
HAL Id: hal-02424905
https://inria.hal.science/hal-02424905

Submitted on 28 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic Attacks on Hash Combiners
Zhenzhen Bao, Itai Dinur, Jian Guo, Gaëtan Leurent, Lei Wang

To cite this version:
Zhenzhen Bao, Itai Dinur, Jian Guo, Gaëtan Leurent, Lei Wang. Generic Attacks on Hash Combiners.
Journal of Cryptology, 2020, 33 (3), pp.742-823. �10.1007/s00145-019-09328-w�. �hal-02424905�

https://inria.hal.science/hal-02424905
https://hal.archives-ouvertes.fr

Generic Attacks on Hash Combiners

Zhenzhen Bao1,2, Itai Dinur3, Jian Guo1, Gaëtan Leurent4, and Lei Wang5,6

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

baozhenzhen10@gmail.com, guojian@ntu.edu.sg
2 Strategic Centre for Research in Privacy-Preserving Technologies and Systems,

Nanyang Technological University, Singapore
3 Department of Computer Science, Ben-Gurion University, Israel

dinuri@cs.bgu.ac.il
4 Inria, France

gaetan.leurent@inria.fr
5 Shanghai Jiao Tong University, Shanghai, China

6 Westone Cryptologic Research Center, Beijing, China
wanglei_hb@sjtu.edu.cn

Abstract. Hash combiners are a practical way to make cryptographic
hash functions more tolerant to future attacks and compatible with ex-
isting infrastructure. A combiner combines two or more hash functions
in a way that is hopefully more secure than each of the underlying
hash functions, or at least remains secure as long as one of them is
secure. Two classical hash combiners are the exclusive-or (XOR) com-
biner H1(M)⊕H2(M) and the concatenation combiner H1(M)‖H2(M).
Both of them process the same message using the two underlying hash
functions in parallel. Apart from parallel combiners, there are also cas-
cade constructions sequentially calling the underlying hash functions to
process the message repeatedly, such as Hash-Twice H2(H1(IV, M), M)
and the Zipper hash H2(H1(IV, M),←−M), where ←−M is the reverse of the
message M .
In this work, we study the security of these hash combiners by devising
the best-known generic attacks. The results show that the security of
most of the combiners is not as high as commonly believed. We sum-
marize our attacks and their computational complexities (ignoring the
polynomial factors) as follows:
1. Several generic preimage attacks on the XOR combiner:

– A first attack with a best-case complexity of 25n/6 obtained for
messages of length 2n/3. It relies on a novel technical tool named
Interchange Structure. It is applicable for combiners whose un-
derlying hash functions follow the Merkle-Damgård construction
or the HAIFA framework.

– A second attack with a best-case complexity of 22n/3 obtained for
messages of length 2n/2. It exploits properties of functional graphs
of random mappings. It achieves a significant improvement over

§ This paper is a combination and extension of three conference pa-
pers [LW15,Din16,BWGG17].

the first attack but is only applicable when the underlying hash
functions use the Merkle-Damgård construction.

– An improvement upon the second attack with a best-case com-
plexity of 25n/8 obtained for messages of length 25n/8. It further
exploits properties of functional graphs of random mappings and
uses longer messages.

These attacks show a rather surprising result: regarding preimage
resistance, the sum of two n-bit narrow-pipe hash functions following
the considered constructions can never provide n-bit security.

2. A generic second-preimage attack on the concatenation combiner of
two Merkle-Damgård hash functions. This attack finds second preim-
ages faster than 2n for challenges longer than 22n/7 and has a best-
case complexity of 23n/4 obtained for challenges of length 23n/4. It
also exploits properties of functional graphs of random mappings.

3. The first generic second-preimage attack on the Zipper hash with un-
derlying hash functions following the Merkle-Damgård construction.
The best-case complexity is 23n/5, obtained for challenge messages of
length 22n/5.

4. An improved generic second-preimage attack on Hash-Twice with un-
derlying hash functions following the Merkle-Damgård construction.
The best-case complexity is 213n/22, obtained for challenge messages
of length 213n/22.
The last three attacks show that regarding second-preimage resis-
tance, the concatenation and cascade of two n-bit narrow-pipe Merkle-
Damgård hash functions do not provide much more security than that
can be provided by a single n-bit hash function.

Our main technical contributions include the following:
1. The interchange structure, which enables simultaneously controlling

the behaviours of two hash computations sharing the same input.
2. The simultaneous expandable message, which is a set of messages of

length covering a whole appropriate range and being multi-collision
for both of the underlying hash functions.

3. New ways to exploit the properties of functional graphs of random
mappings generated by fixing the message block input to the under-
lying compression functions.

Keywords: Hash function, Generic attack, Hash combiner, XOR com-
biner, Concatenation combiner, Zipper hash, Hash-Twice, (Second) Preim-
age attack

1 Introduction

A cryptographic hash function H : {0, 1}∗ → {0, 1}n maps arbitrarily long
messages to n-bit digests. It is a fundamental primitive in modern cryptography
and is among the main building blocks of many widely utilized cryptographic
protocols and cryptosystems. There are three basic security requirements on a
hash function H:

2

– Collision resistance: It should be computationally infeasible to find a pair
of different messages M and M ′ such that H(M) = H(M ′).

– Preimage resistance: Given an arbitrary n-bit value V , it should be com-
putationally infeasible to find any message M such that H(M) = V .

– Second-preimage resistance: Given a challenge message M , it should
be computationally infeasible to find any different message M ′ such that
H(M) = H(M ′).

As the birthday and brute-force attack requires 2n/2 and 2n computations, re-
spectively, to find a collision and a (second) preimage, a secure hash function is
expected to provide the same level of resistance.

Unfortunately, widely deployed standards (such as MD5 and SHA-1) fail to
provide the expected resistance because of cryptographic weaknesses [WYY05,WY05].
Moreover, Kelsey and Schneier have demonstrated a generic second-preimage
attack against all hash functions based on the classical Merkle-Damgård con-
struction (such as MD5, SHA-1, and SHA-2) when the challenge message is
long [KS05]. As a result, countermeasures have been proposed in order to build
more tolerant hash functions, and to protect oneself against future attacks, while
keeping the same interface for compatibility. A practical way is to combine the
outputs of two (or more) independent hash functions to provide better security
in case one or even both hash functions are weak. In particular, this reasoning
was used by the designers of SSL [FKK11] and TLS [DA99b], who combined
MD5 and SHA-1 in various ways. More precisely, the Key Derivation Function
of TLS v1.0/v1.1 uses a sum of HMAC-MD5 and HMAC-SHA-1.7 The designers
explain [DA99b], “In order to make the PRF as secure as possible, it uses two
hash algorithms in a way which should guarantee its security if either algorithm
remains secure.” Formally, we call the resulting construction a hash function
combiner (or combiner for short). The goal of a hash combiner is to achieve
security amplification, i.e., the hash combiner has higher security than its un-
derlying hash functions, or to achieve security robustness, i.e., the hash combiner
is secure as long as (at least) one of its underlying hash functions is secure.

There are two classical hash combiners, the concatenation combiner and
the exclusive-or (XOR) combiner. Both of them process the same message us-
ing two (independent) hash functions H1 and H2 in parallel. Then, the for-
mer concatenates their outputs, H1(M) ‖ H2(M), and the latter XORs them,
H1(M) ⊕ H2(M). More generally8, cryptographers have also studied cascade
constructions of two (or more) hash functions, that is, to compute H1 and H2
in sequential order. Examples are Hash-Twice, HT (M) , H2(H1(IV, M), M)9,
and the Zipper hash [Lis06], H2(H1(IV, M),←−M), where ←−M is the message with
the same blocks as M but in reversed order. Such kinds of cascade constructions
7 We note that this MD5/SHA-1 combiner has been replaced by primitives based on

single hash function (e.g., SHA-256) since TLS v1.2 [DR08].
8 Here, we generalize the syntax of hash functions to also regard the initial value IV

as an input parameter.
9 The original specification of Hash-Twice is HT (M) , H(H(IV, M), M), which pro-

cesses the same message twice using a single hash function as shown in [ABDK09].

3

are not strictly black-box hash combiners compared with the XOR combiner and
the concatenated combiner. That is because the initial vector of the subsequent
hash functions are not fixed as in their specifications. Instead, for such construc-
tions, to get black-box access to the underlying hash functions, the initial vector
of these hash functions is required to be an input parameter. However, apart
from this point, other parts of the hash functions are all accessed as black boxes
by the constructions. Considering that such constructions can be classified into
the method of designing hash functions using multiple existing hash functions,
and for the sake of conciseness, we regard these cascade constructions of hash
functions as hash combiners in this paper. In the sequel, for these combiners, we
call the computation of the first (resp. the second) hash function the first (resp.
the second) computation pass (or simply, the first pass, resp. the second pass).

