M. Arioli, E. H. Georgoulis, and D. Loghin, Stopping criteria for adaptive finite element solvers, SIAM, J. Sci. Comput, vol.35, pp.1537-1559, 2013.

M. Arioli, D. Loghin, and A. J. Wathen, Stopping criteria for iterations in finite element methods, Numer. Math, vol.99, pp.381-410, 2005.

D. Bai and A. Brandt, Local mesh refinement multilevel techniques, SIAM J. Sci. Statist. Comput, vol.8, pp.109-134, 1987.

R. E. Bank and A. H. Sherman, An adaptive, multilevel method for elliptic boundary value problems, Computing, vol.26, pp.91-105, 1981.

R. E. Bank and R. K. Smith, A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal, vol.30, pp.921-935, 1993.

R. Becker, C. Johnson, and R. Rannacher, Adaptive error control for multigrid finite element methods, Computing, vol.55, pp.271-288, 1995.

J. Blechta, J. Málek, and M. Vohralík, Localization of the W ?1,q norm for local a posteriori efficiency, IMA J. Numer. Anal, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01332481

A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp, vol.31, pp.333-390, 1977.

F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol.15, 1991.

A. Ern, I. Smears, and M. Vohralík, Discrete p-robust H(div)-liftings and a posteriori estimates for elliptic problems with H ?1 source terms, Calcolo, vol.54, pp.1009-1025, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01377007

A. Ern and M. Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput, vol.35, pp.1761-1791, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00681422

, Stable broken H 1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions, Math. Comp, 2020.

G. H. Golub and G. Meurant, Matrices, moments and quadrature with applications, Princeton Series in Applied Mathematics, 2010.

W. Hackbusch, Multigrid methods and applications, vol.4, 1985.

F. Hecht, New development in FreeFem++, J. Numer. Math, vol.20, pp.251-265, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01476313

B. Janssen and G. Kanschat, Adaptive multilevel methods with local smoothing for H 1 -and H curlconforming high order finite element methods, SIAM, J. Sci. Comput, vol.33, pp.2095-2114, 2011.

P. Jiránek, Z. Strako?, and M. Vohralík, A posteriori error estimates including algebraic error and stopping criteria for iterative solvers, SIAM J. Sci. Comput, vol.32, pp.1567-1590, 2010.

D. Meidner, R. Rannacher, and J. Vihharev, Goal-oriented error control of the iterative solution of finite element equations, J. Numer. Math, vol.17, pp.143-172, 2009.

G. Meurant and P. Tichý, Approximating the extreme Ritz values and upper bounds for the A-norm of the error in CG, Numer. Algorithms, vol.82, pp.937-968, 2019.

A. Miraçi, J. Pape?, and M. Vohralík, A multilevel algebraic error estimator and the corresponding iterative solver with p-robust behavior. HAL preprint 02070981, 2019.

P. Oswald, Multilevel finite element approximation, Teubner Skripten zur Numerik, Theory and applications, 1994.

J. Pape?, U. Rüde, M. Vohralík, and B. Wohlmuth, Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach. Recovering mass balance in any situation, 2019.

J. Pape?, Z. Strako?, and M. Vohralík, Estimating and localizing the algebraic and total numerical errors using flux reconstructions, Numer. Math, vol.138, pp.681-721, 2018.

U. Rüde, Fully adaptive multigrid methods, SIAM J. Numer. Anal, vol.30, pp.230-248, 1993.

, Mathematical and computational techniques for multilevel adaptive methods, vol.13, 1993.

, Error estimates based on stable splittings, Domain decomposition methods in scientific and engineering computing, vol.180, pp.111-118, 1993.

Z. Strako? and P. Tichý, On error estimation in the conjugate gradient method and why it works in finite precision computations, Electron. Trans. Numer. Anal, vol.13, pp.56-80, 2002.