, quantifying the dynamics of intracellular particles (e.g. biomolecules) inside living cells

, This paper summarizes the mathematical definitions of superdiffusion, free diffusion and subdiffusion, wellgrounded in Einstein's and Langevin's theories

, ? Applications of diffusion models include protein trafficking and transport, and membrane diffusion

H. Qian, M. P. Sheetz, and E. L. Elson, Single particle tracking. Analysis of diffusion and flow in two-dimensional systems, Biophys J, vol.60, p.910, 1991.

M. J. Saxton and K. Jacobson, Single-particle tracking: applications to membrane dynamics, Annu Rev Biophys Biomol Struct, vol.26, pp.373-99, 1997.

V. Briane, C. Kervrann, and M. Vimond, Statistical analysis of particle trajectories in living cells, Phys Rev E, vol.97, p.62121, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01961971

I. Goychuk, V. O. Kharchenko, and R. Metzler, Molecular motors pulling cargos in the viscoelastic cytosol: power strokes beat subdiffusion, Phys Chem Chem Phys, vol.16, pp.16524-16559, 2014.

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys Rep, vol.339, pp.1-77, 2000.

N. Hozé and D. Holcman, Statistical methods for large ensembles of super-resolution stochastic single particle trajectories in cell biology, Annu Rev Stat Appl, vol.4, pp.189-223, 2017.

M. J. Saxton, Anomalous diffusion due to obstacles: a Monte Carlo study, Biophys J, vol.66, p.394, 1994.

H. Berry and H. Chaté, Anomalous diffusion due to hindering by mobile obstacles undergoing brownian motion or Ornstein-Ulhenbeck processes, Phys Rev E, vol.89, p.22708, 2014.

I. Goychuk, Viscoelastic subdiffusion: from anomalous to normal, Phys Rev E, vol.80, p.46125, 2009.

T. J. Feder, I. Brust-mascher, and J. P. Slattery, Constrained diffusion or immobile fraction on cell surfaces: a new interpretation, Biophys J, vol.70, p.2767, 1996.

V. Tejedor, O. Bénichou, and R. Voituriez, Quantitative analysis of single particle trajectories: mean maximal excursion method, Biophys J, vol.98, pp.1364-72, 2010.

N. Gal and W. D. Lechtman-goldsteind, Particle tracking in living cells: a review of the mean square displacement method and beyond, Rheologica Acta, vol.52, pp.425-468, 2013.

F. W. Lund, M. Jensen, and T. Christensen, Spattrack: an imaging toolbox for analysis of vesicle motility and distribution in living cells, Traffic, vol.15, pp.1406-1435, 2014.

M. Lysy, N. S. Pillai, and D. B. Hill, Model comparison and assessment for single particle tracking in biological fluids, J Am Stat Assoc, vol.111, pp.1413-1439, 2016.

X. Michalet, Mean square displacement analysis of singleparticle trajectories with localization error: Brownian motion in an isotropic medium, Phys Rev E, vol.82, p.41914, 2010.

A. S. Pisarev, S. A. Rukolaine, and A. M. Samsonov, Numerical analysis of particle trajectories in living cells under uncertainty conditions, Biophysics, vol.60, pp.810-817, 2015.

N. Monnier, S. M. Guo, and M. Mori, Bayesian approach to msdbased analysis of particle motion in live cells, Biophys J, vol.103, pp.616-642, 2012.

Y. Meroz and I. M. Sokolov, A toolbox for determining subdiffusive mechanisms, Phys Rep, vol.573, pp.1-29, 2015.

S. Karlin and . Second, Course in Stochasic Processes, 1981.

F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 2012.

B. B. Mandelbrot and J. W. Van, Fractional brownian motions, fractional noises and applications, SIAM Rev, vol.10, pp.422-459, 1968.

L. Gallardo, Mouvement brownien et calcul d'Itô: Cours et Exercices corrigés, 2008.

A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl Akad Nauk SSSR, vol.30, pp.299-303, 1941.

H. E. Hurst, Long-term storage capacity of reservoirs, Trans Amer Soc Civil Eng, vol.116, pp.770-808, 1951.

L. Decreusefond and A. S. Ustünel, Stochastic analysis of the fractional brownian motion, Potential Anal, vol.10, pp.177-214, 1999.

L. Coutin and Z. Qian, Stochastic analysis, rough path analysis and fractional brownian motions, Probab Theory Relat Fields, vol.122, pp.108-148, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00266874

A. Einstein, On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat, Ann Phys, vol.17, pp.549-60, 1905.

F. Höfling and T. Franosch, Anomalous transport in the crowded world of biological cells, Rep Prog Phys, vol.76, p.46602, 2013.

A. V. Fick, on liquid diffusion, Philos Mag Ser, vol.4, pp.30-39

P. Langevin, Sur la théorie du mouvement brownien, C R Acad Sci, vol.146, p.530, 1908.

S. C. Kou, Stochastic modeling in nanoscale biophysics: subdiffusion within proteins, Ann Appl Stat, vol.2, pp.501-536, 2008.

Z. Schuss, Theory and Applications of Stochastic Processes: An Analytical Approach, vol.170, 2009.

G. E. Uhlenbeck and L. S. Ornstein, On the theory of the brownian motion, Phys Rev, vol.36, p.823, 1930.

N. G. Van-kampen, Stochastic Processes in Physics and Chemistry, vol.1, 1992.

J. J. Waterston and L. Rayleigh, On the physics of media that are composed of free and perfectly elastic molecules in a state of motion, Philos Trans R Soc Lond A, vol.183, pp.1-79, 1892.