In this paper, we study the security of these hash combiners. We focus on
combiners of iterated hash functions. Iterated hash functions commonly first
pad and split the message M into message blocks of fixed length (e.g., b-bit),
i.e., M = m1 ‖m2 ‖ . . . ‖mL. They then process message blocks by iteratively
applying a series of compression function hi. Those compression functions update
an internal state, initialized with a public value IV , using the previous state
value and the current message block, i.e., xi = hi(xi−1, mi). Finally, the internal
state is updated by a finalization function which can be either the compression
function or another independent function, and the output of the finalization
function is outputted as the hash digest. For simplicity of description, we assume
that the finalization function is the same as the compression function in the rest
of the paper, but we stress that our attacks also work in a straightforward
way with an independent finalization function. In this work, we mainly focus
on hash functions whose internal state size is equal to its output size, which
are known as “narrow-pipe” designs. We will discuss the applicability of our
proposed attacks on “wide-pipe” designs whose internal state size is (not much)
larger than its output size at the end of the paper. In particular, we consider hash
functions following the classical Merkle-Damgård construction [Dam89,Mer89]
and the more general HAIFA framework [BD07], for which we naturally take the
length padding mentioned next as the message padding scheme. The Merkle-
Damgård construction (MD) applies the same compression function h in all
iterations (see Fig. 1) and adds a padding of the message length to the final
message block (known as length padding, or Merkle-Damgård strengthening).
The HAIFA framework is similar to the MD construction but uses extra inputs
to the compression function with the number of message bits hashed so far
and a salt value; this is equivalent to using a different compression function for
each block. The primary goal of that construction is to thwart some narrow-pipe
attacks (e.g., Kelsey and Schneier’s long message second-preimage attack on MD
hash [KS05]). HAIFA framework is formally defined as follows:10

x0 = IV xi = h(xi−1, mi, #bits, salt) H(M) = h(xL−1, mL).
10 For simplicity of description, we omit the computation of the initial value IVn =

h(IV, n, 0, 0), which is used to support variable hash size in the specification of
HAIFA in [BD07]. This does not influence the attacks.

4

x0 = IV xi = h(xi−1, mi) H(M) = h(xL−1, mL)

IV hx0

n
/

m1

/ b

hx1

n
/

m2

/ b

· · ·· · ·
n
/

· · ·

hxL−2

n
/

mL−1

/ b

hxL−1

n
/

mL

/ b

H(M)
xL

n
/

Fig. 1: Narrow-pipe Merkle-Damgård hash function

1.1 Related Works

Combiners have been studied in several settings, including generic attacks and
security proof. For generic attacks, the compression functions are modelled as
random functions to devise attacks that do not use any weakness of the compres-
sion function. Thus, they provide upper bounds on the security of the combiners.

Security proof, which is more theoretical work, focuses on the notion of
robustness and security amplification. A robust combiner is secure regarding
property α as long as one of the underlying hash functions is secure regarding
α. Lines of research for those security notions include the study of advanced
combiners in [Her05,CRS+07,FL07,FL08,FLP08,Her09,Leh10,FLP14]. A series
of studies on the minimum output length of robust combiners have shown that
robust combiners for collision resistance and preimage resistance cannot have
an output length significantly shorter than the sum of the output length of
the underlying hash functions [BB06,Pie07,Pie08,Rja09] (more recent works in-
clude [MP14,Mit12]).

There are also some works that assume that the compression function is a
weak random oracle (i.e., the attacker is given additional interfaces to receive
random preimages of the compression functions) and prove that some construc-
tions are still secure in this model [Lis06,HS08] or provide efficient attacks on the
combiners by exploiting weakness of the underlying hash functions [CJ15,JN15].

Analysis of the concatenation combiner. The concatenation combiner
H1(M) ‖H2(M) (see Fig. 2) is probably the most well-known and most studied
hash combiner. This combiner was described already in 1993 [Pre93].

IV1

IV2

h1x0

h2y0

m1

h1x1

h2y1

m2

· · ·· · ·

· · ·· · ·

· · ·

h1xi−1

h2yi−1

mi

· · ·
xi

· · ·
yi

· · ·

h1xL−1

h2yL−1

mL ‖

H1(M)

H2(M)

H(M)

Fig. 2: The concatenation combiner

5

Generic attacks. In 2004, Joux [Jou04] described surprising attacks on the con-
catenation of two narrow-pipe iterated hash functions using multi-collisions:
while the output size is 2n bits, the concatenation combiner merely provides
at most n/2-bit security for collision resistance and n-bit security for preimage
resistance11 (see Sect. 2.1 for a description). In particular, the concatenation
combiner is not security-amplifying (it does not increase collision and preimage
resistance).

Following the results of Joux (which showed that the concatenation com-
biner does not increase collision and preimage resistance) and the later results
of Kelsey and Schneier (which showed that the second-preimage resistance of
the MD construction is less than 2n), a natural question is whether there exists
a second-preimage attack on the concatenation combiner of MD hash functions
that is faster than 2n. Interestingly, the problem of devising such an attack
remained open for a long time despite being explicitly mentioned in several
papers including [DP07]. In fact, although the works of [Jou04,KS05] have at-
tracted a significant amount of follow-up research on countermeasures against
second-preimage attacks (such as Hash-Twice or dithered hash) and attacks that
break them [ABD+16,ABDK09,ABF+08], there has been no progress concerning
second-preimage attacks on the basic concatenation combiner. In this paper, we
try to provide an answer to this question by devising the first second-preimage
attack on the concatenation combiner of MD hash functions, which is faster than
2n.

Security proof. From the theoretical side, the concatenation combiner is robust
for collision resistance, e.g., a collision H1(M) ‖ H2(M) = H1(M ′) ‖ H2(M ′)
implies H1(M) = H1(M ′) and H2(M) = H2(M ′).

Hoch and Shamir [HS08] evaluated the security of the concatenation combiner
with two weak hash functions. More precisely, the two hash functions are narrow-
pipe MD, and the compression functions are modelled as weak random oracles
(as defined by Liskov [Lis06]), i.e., the adversary is given additional interfaces to
receive (random) preimages of the compression functions. They have proven that
in this model, the concatenation combiner is still indifferentiable from a random
oracle with n/2-bit security, implying (at least) the same security bound for
collision resistance and preimage resistance. The bound is matched by Joux’s
attack for collisions, but there is a gap with Joux’s attack for preimages, with
complexity 2n, which might be interesting to investigate further.

Analysis of dedicated instantiations. Mendel et al. analysed some dedicated in-
stantiations of the concatenation combiner [MRS09], in particular using the hash
function MD5. We omit the details and refer interested readers to [MRS09].

Analysis of the XOR combiner. The XOR combiner H1(M)⊕H2(M) (see
Fig. 3) has received less analysis.

11 The attacks essentially only require one of the functions to be iterated.

6

IV1

IV2

h1x0

h2y0

m1

h1x1

h2y1

m2

· · ·· · ·

· · ·· · ·

· · ·

h1xi−1

h2yi−1

mi

· · ·
xi

· · ·
yi

· · ·

h1xL−1

h2yL−1

mL ⊕

H1(M)

H2(M)

H(M)

Fig. 3: The XOR combiner

Generic attacks. To the best of our knowledge, no preimage attacks have been
shown against the XOR combiner. Therefore, the preimage security of the XOR
combiner against generic attacks is still an open problem and will be one of the
main topics of our work.

Security proof. Theoretically, the XOR combiner is robust concerning PRF
(Pseudo-Random Function) and MAC (Message Authentication Code) in the
black-box reduction model [Leh10]. Since the XOR combiner is length-preserving,
from the conclusions regarding the minimum output length of robust combiners,
it is not robust for collision resistance and preimage resistance. However, the
work of Hoch and Shamir [HS08] actually proves the security of the XOR com-
biner as an intermediate result: it is also indifferentiable from a random oracle
up to 2n/2 queries in the weak random oracle model. In particular, this proves
there are no generic attacks with complexity less than 2n/2. For collision resis-
tance, the bound is tight, since it is matched with the generic birthday attack
bound. On the other hand, for preimage resistance, there exists a gap between
the n/2-bit proven bound and the n-bit expected ideal security bound. Note
that the non-robustness result regarding preimage security does not imply that
the XOR of two concrete hash functions is weak, and the simplicity and short
output of this construction still make it quite attractive.

Analysis of Hash-Twice. Hash-Twice is a folklore hash construction that
hashes a (padded) message twice, with the output of the first hash value as
the value of the initialization vector of the second hash. In its original defini-
tion [ABDK09], the two underlying hash functions are identical, i.e., HT (M) ,
H(H(IV, M), M); here, we consider a generalized version, where the underlying
hash functions are independent, i.e., HT (M) , H2(H1(IV, M), M) (see Fig. 4).

IV1

xL

h1x0

h2y0

m1

h1x1

h2y1

m2

· · ·· · ·

· · ·· · ·

· · ·

h1xi−1

h2yi−1

mi

· · ·
xi

· · ·
yi

· · ·

h1xL−1

h2yL−1

mL

xL

H(M)

Fig. 4: The Hash-Twice

Generic attacks. Towards the three basic security requirements, a second-preimage
attack on Hash-Twice (HT (M) , H(H(IV, M), M)) has been published by An-

7

dreeva et al. in [ABDK09]. The attack is based on a herding attack, which
exploits the diamond structure originally used in the herding attack on a single
hash function [KK06] (see Sect. 2.3 for an introduction). The complexity of the
attack is approximately 2(n+t)/2 + 2n−` + 2n−t, where 2t is the width of the
diamond structure, and 2` is the length of the challenge.

Security proof. To the best of our knowledge, there is no published formal proof
regarding the security of Hash-Twice. However, we can claim that they are at
least as secure as the original functions: a generic collision attack requires at
least 2n/2 (because we need a collision in one of the compression functions);
a preimage attack requires at least 2n (because we need a preimage for the
finalization function); a second-preimage requires at least 2n/2 (because it implies
a collision).

