

γiJ̄A

{
∂xj (Fj)n −

√
Gσj∂xjwn +

√
GSn

}
dχ = 0 .

(D.4) eq:a4

where γi is a properly defined stabilization bubble. In particular, following
RiA:10,ArR:14
[46, 33] it is assumed that for538

RD schemes the definition of the right hand side is such that539

∫
K0

(ϕi + γi)J̄A

{
∂xj (Fj)n −

√
Gσj∂xjwn +

√
GSn

}
dχ = Φ̃K

i
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To recover (
RC-predRC-pred
50) we use the second in (

eq:gal-mass-deq:gal-mass-d
38), to replace the lumped mass matrix with |Ci|.540

The corrector step is derived in a similar manner. We start from the second stage Runge-Kutta

iteration for the unstabilized Galerkin scheme:∫
S2

ϕi
√
GJn+1

A wn+1dχ−
∫
S2

ϕi
√
GJnAwndχ+

∆t

2

∫
S2

ϕiJ̄A

{
∂xj (Fj −

√
Gσjw)n +

√
GSn

}
dχ

+
∆t

2

∫
S2

ϕiJ̄A

{
∂xj (Fj −

√
Gσjw)∗ +

√
GS∗

}
dχ = 0

(D.5) eq:a5

As proposed in
RiA:10,ArR:14
[46, 33] , we stabilize the scheme using the approximate shifted residual in which wn+1

541

is replaced by w∗:542

∫
S2

ϕi
√
GJn+1

A wn+1dχ−
∫
S2

ϕi
√
GJnAwndχ+

∆t

2

∫
S2

ϕiJ̄A

{
∂xj (Fj −

√
Gσjw)n +

√
GSn

}
dχ

+
∆t

2

∫
S2

ϕiJ̄A

{
∂xj (Fj −

√
Gσjw)∗ +

√
GS∗

}
dχ

+
∑
K3i

∫
K0

γi

{√
GJn+1

A w∗ −
√
GJnAwn+

∆t

2
J̄A

[
∂xj (Fj −

√
Gσjw) +

√
GS
]n

+
∆t

2
J̄A

[
∂xj (Fj −

√
Gσjw) +

√
GS
]∗ }

dχ = 0

(D.6) eq:a6

We now add and remove the term
∫
S2 ϕi

√
GJn+1

A w∗dχ to obtain the following error correction form543

of the stabilized scheme
RiA:10
[46]544

∫
S2

ϕi
√
GJn+1

A (wn+1 − w∗)dχ = −
∑
K3i

∫
K0

(ϕi + γi)
{√

GJn+1
A w∗ −

√
GJnAwn

+
∆t

2
J̄A

[
∂xj (Fj −

√
Gσjw) +

√
GS
]n

+
∆t

2
J̄A

[
∂xj (Fj −

√
Gσjw) +

√
GS
]∗ }

dχ

(D.7) eq:a7

For piecewise constant (per element) values of γi, we can see that in general the form of the full mass545

matrix on a manifold is546

mK
ij = (mGAL

ij )K +Kjγi

If proposition 1 is valid, the last expression becomes547

mK
ij = |K|δij + 1

12
+
|K|
3
γi

The standard RD mass matrix corrections are obtained by setting γi = βKi − I/3, while the final form548

(
RC-corrRC-corr
47) of the scheme is obtained by recalling the hypothesis

RiA:10
[46]:549
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ΦKi =
∫
K0

(ϕi + γi)
{√

GJn+1
A w∗−

√
GJnAwn

∆t +
1

2
J̄A

[
∂xj (Fj −

√
Gσjw) +

√
GS
]n

+
1

2
J̄A

[
∂xj (Fj −

√
Gσjw) +

√
GS
]∗ }

dχ

550
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