P. C. Bressloff, Stochastic Processes in Cell Biology, vol.41, 2014.

I. M. Sokolov, Models and anomalous diffusion in crowded environments, Soft Matter, vol.8, pp.9043-52, 2012.

J. H. Jeon, V. Tejedor, and S. Burov, In vivo anomalous diffusion and weak ergodicity breaking of lipid granules, Phys Rev Lett, vol.106, p.48103, 2011.

S. C. Weber, A. J. Spakowitz, and J. A. Theriot, Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm, Phys Rev Lett, vol.104, p.238102, 2010.

R. Zwanzig, Nonequilibrium statistical mechanics, 2001.

D. Chandler, Introduction to modern statistical mechanics, 1987.

H. Scher and E. W. Montroll, Anomalous transit-time dispersion in amorphous solids, Phys Rev B, vol.12, p.2455, 1975.

E. Zhizhina, S. Komech, and X. Descombes, Modelling axon growing using CTRW, 2015.

S. Havlin and D. Ben-avraham, Diffusion in disordered media, Adv Phys, vol.36, pp.695-798, 1987.

J. A. Dix and A. S. Verkman, Crowding effects on diffusion in solutions and cells, Annu Rev Biophys, vol.37, pp.247-63, 2008.

D. Holcman, N. Hozé, and Z. Schuss, Narrow escape through a funnel and effective diffusion on a crowded membrane, Phys Rev E, vol.84, p.21906, 2011.

P. Grassberger, Conductivity exponent and backbone dimension in 2-D percolation, Physica A, vol.262, pp.251-63, 1999.

A. Kusumi, C. Nakada, and K. Ritchie, Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed singlemolecule tracking of membrane molecules, Annu Rev Biophys Biomol Struct, vol.34, pp.351-78, 2005.

A. Kusumi, Y. Sako, and M. Yamamoto, Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells, Biophys J, vol.65, p.2021, 1993.

M. J. Saxton, Lateral diffusion in an archipelago. Singleparticle diffusion, Biophys J, vol.64, pp.1766-80, 1993.

T. Bickel, A note on confined diffusion, Physica A, vol.377, pp.24-32, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01553040

H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Phys Ther, vol.7, pp.284-304, 1940.

N. Hozé, Modélisation et méthodes d'analyse de la diffusion et agrégation au niveau moléculaire pour l'organisation sous-cellulaire, 2013.

J. M. Henley, E. A. Barker, and O. O. Glebov, Routes, destinations and delays: recent advances in ampa receptor trafficking, Trends Neurosci, vol.34, pp.258-68, 2011.

P. Reimann, Brownian motors: noisy transport far from equilibrium, Phys Rep, vol.361, pp.57-265, 2002.

I. Goychuk, V. O. Kharchenko, and R. Metzler, How molecular motors work in the crowded environment of living cells: coexistence and efficiency of normal and anomalous transport, PLoS One, vol.9, p.91700, 2014.

C. S. Peskin and G. Oster, Coordinated hydrolysis explains the mechanical behavior of kinesin, Biophys J, vol.68, p.202, 1995.

T. C. Elston, A macroscopic description of biomolecular transport, J Math Biol, vol.41, pp.189-206, 2000.

T. Lagache and D. Holcman, Effective motion of a virus trafficking inside a biological cell, SIAM J Appl Math, vol.68, pp.1146-67, 2008.

A. Ajdari, Transport by active filaments, Europhys Lett, vol.31, pp.69-74, 1995.

S. D. Lawley, M. Tuft, and H. A. Brooks, Coarse-graining intermittent intracellular transport: two-and three-dimensional models, Phys Rev E, vol.92, p.42709, 2015.

V. Zaburdaev, S. Denisov, J. Klafter, and . Lévy, Rev Mod Phys, vol.87, pp.483-530, 2015.

J. Klafter and I. M. Sokolov, First steps in random walks: from tools to applications, 2011.

G. Zumofen and J. Klafter, Scale-invariant motion in intermittent chaotic systems, Phys Rev E, vol.47, p.851, 1993.

V. Zaburdaev, M. Schmiedeberg, and H. Stark, Random walks with random velocities, Phys Rev E, vol.78, p.11119, 2008.

K. Chen, B. Wang, and S. Granick, Memoryless self-reinforcing directionality in endosomal active transport within living cells, Nat Mater, vol.14, p.589, 2015.

S. Fedotov, N. Korabel, and T. A. Waigh, Memory effects and Lévy walk dynamics in intracellular transport of cargoes, Phys Rev E, vol.98, p.42136, 2018.

N. Korabel, T. A. Waigh, and S. Fedotov, Non-Markovian intracellular transport with sub-diffusion and runlength dependent detachment rate, PLoS One, vol.13, p.207436, 2018.

N. Chenouard, I. Smal, D. Chaumont, and F. , Objective comparison of particle tracking methods, Nat Methods, vol.11, p.281, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00932869

P. C. Bressloff and J. M. Newby, Stochastic models of intracellular transport, Rev Mod Phys, vol.85, p.135, 2013.

F. Etoc, E. Balloul, and C. Vicario, Non-specific interactions govern cytosolic diffusion of nanosized objects in mammalian cells, Nat Mater, vol.17, pp.740-746, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01871099

M. Azimi, Y. Jamali, and M. Mofrad, Accounting for diffusion in agent based models of reaction-diffusion systems with application to cytoskeletal diffusion, PLoS One, vol.6, p.25306, 2011.

A. Coquel, J. Jaciob, and M. Primet, Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid marcromolecular crowdoing effect, PLoS Comput Biol, vol.9, p.1003038, 2013.

P. Rodriguez, G. Gameiro, D. Pérez-pérez, and M. , Single molecule simulation of diffusion and enzyme kinetics, J Phys Chem B, vol.120, pp.3809-3829, 2016.