Analysis of the Zipper hash. The Zipper hash has been proposed with the
goal of constructing an ideal hash function from weak ideal compression functions
(by “weak ideal”, it means that the compression function is vulnerable to strong
forms of attack but is otherwise random). Similar to Hash-Twice, it cascades two
independent hash functions evaluating the same (padded) message. The differ-
ence is that the second hash processes the message blocks in reverse order, i.e.,
ZH , H2(H1(IV1, M),←−M) (see Fig. 5). Note that the messages are first padded
by a padding scheme and split into message blocks, and then they are processed
in forward and reverse order sequentially. Thus, the padded message block mL

is processed at the end of the first hash computation and at the beginning of the
second hash computation, i.e., in the middle of the whole processing procedure.
The padding scheme of Zipper was specified to be any injective function of the
message [Lis06]. In this paper, and as for all other combiners, we take the length
padding of the MD construction as the padding scheme.

IV1

H(M)

h1x0

h2y0

m1

h1x1

h2y1

m2

· · ·· · ·

· · ·· · ·

· · ·

h1xi−1

h2yi−1

mi

· · ·
xi

· · ·
yi

· · ·

h1xL−1

h2yL−1

mL

y L
=

x
L

Fig. 5: The Zipper hash

Generic attacks. To the best our knowledge, no generic attacks on the Zip-
per hash regarding the three basic security notions have been shown. However,
there are a number of works that consider other security notions, such as multi-
collision, herding attack or attacks assuming weak compression functions. Ex-
amples include [NS07,HS06,ABDK09,CJ15,JN15], some of which also consider
the corresponding security of Hash-Twice.

8

Security proof. Zipper hash is proved ideal in the sense that the overall hash
function is indistinguishable from a random oracle (up to the birthday bound)
when instantiated with weak ideal compression functions. More precisely, its
provable security is 2min(b,n)/2 for collision resistance and 2min(b,n) for (second-)
preimage resistance, where b is the size of the message block and n is the size of
the internal state and the hash value (considering “narrow-pipe” design).

1.2 Our Results

In this work, we study the upper bound of the security of these hash combiners
by devising the best-known generic preimage attacks and second-preimage at-
tacks with a long challenge. We do not assume any weakness of the compression
functions, i.e., they are accessed as black boxes in our attacks. The compression
functions are chosen uniformly at random from all n+b to n-bit functions, which
implies that our analysis applies to most compression functions. Table 1 sum-
marizes the updated security status of various hash combiners after integrating
our new results. It shows that the security of most combiners is not as high as
commonly believed. Regarding certain basic security requirements, these com-
biners of two (or even more) n-bit hash functions fail to provide more (or even
the same) security than that provided by a single n-bit ideal hash function.

Next, we briefly introduce our main attacks on combiners of two narrow-pipe
hash functions and their computational complexities (ignoring the polynomial
factors). In addition to the attacks summarized next, we also present improved
but more complex attacks and apply our techniques to attack combiners of more
than two hash functions.

Preimage attacks on the XOR combiner. We present several generic at-
tacks:

– A first attack with a best-case complexity of 25n/6 computations obtained for
messages of length 2n/3. This attack involves a meet-in-the-middle procedure
enabled by building a novel technical tool named interchange structure. This
structure consists of a sequence of basic building modules named switches
among different hash computation lanes such that it breaks the pairwise
dependency between the internal states of these hash computations on the
same message. This attack is applicable for the XOR combiner with underly-
ing hash functions following a wide range of iterated constructions (e.g., the
classical MD construction and the more general HAIFA framework) and for
the Cryptophia’s short combiner [Mit13,MP14].

– A second attack with a best-case complexity of 22n/3 computations obtained
for messages of length 2n/2. This attack also involves a meet-in-the-middle
procedure, but instead of using the interchange structure, it exploits prop-
erties of functional graphs of random mappings. The random mappings are
generated by fixing the message block input to the underlying compression
functions. The functional graphs of these random mappings are formed by

9

successive iteration of the mappings, whose nodes are all possible values of
input/output and whose edges are all from preimages to images. We ex-
ploited special nodes that are images of a large number of iterations of the
mappings. We named them deep iterates because they are located at deep
strata in the functional graphs. By exploiting such deep iterates, the vari-
ability of the number of iterations provides extra freedom to find a linking
message fragment mapping a pair of starting states to a predefined pair of
states. When using this freedom, to overcome the hurdle set by the length
padding, we construct a structure named simultaneous expandable message,
which is a set of messages of length covering a whole appropriate range and
being multi-collisions for both of the underlying hash functions. This attack
achieves a trade-off of 2n ·L−2/3 between the maximal allowed message length
L and the time complexity of attack. This improves the trade-off of 2n ·L−1/2,
obtained by the first interchange-structure-based attack. On the other hand,
it only applies when both underlying hash functions combined use the MD
construction.

– An improvement upon the second attack with a best-case complexity of 25n/8

obtained for messages of length 25n/8. In this attack, we exploit more special
nodes in functional graphs of random mappings, which are called cyclic nodes,
and we utilize a technique named multi-cycles. Linking pairs of states through
cyclic nodes and allowing to loop around the cycles makes the attack more
efficient. The complexity improvement of the resulting preimage attack is
2n/24. We point out that this attack has the limitation that the length of
the message must be at least 2n/2 blocks. Therefore, its practical impact is
limited and its main significance is theoretical. This attack shows that the
security level regarding preimage resistance of the XOR combiner is quite
close to the provable security level 2n/2, which is also the level of collision
resistance.

These attacks on the XOR combiner show a rather surprising result – re-
garding preimage resistance, the sum of two n-bit iterated hash functions can
never provide n-bit security. In general, the sum is weaker than each of the two
hash functions.

Second-preimage attack on the concatenation combiner. We describe
the first generic second-preimage attack faster than 2n on the concatenation
combiner of two MD hash functions. The general framework follows that of
the long message second-preimage attack on a single MD hash [KS05]. It is
faster than 2n computations by overcoming two main challenges. The first is to
overcome the length padding. We solve this by using the simultaneous expandable
message. The second is to speed up the connection from a crafted message to the
challenge message on chaining states. In the case of hash combiners, one must
connect to the challenge message on a pair of n-bit states, while in the second-
preimage attack on a single MD hash, one needs only to connect on a single
n-bit state. Thus, the attempt is essentially to reach a 2n-bit state (in a set of
L states, where L is the message length in blocks, and thus L < 2n) faster than

10

2n computations. We solve this by exploiting again deep iterates in functional
graphs. In this attack, we choose a pair of deep iterates as target chaining states,
such that the connection from our crafted message to the challenge message is
more efficient. Indeed, this attack is closely related with our deep-iterates-based
preimage attack on the XOR combiners.

We obtain a trade-off between the complexity of the attack and the length of
the challenge message. This second-preimage attack is faster than 2n for input
messages of length at least12 22n/7. The best-case complexity13 is 23n/4, obtained
for (very) long challenges of length 23n/4. Again, due to these constraints, the
practical impact of our second-preimage attack is limited and its main signifi-
cance is theoretical. Namely, it shows that regarding second-preimage resistance,
the concatenation of two n-bit MD hash functions is not as strong as a single
n-bit ideal hash function.

Second-preimage attack on the Zipper hash. We show the first generic
second-preimage attack on the Zipper hash. This attack combines multiple tools,
including Joux’s multi-collision, the simultaneous expandable message, deep it-
erates and multi-cycles in functional graph of random mappings. The general
framework is similar to that of above ones on combiners of MD hashes. How-
ever, some special specifications of the Zipper hash allow the attacker to choose
an optimal configuration on message length for the attack, and to launch a more
efficient meet-in-the-middle connecting procedure in the attack. The best-case
complexity of this attack is 23n/5, obtained for challenge message of length 22n/5.
This result shows that combination of two MD hash functions using a Zipper
can be vulnerable to second-preimage attack with long challenges.

Second-preimage attack on Hash-Twice. We give an improved second-
preimage attack on Hash-Twice. This attack also combines multiple tools in-
cluding Joux’s multi-collision, the diamond structure, the interchange structure,
the simultaneous expandable message, deep iterates and multi-cycles in func-
tional graphs. Like all our previous functional-graph-based attacks, it improves
a previous attack from [ABDK09] because of the efficiency brought by exploit-
ing the special nodes in the functional graphs. The best-case complexity of this
attack is 213n/22, obtained for challenge message of length 213n/22. This attack
shows that regarding second-preimage resistance, hashing a message twice us-
ing two Merkle-Damgård hash functions does not provide much more security
compared with hashing the message only once.

Finally, we highlight the technical interests of this paper. We believe that
the tools introduced in this paper – the interchange structure, the simultane-
ous expandable message, deep iterates and multi-cycles in random functional
12 For example, for n = 160 and message block of length 512 bits (as in SHA-1), the

attack is faster than 2160 for messages containing at least 246 blocks, or 252 bytes.
13 The complexity formulas do not take into account (small) constant factors, which

are generally ignored throughout this paper.

11

graphs – are important technical advances and will hopefully have further appli-
cations or lead to new technical developments in related settings. Particularly,
we point out that we can use the interchange structure in order to optimize the
complexity of functional-graph-based attacks on the XOR combiner, concate-
nation combiner, and Hash-Twice. Although this does not lead to a very big
improvement, it further demonstrates the wide applicability of this structure in
cryptanalysis of hash function combiners.

H Collision Preimage 2nd Preimage (challenge length)
Ideal 20.5n Birthday 2n Brute-force 2n Brute-force

HAIFA - - - - - -
MD - - - - 20.5n [KS05] DS (20.5n)

Provable 20.5n 2n 20.5n

H1 ⊕ H2 Collision Preimage 2nd Preimage
Ideal 20.5n Birthday 2n Brute-force 2n Brute-force

HAIFA - - 20.833n [Sect. 3.1] IS

MD

- - 20.833n [Sect. 3.1] IS
- - 20.667n [Sect. 4.1] SEM+FGDI
- - 20.643n [Sect. 4.3] SEM+FGDI+IS
- - 20.625n [Sect. 5.2] SEM+FGMC
- - 20.612n [Sect. 5.3] SEM+FGMC+IS

Provable 20.5n [HS08] 20.5n [HS08] 20.5n [HS08]

H1 ‖ H2 Collision Preimage 2nd Preimage (challenge length)
Ideal 2n Birthday 22n Brute-force 22n Brute-force

HAIFA 20.5n [Jou04] MC 2n [Jou04] MC

MD
20.5n [Jou04] MC 2n [Jou04] MC
- - - - 20.75n [Sect. 6.1] SEM+FGDI (20.75n)
- - - - 20.735n [Sect. 6.3] SEM+FGDI+IS (20.735n)

Provable 20.5n [HS08] 20.5n [HS08] 20.5n [HS08]

Zipper Collision Preimage 2nd Preimage (challenge length)
Ideal 20.5n Birthday 2n Brute-force 2n Brute-force

MD
- - - - 20.625n [Sect. 7] SEM+FGDI [L < 2n/2]

(20.375n)
- - - - 20.6n [Sect. 7] SEM+FGMC [L > 2n/2]

(20.4n)
Provable 20.5r [Lis06] 20.5r [Lis06] 20.5r [Lis06]
Hash-
Twice Collision Preimage 2nd Preimage (challenge length)

Ideal 20.5n Birthday 2n Brute-force 2n Brute-force
MD - - - - 20.667n [ABDK09] EM+MC+DS (20.333n)

- - - - 20.612n [Sect. 8.3] SEM+IS+DS+FGDI
(20.5n)

- - - - 20.591n [Sect. 8.2] SEM+IS+DS+FGMC
(20.591n)

Provable 20.5 - 2n - 20.5n -

r : min(b, n) L : 2nd preimage length MC: Joux’s Multi-Collisions
EM: Kelsey and Schneier’s Expandable Message DS: Diamond Structure
IS: Interchange Structure SEM: Simultaneous Expandable Message
FGDI: Deep-Iterates in Functional Graph FGMC: Multi-Cycles in Functional Graph
All computational complexities of the attacks are presented ignoring the polynomial factors.

Table 1: Security status of various combiners of two narrow-pipe hashes

12

1.3 Notations and Roadmap of the Rest of Paper

Notations. We summarize below notations shared across various attacks.

H1, H2 : Underlying hash functions in a hash combiner
IV1, IV2 : Initialization vectors of H1 and H2, respectively
h1, h2 : Compression functions of H1 and H2, respectively

h∗
1, h∗

2 : Compression functions iterated over several blocks (in particular,
Hi(M) = h∗

i (IVi, M) for i ∈ {1, 2})
V : Targeted image
m : Message block
M : Message chunk

[m]q : Message chunk formed by concatenating q message blocks m, with
[m] = [m]1

M‖q : Message chunk with q message blocks
M =
m1 ‖ . . . ‖mL

: Target message or computed preimage (of L massage blocks)

L : Length of M (measured in the number of blocks)

` : The binary logarithm of the length of the message M , i.e., denote
L = 2`

M ′ : Computed second preimage
L′ : Length of M ′ (measured in the number of blocks)

a0, . . . , aL : Sequence of internal states computed during the invocation of h1
on M , a0 = IV1

b0, . . . , bL : Sequence of internal states computed during the invocation of h2
on M , b0 = IV2

x, y : Computed internal states

~aj , ~bk : Chains of internal states for H1 and H2, respectively. ~aj denotes a
generic chain, while ~aj0 denotes a particular chain

Aj , Bk : End points (final states) of the chains

n :

Bit-size of the output of each underlying hash function (H1 and
H2); In addition, we suppose their compression functions h1 and
h2 have n-bit internal states (i.e., suppose the underlying hash
functions are narrow-pipe)

b : Bit-size of a message block

N : The considered random mappings are from a finite N -set domain
to a finite N -set range, and N = 2n

FGf1 , FGf2 :
The functional graphs of random mappings f1(·) , h1(·, m) and
f2(·) , h2(·, m) generated by fixing a message block m to the
compression functions

M : A set of messages

MMC/EM/SEM/DS/IS :
The set of messages in a standard Joux’s multi-collision or an
expandable message or a simultaneous expandable message or a
diamond structure or an interchange structure

13

x
m−→

x′,
x

M̂−→
x′ :

We say that m (resp. M̂) maps state x to state x′ if x′ = h(x, m)
(resp. x′ = h∗(x, M̂)) and denote this by x

m−→ x′ (resp. x
M̂−→ x′,

the compression function h is clear from the context).

h[m] : An n-bit random mapping obtained by feeding an arbitrary fixed
message block m into a compression function h with n-bit state.

Õ :
Soft-O, is used as a variant of big O notation that ignores
logarithmic factors. Thus, f(n) ∈ Õ(g(n)) is shorthand for
∃k : f(n) ∈ O(g(n) logk g(n)).

Roadmap. Section 2 exhibits preliminaries including generic tools and known
attacks on hash constructions. Particularly, sections 2.5, 2.6, 2.7 demonstrate
those new tools – the interchange structure, the simultaneous expandable mes-
sage, deep iterates and multi-cycles in random functional graphs – which make
the presented attacks possible. Sections 3, 4, and 5 illustrate preimage attacks on
the XOR combiner using interchange structure, deep iterates, and multi-cycles
in functional graphs, respectively. Sections 6, 7, and 8 describes the second-
preimage attacks on the concatenation combiner, Zipper hash, and Hash-Twice,
respectively. Within the description of each attack, we provide an overview fol-
lowed by detailed steps. In Section 9, we discuss more applications and exten-
sions of the proposed attacks, including applications to combiners of wide-pipe
hash functions and extensions to the combination of more than two hash func-
tions. Section 10 summarizes attacks presented in this paper and discusses open
problems.

2 Preliminaries

In this section, we introduce the technical tools and general concepts used in
our attacks. Those tools briefly introduced in Sect. 2.1 through Sect. 2.4 are
all existing and well-known tools. Those tools described in detail in Sect. 2.5
through Sect. 2.7 are our new tools exploited in different attacks.

2.1 Joux’s Multi-Collision (MC) and Its Applications in Attacks on
the Concatenation Combiner [Jou04]

In 2004, Joux introduced multi-collisions on narrow-pipe Merkle-Damgård hash
functions. Given a hash function H, a multi-collision refers to a set of messages
M = {M1, M2, . . .} whose hash digests are all the same, i.e., H(Mi) = H(Mj)
for any pair Mi, Mj ∈ M. The computational complexity of generic brute-force
search increases exponentially when the target size |M| increases; more pre-
cisely, it is approximately 2(|M|−1)·n/|M|. Utilizing the iterative nature of Merkle-
Damgård structure, Joux’s algorithm (see Alg. 1, whose pseudo-code is given in
Appendix A) is able to find multi-collision of size 2t with a complexity of t ·2n/2,
i.e., a complexity not much greater than that of finding a single collision.

14

Algorithm 1: Building a 2t-Joux’s Multi-Collision

Require: Given an iterated hash function H with a compression function
h, and an initial value x0.

1. Initialize MMC as a data structure of pairs of message blocks
2. For i = 1, . . . , t:

(a) Find a pair of message blocks (mi, m′
i) such that h(xi−1, mi) =

h(xi−1, m′
i) = xi. This can be done with a complexity of 2n/2 due to

birthday paradox.
(b) Append (mi, m′

i) to MMC
3. Output (xt,MMC)

x0

m1

m′
1

m2

m′
2

xt

mt

m′
t

≡ x0 xt

t

It is trivial to see the message set M = {m1 ‖ m2 ‖ · · · ‖ mt | mi =
mi or m′

i for i = 1, 2, . . . , t} forms a multi-collision of size 2t, and the overall
complexity is O(t · 2n/2). Moreover, a data structure MMC of t pairs of message
blocks can fully define the set M of 2t colliding messages.

With Joux’s multi-collision at hand, one can immediately deploy a collision
attack and a preimage attack on concatenation combiner with complexities n ·
2n/2 and n · 2n, respectively. The collision attack goes as follows: first, build a
2n/2-Joux’s multi-collision for one of the underlying hash function (iterated),
and then exploit the messages in the structure to launch a birthday attack for
the other hash function to find a collision among the outputs. The preimage
attack follows a similar framework (see [BGW18] for an illustration and Joux’s
original paper [Jou04] for more details).

Since its invention, Joux’s multi-collisions have been employed in numerous
cryptanalysis of hash functions, including the following most relevant ones and
works such as [HS06,NS07].

2.2 Expandable Message (EM) and the Long Message
Second-Preimage Attack [KS05]

In [DA99a], Dean devised a second-preimage attack for long messages on specific
Merkle-Damgård hash functions for which it is easy to find fixed points in their
compression function. Given a challenge message M = m1 ‖ m2 ‖ . . . ‖ mL,
the attacker computes the sequence of internal states a0, a1, . . . , aL generated
during the invocation of the compression function on M . A simplified attack
would now start from the state x0 = IV and evaluate the compression function
with arbitrary message blocks until a collision h(x0, m) = ap is found for some
message block m and index p. The attacker can now append the message suffix

15

mp+1‖. . .‖mL to m, hoping to obtain the target hash valueH(M). However, this
approach does not work due to the final padding of the message length, which will
be different if the message prefixes are of different lengths. The solution of Dean
was to compute an expandable message that consists of the initial state x0 and
another state x̂ such that for each length κ (in some range), there is a message
M‖κ of κ blocks that maps x0 to x̂. Thus, the algorithm first finds a collision
h(x̂, m) = ap, and the second preimage is computed as M‖p−1‖m‖mp+1‖. . .‖mL.
The assumption that it is easy to find fixed points in the compression function
is used in efficient construction of the expandable message.

In [KS05], Kelsey and Schneier described a more generic attack that uses
multi-collisions of a special form to construct an expandable message, removing
the restriction of Dean regarding fixed points. As in Joux’s original algorithm,
the multi-collisions are constructed iteratively in t steps. In the i-th step, we find
a collision between some mi and m′

i such that |mi| = 1 (it is a single block) and
|m′

i| = 2i−1+1, namely, h(xi−1, mi) = h(xi−1, m′
i). This is done by firstly picking

an arbitrary prefix of size 2i−1 of m′
i denoted by m̂i, say [0]2i−1 , computing

h(xi−1, m̂i) = x′
i and then looking for a collision h(xi−1, mi) = h(x′

i, m̌i) using
a final block m̌i (namely, m′

i = m̂i ‖ m̌i) (see Fig. 6).

x0

m1

[0]2
0‖m̌1

m2

[0]2
1‖m̌2

xt

mt

[0]2
t−1‖m̌t

≡ x0 xt

t

Fig. 6: The expandable message and its condensed representation [JN15]

The construction of Kelsey and Schneier gives an expandable message that
can be used to generate messages starting from x0 and reaching x̂ = xt whose
(integral) sizes are in the interval [t, 2t+t−1] (such a message structure is denoted
as a (t, 2t + t− 1)-expandable message). A message of length t ≤ κ ≤ 2t + t− 1
is generated by looking at the t-bit binary representation of κ − t. In iteration
i ∈ {1, 2, . . . , t}, we select the long message fragment m′

i if the i-th LSB of κ− t
is set to 1 (otherwise, we select the single block mi). In the sequel, we denote
this type of expandable message by MEM. Given that the challenge message M
is of L ≤ 2n/2 blocks, the construction of the expandable message in the first
phase of the attack requires less than n · 2n/2 computations, while obtaining the
collision with one of the states computed during the computation of M requires
approximately 1/L · 2n computations according to the birthday paradox.

2.3 Diamond Structure (DS) [KK06]

Like Joux’s multi-collisions and expandable message, the diamond structure is
also a type of multi-collision. The difference is that instead of mapping a common
starting state to a final state, each message in a diamond maps a different state

16

to a final state. A 2t-diamond contains 2t specially structured messages mapping
2t starting states to a final state, and it forms a complete binary tree of depth
t. The 2t starting states are leaves, and the final state is the root. A 2t-diamond
can be built by launching several collision attacks requiring about

√
t · 2

(n+t)
2

messages and n ·
√

t · 2
(n+t)

2 computations in total [BSU12]. In the sequel, we
denote the set of messages in a diamond by MDS. The diamond was primarily
invented by Kelsey and Kohno to devise herding attacks against MD hash func-
tions [KK06], in which the attacker first commits to the digest value of a message
using the root of his diamond and later “herds” any given prefix of a message to
his commitment by choosing an appropriate message from his diamond as the
suffix. Later, Andreeva et al. successfully exploited it to launch herding and/or
second-preimage attack beyond MD hash constructions, such as the dithered
hash, Hash-Twice, the Zipper hash, and hash trees [ABF+08,ABDK09,ABD+16].
Concretely, the second-preimage attack on Hash-Twice in [ABDK09] leverages
techniques in herding attack and techniques in the above-mentioned second-
preimage attack. One key point of this attack is that it builds a long Joux’s
multi-collision in the first pass, exploits messages in this multi-collision to build
a diamond structure in the second pass, and finally uses the diamond as a con-
nector to connect one crafted message to the challenge message on some states.
Let 2t be the width of the diamond and 2` be the length of the message; the
complexity of this attack is approximately 2(n+t)/2 + 2n−` + 2n−t.

2.4 Distinguished Points (DP)

The memory complexity of many algorithms that are based on functional graphs
(e.g., parallel collision search [vOW99]) can be reduced by utilizing the distin-
guished points method (which is attributed to Ron Rivest). Assume that our goal
is to detect a collision of a chain (starting from an arbitrary node) with the nodes
of G computed in Alg. 5, but without storing all the 2t nodes in memory. The
idea is to define a set of 2t distinguished points (nodes) using a simple predicate
(e.g., the n− t LSBs of a node are zero). The nodes of G contain approximately
2t · 2t−n = 22t−n distinguished points, and only they are stored in memory. A
collision of an arbitrary chain with G is expected to occur at depth of about 2n−t

and will be detected at the next distinguished point which is located (approxi-
mately) after traversing additional 2n−t nodes. Consequently, we can detect the
collision with a small overhead in time complexity, but a significant saving factor
of 2n−t in memory.

Interestingly, in the specific attack of Sect. 4, the distinguished points method
is essential for reducing the time complexity of the algorithm.

2.5 Interchange Structure (IS)

In this subsection, we present how to build a structure that enables us to si-
multaneously control two (or more) hash computation lanes sharing the same
input message and succeed in further relaxing the pairwise relation between the

17

internal states of computation lanes. We name the structure the interchange
structure.

The main idea is to consider several chains of internal states reached by
processing a common message M from different starting points (note that the
message M is not fixed in advance, but will be determined when building the
structure). More precisely, the message M is denoted as the primary message
and divided into several chunks: M = M0 ‖M1 ‖ . . . (as discussed later, a chunk
consists of approximately n/2 message blocks). We denote chains of internal
states for H1 as ~aj and the individual states of the chain as ~ai

j , with h∗
1(~ai

j , Mi) =
~ai+1

j . Similarly, we denote chains for H2 as ~bk, with h∗
2(~bi

k, Mi) = ~bi+1
k . When

considering both hash functions, message block Mi leads from the pair of states
(~ai

j ,~bi
k) to (~ai+1

j ,~bi+1
k), which is denoted as

(~ai
j ,~bi

k) Mi (~ai+1
j ,~bi+1

k).

Switch Structure. To construct a desired interchange structure, we first create
the basic building blocks to jump between chains in a controlled way; we named
them switches. A switch allows to jump from a specific pair of chains (~aj0 ,~bk0)
to a different pair of chains (~aj0 ,~bk1) using a secondary message chunk M ′

i , in
addition to the normal transitions using chunk Mi of the primary message M :

(~ai
j ,~bi

k) Mi (~ai+1
j ,~bi+1

k) : normal transition for each chain

(~ai
j0

,~bi
k0

) Mi
′

 (~ai+1
j0

,~bi+1
k1

) : jump from chains (~aj0 ,~bk0) to (~aj0 ,~bk1)

To simplify the notation, we often omit the chunk index to show only the
chains that are affected by the switch.

The main message chunk Mi and the secondary message chunk M ′
i are de-

termined when building the switch, and the main message defines the next state
of all the chains. We note that the secondary message chunk M ′

i should only be
used when the state is (~ai

j0
,~bi

k0
). A simple example is depicted in Fig. 7.

H1

H2

~a0

~b1

~b0

A single swich:

~a0

~b1

~b0

(~a0,~b0)
M
 (~a0,~b0)

normal transition

~a0

~b1

~b0

(~a0,~b1)
M
 (~a0,~b1)

normal transition

~a0

~b1

~b0

(~a0,~b0)
M ′
 (~a0,~b1)

jump transition

Jump from (~a0,~b0) to (~a0,~b1) by using M ′ (dashed lines) instead of M (solid lines).

Fig. 7: A single switch

Alternatively, a switch can be designed to jump from (~aj0 ,~bk0) to (~aj1 ,~bk0).
It can be built with a complexity of Õ(2n/2).

18

We now explain how to build the switch structure at the core of some of our
attacks. This construction is strongly based on the multi-collision technique of
Joux presented in Sect.2.1.

Given states ~ai
j0

, ~bi
k0

and ~bi
k1

, we want to build message chunks Mi and Mi
′

in order to have the following transitions:

(~ai
j0

,~bi
k0

) Mi (~ai+1
j0

,~bi+1
k0

) : normal transition

(~ai
j0

,~bi
k1

) Mi (~ai+1
j0

,~bi+1
k1

) : normal transition

(~ai
j0

,~bi
k0

) Mi
′

 (~ai+1
j0

,~bi+1
k1

) : jump transition

The main message chunk Mi is used to define the next state of all the remaining
chains, while the secondary message chunk Mi

′ will be used to jump from chains
(~aj0 ,~bk0) to (~aj0 ,~bk1). We note that Mi

′ will only be used when the state is
(~ai

j0
,~bi

k0
). In particular, Mi and Mi

′ must satisfy the following:

~ai+1
j0

= h∗
1(~ai

j0
, Mi) = h∗

1(~ai
j0

, Mi
′)

~bi+1
k1

= h∗
2(~bi

k1
, Mi) = h∗

2(~bi
k0

, Mi
′)

~bi+1
k0

= h∗
2(~bi

k0
, Mi) 6= ~bi+1

k1

The full building procedure is shown in Alg. 2 whose pseudo-code is given in
Appendix A; it requires approximately n/2 · 2n/2 evaluations of the compression
functions.

Algorithm 2: Building a single switch

1. Build a multi-collision for h∗
1, starting from state ~ai

j0
, i.e., a set MMC of

2n/2 messages that all reach the same state ~ai+1
j0

(∀M ∈MMC, h∗
1(~ai

j0
, M) =

~ai+1
j0

). As shown in Sect. 2.1, this can be done efficiently by sequen-
tially building n/2 collisions. Thus, each M is comprised of n/2 message
blocks.

2. Evaluate h∗
2(~bi

k0
, M) and h∗

2(~bi
k1

, M) for all the messages M in the set
MMC. With high probability there is match between the sets of val-
uesa. Denote the colliding messages as Mi and Mi

′, so that we have
h∗

2(~bi
k0

, Mi
′) = h∗

2(~bi
k1

, Mi).
3. Compute the missing chains using the message Mi: ~ai+1

j = h∗
1(~ai

j , Mi),
~bi+1

k = h∗
2(~bi

k, Mi). With high probability all the chains reach distinct
values; if this is not the case, restart the construction with a new multi-
collision.b

19

H1

H2

~aij0 ~ai+1
j0

MMC

~bik0

~bik1
MMC

MMC

~bi+1
k1

M ′

M

~bi+1
k0M

First, M and M ′ are selected from MMC to generate a collision (defining the new ~bk1
),

then ~bk0 is evaluated using M .

a If this is not the case, we build a new multi-collision.
b We omit the illustration of step 3 for simplicity in the figure.

Interchange Structure. By combining several simple switches, we can build
an interchange structure with starting points IV1 and IV2 and ending points{

Aj | j = 0 . . . 2t − 1
}

and
{

Bk | k = 0 . . . 2t − 1
}

, so that we can select a
message ending in any state (Aj , Bk). An interchange structure with 2t chains
for each function requires about 22t switches. Since we can build a switch for a
cost of Õ(2n/2), the total structure is built with Õ(22t+n/2) operations.

Let us now describe the combination of switch structures into an interchange
structure. The goal of this structure is to select the final value of the H1 com-
putation and the H2 computation independently. More precisely, the structure
defines two sets of final values Aj and Bk, and a set of messages Mjk such that

(IV1, IV2)
Mjk
 (Aj , Bk).

Algorithm 3: Building and using a 2t-interchange structure

1. Initialize the first chains with ~a0
0 = IV1, ~b0

0 = IV2, and set the other
starting points randomly.

2. Build switches to jump for an already reachable pair (~aj0 ,~bk0) to a dif-
ferent pair (~aj0 ,~bk1) (or to (~aj1 ,~bk0), respectively). By using 22t − 1
switches, we can make all pairs reachable. There are many ways to com-
bine the switches; a simple one can be described as follows:

(a) first, build switches from (~a0,~b0) to each of the (~a0,~bk)’s;
(b) then, for each k, build a series of switches from (~a0,~bk) to all the

(~aj ,~bk)’s.
To reach the chains (~aj ,~bk), one would activate the k-th switch in the
first part to jump from (~a0,~b0) to (~a0,~bk), and then the j-th switch in
the k-th series of the second part to jump from (~a0,~bk) to (~aj ,~bk).

20

IV1

IV2

H1

H2

B0

A0

B1

A1

B2

A2

B3

A3

One possible way to build an interchange structure

IV1

IV2

H1

H2

B0

A0

B1

A1

B2

A2

B3

A3

M M ′ M M M M M M M M ′ M M M M M

Select a given message in the interchange structure

Algorithm 3 describes the combination of switches to build an interchange
structure. Its pseudo-code is given in Appendix A, where the Interchange
functions builds the structure, and the SelectMessage function extracts the
message reaching (~aj ,~bk).

The structure can be somewhat optimized using the fact that the extra chains
have no prespecified initial values. We show how to take advantage of this in
Appendix B, using multi-collision structures in addition to the switch structures.
However, this does not significantly change the complexity: we need (2t−1)(2t−
1) switches instead of 22t − 1. In total, we need approximately n/2 · 22t+n/2

evaluations of the compression functions to build a 2t-interchange structure.
We believe that a 2t-interchange structure based on switches will need at

least Θ(22t) switches, because every switch can only increase the number of
reachable pairs (~aj ,~bk) by one. As shown in Appendix B some switches can be
saved in the beginning, but it seems that new ideas are needed to reduce the
total complexity below Θ(22t+n/2).

2.6 Simultaneous Expandable Messages (SEM)

In this subsection, we build a simultaneous expandable message for two MD hash
functions basing on the multi-collision described in Sect. 2.1 and the expandable
message for a single MD hash function described in Sect. 2.2. This expandable
message consists of the initial states (IV1, IV2) and final states (x̂, ŷ) such that

21

for each length κ in some appropriate range (determined below), there is a mes-
sage M‖κ of κ blocks that maps (IV1, IV2) to (x̂, ŷ). A similar construction of an
expandable message over two hash functions was proposed in the independent
paper [JN15] by Jha and Nandi, which analyses the Zipper hash assuming weak
compression functions. We describe our construction approach of this simulta-
neous expandable message in detail next.

We set C ≈ n/2 + log(n) as a parameter that depends on the state size n.
Our basic building block consists of two pairs of states (x0, y0) and (x1, y1) and
two message fragments ms and ml that map the state pair (x0, y0) to (x1, y1).
The message ms is the (shorter) message fragment of fixed size C, while ml is
of size i > C. We will show how to construct this building block for any state
pair (x0, y0) and length i > C in Alg.4.

Given this building block and a positive parameter t, we build an expandable
message in the range of [C(C − 1) + tC, C2 − 1 + C(2t + t− 1)]. This is done by
utilizing a sequence of C − 1 + t basic building blocks. The first C − 1 building
blocks are built with parameters i ∈ {C + 1, C + 2, . . . , 2C − 1}. It is easy to see
that these structures give a (C(C− 1), C2− 1)–expandable message by selecting
at most one longer message fragment from the sequence, where the remaining
C − 2 (or C − 1) fragments are of length C. The final t building blocks give a
standard expandable message, but it is built in intervals of C. These t building
blocks are constructed with parameters i = C(2j−1 + 1) for j ∈ {1, . . . , t}. See
Fig.8 for a visual illustration.

Given a length κ in the range of [C(C−1)+tC, C2−1+C(2t +t−1)], we can
construct a corresponding message by first computing κ (modulo C). We then
select the length κ′ ∈ [C(C − 1), C2 − 1] such that κ′ ≡ κ (modulo C), defining
the first C− 1 message fragment choices. Finally, we compute (κ−κ′)/C, which
is an integer in the range of [t, 2t + t−1], and select the final t message fragment
choices as in a standard expandable message using the binary representation of
(κ− κ′)/C.

Construction of the Building Block. Given state pair (x0, y0) and length
i > C, the algorithm for constructing the building block for the expandable
message is based on multi-collisions, as described below; its pseudo-code is given
in Appendix A.

Algorithm 4: Constructing a building block for an SEM

1. Pick an arbitrary prefix of size i − C blocks, say [0]i−C , and compute
xp = h∗

1(x0, [0]i−C).
2. Find collision (m1, m′

1, sp) s.t. h1(x0, m1) = h2(xp, m′
1) = sp, where m1

and m′
1 are single message blocks.

3. Build a 2C−1 standard Joux’s multi-collision in h1 starting from sp, and
denote its endpoint by x1. Altogether, we have a multi-collision in h1
with 2C messages that map x0 to x1. Out of these 2C messages,

22

– 2C−1 are of length C (obtained by first selecting m1, i.e., m1×MMC),
and we denote this set of short messages by Mshort;

– 2C−1 are of length i (obtained by first selecting [0]i−C ‖ m′
1, i.e.,

([0]i−C ‖ m′
1) ×MMC), and we denote this set of long messages by

Mlong.
4. Evaluate yp = h∗

2(y0, [0]i−C) and store the result. Next, evaluate h2
from y0 on the two setsMshort andMlong (using the stored yp to avoid
recomputing h∗

2(y0, [0]i−C)) and find a collision between them (such a
collision is very likely to occur since C − 1 > n/2). The collision gives
the required ms ∈ Mshort and ml ∈ Mlong of appropriate sizes such
that y1 , h∗

2(y0, ms) = h∗
2(y0, ml) and x1 , h∗

1(x0, ms) = h∗
1(x0, ml).

x0

y0

H1

H2

spm1

xp

[0]i−C m′
1

x1

MMC

m1

yp

[0]i−C m′
1

y1
MMC

MMC

Mshort

Mlong

1 C − 1

(i − C) + 1 C − 1

The complexity of Step 1 is less than i compression function evaluations. The
complexity of Step 2 is approximately 2n/2, while the complexity of Step 3 is
approximately C · 2n/2 ≈ n · 2n/2. The complexity of Step 4 is approximately
i + n · 2n/2. In total, the complexity of constructing the basic building block is
approximately i + n · 2n/2 (ignoring small factors).

Complexity Analysis of the Full Building Procedure. The full expandable
message requires computing C − 1 + t building blocks whose sum of length
parameters (dominated by the final building block) is approximately C ·2t ≈ n·2t.
Assuming that t < n, we construct C − 1 + t ≈ n building blocks, and the total
time complexity of constructing the expandable message is approximately n·2t +
n2 ·2n/2. Our attacks require the (C(C−1)+tC, C2−1+C(2t+t−1))–expandable
message to extend up to length L, implying that L ≈ n · 2t and giving a time
complexity of approximately

L + n2 · 2n/2.

23

x0

y0

sp1
m1

xp1

~0
m′

1

x1

m1

~0 m′
1

y1

1 C − 1

1 + 1 C − 1

sp2
m2

xp2

~0
m′

2

x2

m2

~0 m′
2

y2

1 C − 1

2 + 1 C − 1

C − 1

[C(C − 1), C2 − 1]

spC−1+t
mC−1+t

xpC−1+t~0
m′

C−1+t

xC−1+t

mC−1+t

~0
m′

C−1+t

yC−1+t

1 C − 1

C2t−1 + 1 C − 1

t

C[t, 2t + t − 1]

[C(C − 1) + tC,C2 − 1 + (2t + t − 1)C]-expandable message

Fig. 8: Simultaneous expandable message

2.7 Functional Graph (FG) of Random Mappings

In many of our attacks, we evaluate a compression function h with a fixed mes-
sage input block m (e.g., the zero block) and simplify our notation by defining
f(x) = h[m](x) = h(x, m). The mapping f yields a directed functional graph.

The functional graph of a random mapping f is defined via successive itera-
tion on this mapping.

Let f be an element in FN that is the set of all mappings with the set N
as both the domain and range. The functional graph of f is a directed
graph whose nodes are the elements 0, . . . , N−1 and whose edges are the
ordered pairs 〈x, f(x)〉, for all x ∈ {0, . . . , N − 1}. If starting from any
x0 and iterating f , that is x1 = f(x0), x2 = f(x1), . . . , we will find that
before N iterations, a value xj equal to one of x0, x1, . . . , xj−1; suppose
that the collided one is xi. In this case, we say the path x0 → x1 →
· · · → xi−1 → xi connects to a cycle xi → xi+1 → · · · → xj−1 → xi.
If we consider all possible starting points x0, paths exhibit confluence
and form trees; trees grafted on cycles form components; a collection of
components forms a functional graph. That is, a functional graph can
be viewed as a set of connected components; a component is a cycle of
trees; a tree is recursively defined by appending a node to a set of trees;
a node is a basic atomic object and is labelled by an integer [FO89].

Structures of functional graph of random mappings have been studied for a
long time, and some parameters have accurate asymptotic evaluations [FO89].
Below, we list some of the most relevant ones. These properties have been ex-
tensively studied and exploited in cryptography, e.g., in the classical works of
Hellman [Hel80] and van Oorschot and Wiener [vOW99], and much more recently
in generic attacks on hash-based MACs [DL14,GPSW14,LPW13,PK14,PW14]
(refer to [BGW18] for a systematization of knowledge regarding the applications
of random functional graphs in generic attacks).

Theorem 1 ([FO89]). The expected number of components, number of cyclic
nodes (nodes belong to a cycle), number of terminal nodes (nodes without preim-

24

age: f−1(x) = ∅), number of image nodes (nodes with preimage), and number of
k-th iterate image nodes (image nodes of the k-th iterate fk of f) in a random
mapping of size N have the following asymptotic forms as N →∞:
1. # Components 1

2 log N = 0.5 · n

2. # Cyclic nodes
√

πN/2 ≈ 1.2 · 2n/2

3. # Terminal nodes e−1N ≈ 0.37 · 2n

4. # Image nodes (1−e−1)N ≈ 0.62·2n

5. # k-th iterate image nodes (1 −
τk)N , where τk satisfies the recurrence
relation τ0 = 0, τk+1 = e−1+τk

Seen from an arbitrary node x0, we call the length (measured by the number
of edges) of the path starting from x0 and before entering a cycle the tail length
of x0 and denote it by λ(x0); term the length of the cycle connected with x0
the cycle length of x0 and denote it by µ(x0); name the length of the non-
repeating trajectory of the node x0 the rho-length of x0 and denote it by ρ(x0) =
λ(x0) + µ(x0).
Theorem 2 ([FO89]). Seen from a random point (any of the N nodes in the
associated functional graph is taken equally likely) in a random mapping of FN ,
the expected tail length, cycle length, rho-length have the following asymptotic
forms:
1. Tail length (λ)

√
πN/8 ≈ 0.62 · 2n/2

2. Cycle length (µ)
√

πN/8 ≈ 0.62·2n/2

3. Rho-length (ρ)
√

πN/2 ≈ 1.2 · 2n/2

Theorem 3 ([FO89]). The expected maximum cycle length (µmax), maximum
tail length (λmax) and maximum rho length (ρmax) in the functional graph of a
random mapping of FN satisfy the following:
1. E{µmax | FN} = 0.78248 · 2n/2

2. E{λmax | FN} = 1.73746 · 2n/2
3. E{ρmax | FN} = 2.41490 · 2n/2

Theorem 4 ([FO89]). Assuming the smoothness condition, the expected value
of the size of the largest tree and the size of the largest connected component in
a random mapping of FN are asymptotically
1. Largest tree: 0.48 · 2n 2. Largest component: 0.75782 · 2n

The results from these theorems indicate that in a random mapping, most
of the points tend to be grouped together in a single giant component. This
component is therefore expected to have very tall trees and a large cycle [FO89].

A useful algorithm for expanding the functional graph of f is given below
(see Alg. 5 whose pseudo-code is given in Appendix A). This algorithm is not
new and has been previously used (for example, in [GPSW14,PW14]). It takes
an input parameter t ≥ n/2 that determines the number of expanded nodes (and
the running time of the algorithm).

Algorithm 5: Expanding the functional graph of f

1. Initialize G = ∅ as a data structure of evaluated nodes.
2. Until G contains 2t nodes:

25

(a) Pick an arbitrary starting point x0 and evaluate the chain xi+1 =
f(xi) until it cycles (there exists xi = xj for i 6= j) or hits a point in
G. Add the points of the chain to G.

Deep Iterates in the Functional Graphs (FGDI). Next, we describe our
observations on functional graph of random mappings. The efficiencies of our
following attacks are mostly based on these observations on special nodes in
functional graphs.

In our attacks, we are particularly interested in nodes of f that are located
deep in the functional graph. More specifically, x′ is an iterate of depth i if there
exists some ancestor node x such that x′ = f i(x), i.e., x′ is an i-th iterate image
node (or say i-th iterate for short). If i is relatively large, we say that x′ is a
deep iterate. Deep iterates are usually obtained using chains evaluated from an
arbitrary starting point x0 by computing a sequence of nodes using the relation
xi+1 = f(xi). We denote this sequence by ~x. The following two observations
regarding deep iterates make them helpful in the proposed attacks:

Observation 1. It is easy to obtain a large set of deep iterates. Specifically, by
running Alg. 5 with input parameter t (t ≥ n/2), one can obtain a set of 2t nodes,
among which a constant fraction (Θ(2t)) are 2n−t-th iterates. The theoretical
reasoning is as follows. After we have executed the algorithm and developed 2t

nodes, then another chain from an arbitrary starting point is expected to collide
with the evaluated graph at depth of roughly 2n−t. This is a direct consequence
of the birthday paradox. Moreover, for two chains from two different starting
points x and y, the probability that Pr[f2n−t(x) = f2n−t(y)] = Θ(2−t) [DL14,
Lemma 1] (note that n− t < n/2). That is, for t ≥ n/2, when the number of new
chains (of length 2n−t and from arbitrary starting points) is less than 2t, they
are expected to collide with the evaluated graph at distinct points. In particular,
this observation implies that most chains developed by the algorithm will be
extended to depth Ω(2n−t) (without colliding with G of cycling); therefore, a
constant fraction of the developed nodes are iterates of depth 2n−t. In total, the
algorithm develops Θ(2t) iterates of f of depth 2n−t in 2t time. This conclusion
was also verified experimentally.

Observation 2. A deep iterate has a relatively high probability to be encoun-
tered during the evaluation of a chain from an arbitrary starting node. Let f1
and f2 be two independent n to n-bit mappings. Suppose x̄ (resp. ȳ) is an iterate
of depth 2g in FGf1 (resp. FGf2); then, it is an endpoint of a chain of states of
length 2g. Let d be in the interval [1, 2g] and x0 (resp. y0) be a random point.
Then, according to Lemma 1, Pr[xd = x̄ ≈ d · 2−n] (resp. Pr[yd = ȳ ≈ d · 2−n]),
which is the probability that x̄ (resp. ȳ) will be encountered at distance d from x0
(resp. y0). Due to the independence of f1 and f2, Pr[xd = x̄

∧
yd = ȳ] ≈ (d·2−n)2.

Summing the probabilities of the (disjoint) events over all distances d in the in-
terval [1, 2g], we conclude that the probability that x̄ and ȳ will be encountered
at the same distance is approximately (2g)3 · 2−2n = 23g−2n.

26

The probability calculation in Observation 2 yields the conclusion that we
need to compute approximately 22n−3g chains from different starting points to
find a pair of starting points (x0, y0) reaching a pair of 2g-th iterates (x̄, ȳ) at
the same distance. This conclusion was verified experimentally. Note that since
various trials performed by selecting different starting points for the chains are
dependent, the proof of this conclusion is incomplete. However, this dependency
is negligible in our attacks, and thus we can ignore it. More details can be found
in Appendix C.

Lemma 1. Let f be an n-bit random mapping and x′
0 an arbitrary point. Let

D ≤ 2n/2 and define the chain x′
i = f(x′

i−1) for i ∈ {1, . . . , D} (namely, x′
D is an

iterate of depth D). Let x0 be a randomly chosen point, and define xd = f(xd−1)
for integer d ≥ 1. Then, for any d ∈ {1, . . . , D}, Pr[xd = x′

D] = Θ(d · 2−n).

Proof. (Sketch.) We can assume that the chains do not cycle (i.e., each chain
contains distinct nodes), as D ≤ 2n/2. For xd = x′

D to occur, xd−i should collide
with x′

D−i for14 some 0 ≤ i ≤ d. For a fixed i, the probability for this collision
is roughly15 2−n, and summing over all 0 ≤ i ≤ d (all events are disjointed), we
get that the probability is approximately d · 2−n.

Multi-Cycles in Functional Graphs (FGMC) Next, we study a property
of some more special nodes — cyclic nodes in random functional graphs. There
are efficient cycle search algorithms (with O(2n/2) time complexity) to detect
the cycle length and collect cyclic nodes in the largest component of a random
functional graph [Jou09, Chapter 7], and cycles has been exploited in generic
attacks on hash-based MACs [GPSW14,LPW13]. Here, we exploit them in a
new way. Each cyclic node in a functional graph defined by f loops along the
cycle when computed by f iteratively and goes back to itself after a (multi-)
cycle-length number of function calls. This property can be utilized to provide
extra degrees of freedom when estimating the distance of other nodes to a cyclic
node in the functional graph, i.e., it can be expanded to a set of discrete values
by using multi-cycles. For example, let x and x′ be two nodes in a component
of the functional graph defined by f , x be a cyclic node, and the cycle length
of the component be denoted as L. Clearly, there exists a path from x′ to x as
they are in the same component, and the path length is denoted by d. Then, we
have the following:

fd(x′) = x; fL(x) = x =⇒ f (d+i·L)(x′) = x for any positive integer i.

Suppose it is limited to use at most t cycles (limitation imposed by the length
of the message). Then, the distance from x′ to x is expanded to a set of t + 1
values {d + i · L | i = 0, 1, 2, ..., t}.
14 A collision between xd−i and x′

D−i occurs if xd−i = x′
D−i but xd−i−1 6= x′

D−i−1.
15 A more accurate analysis would take into account the event that the chains collide

before xd−i, but the probability of this is negligible.

27

Now, let us consider a special case of reaching two deep iterates from two
random starting nodes: select two cyclic nodes within the largest components
in the functional graphs as the deep iterates. More specifically, let FGf1 and
FGf2 be two functional graphs defined by f1 and f2. Let x̄ and x0 be two
nodes in a common largest component of FGf1 , where x̄ is a cyclic node. Let
L1 denote the cycle length of the component and d1 denote the path length
from x0 to x̄. Similarly, we define notations ȳ, y0, L2 and d2 in FGf2 . We are
interested in the probability of linking x0 to x̄ and y0 to ȳ at a common distance.
Thanks to the usage of multiple cycles, the distance values from x0 to x̄ and
from y0 to ȳ can be selected from two sets {d1 + i · L1 | i = 0, 1, 2, . . . , t} and
{d2 + j · L2 | j = 0, 1, 2, . . . t}, respectively. Hence, as long as there exists a pair
of integers (i, j) such that 0 ≤ i, j ≤ t and d1 + i · L1 = d2 + j · L2, we obtain a
common distance d = d1 + i · L1 = d2 + j · L2 such that

fd
1 (x0) = x̄, fd

2 (y0) = ȳ.

Next, we evaluate the probability amplification of reaching (x̄, ȳ) from a
random pair (x0, y0) at the same distance. Without loss of generality, we assume
L1 ≤ L2. Let ∆L , L2 mod L1. Then, it follows that

d1 + i · L1 = d2 + j · L2 =⇒
d1 − d2 = j · L2 − i · L1 =⇒

(d1 − d2) mod L1 = j ·∆L mod L1

Letting j range over all integer values in internal [0, t], we will collect a set of
t + 1 values D = {j · ∆L mod L1 | j = 0, 1, . . . , t}.16 Since d1 = O(2n/2),
d2 = O(2n/2) and L1 = Θ(2n/2), it follows that |d1 − d2| = O(L1), and we
assume |d1−d2| < L1 by ignoring the constant factor. Therefore, for a randomly
sampled pair (x0, y0) that encounters (x̄, ȳ), we are able to derive a pair of (i, j)
such that d1 + i · L1 = d2 + j · L2, as long as their distance bias d1 − d2 is in
the set D. In other words, we are able to correct such a distance bias by using
multi-cycles. Hereafter, the set D is referred to as the set of correctable distance
bias. Thus, the probability of reaching (x̄, ȳ) from a random pair (x0, y0) at a
common distance is amplified by roughly t times, where t is the number of cycles
to the maximum.

3 Preimage Attack on XOR Combiners Based on the
Interchange Structure

In this section, we introduce our first attack — the preimage attack on the XOR
combiner. In this attack, we are given an n-bit target value V , and our goal
is to find a message M such that H1(M) ⊕ H2(M) = V . Notice that, if the
goal is to find two messages M1 and M2 such that H1(M1) ⊕ H2(M2) = V ,
16 This is a very low probability that the set contains repeated values, particularly

when t is significantly small compared with L1. Here, we omit the discussion.

28

we can immediately launch a meet-in-the-middle procedure to find a solution of
the equation H1(M1) = H2(M2)⊕ V with 2n/2 computations. That is because
in the last equation, the left-hand side and right-hand side are independent. By
separately computing 2n/2 values on each side, we obtain 2n pairs and will find
a match with high probability due to the birthday paradox. Thus, the above
is essentially to find a collision, which is an easy challenge. However, in the
real challenge, the collision must be generated from the same message. Thus,
the computations on the two side of the equation are pairwise related, i.e., the
computation on one side of the equation can only pair with a single computation
on the other side. Consequently, unlike in the easy challenge, 2n/2 computations
on each side can only generate 2n/2 pairs instead of 2n. Therefore, to launch
a similar meet-in-the-middle procedure as we did in the easy challenge for the
real challenge, a crucial part of our attack is to construct a structure breaking
the pairwise dependency between the two computations. That structure playing
the important role is the interchange structure introduced in Sect. 2.5. Next, we
provide an overview of our attack based on the interchange structure and then
give detailed attack procedures.

3.1 Overview of the Attack

Next, we give an overview of the first preimage attack on the XOR combiner.
Let V denote the target value. The two hash functions H1 and H2 share the
same input message, and hence the internal states of their iterative compression
function computations are pairwise related. We first manage to simultaneously
control the computation chains of H1 and H2 by constructing an interchange
structure including a message structure M and two sets of internal states A
(for H1) and B (for H2) such that for any state A picked from A and B picked
from B, we can easily derive a message MA,B from M such that H1(MA,B)
produces A and H2(MA,B) produces B. Hence, we can select states from A and
B independently in the next phase of the attack. In the next phase, we use a
birthday match to find a message block m, a state A in A and a state B in
B such that h1(A, m) ⊕ h2(B, m) equals the target hash digest V , where h1
and h2 are the compression functions of H1 and H2 respectively. Finally, given
states A and B, we derive the message MA,B from M, and output MA,B ‖ m
as a preimage of V .17 The birthday match in the second phase of the attack is
essentially a meet-in-the-middle procedure enabled by the interchange structure
built in the first phase of the attack. Thus, the entire attack is more efficient
than a brute-force attack.

Attack 1: Preimage attack on XOR combiner based on the inter-
change structure

17 Note that for simplicity of description, we omit the description of the finalization
transformation on the internal state with the padding block and refer to Sect. 3.2
for the formal description.

29

– Phase 1: Build a 2t-interchange structure using 22t switches that en-
ables to jump between chains (see. Sect.2.5). This structure has start-
ing points IV1 and IV2 and ending points

{
Aj | j = 0 . . . 2t − 1

}
and{

Bk | k = 0 . . . 2t−1
}

, so that for any state pair (Aj , Bk), we can easily
select a message ending in it.

– Phase 2: Select a random message block m, and compute two lists by
evaluating the compression functions after the interchange structure:{

A′
j = h1(Aj , m) | j = 0 . . . 2t − 1

}
and

{
B′

k = V ⊕ h2(Bk, m) | k =
0 . . . 2t−1

}
. We expect a match between the lists with probability 22t−n.

After about 2n−2t random choices of m, we obtain a match (j∗, k∗):

h1(Aj∗ , m) = V ⊕ h2(Bk∗ , m) i.e. h1(Aj∗ , m)⊕ h2(Bk∗ , m) = V.

Therefore, we can construct a preimage of V by concatenating the message
leading to (Aj∗ , Bk∗) in the interchange structure and m (we ignore the
finalization function here).

H1

H2

IV1

IV2

A0

B0

A1

B1

A2

B2

A3

B3

M ′ M M M M M ′ M M M M M

⊕
= V

The complexity of the preimage search is approximately 2n−t evaluations of
the compression function, using an interchange structure with 2t endpoints.

Complexity Analysis. Building the interchange structures requires approx-
imately 22t+n/2 evaluations of the compression function, while the preimage
search requires approximately 2n−t. The optimal complexity18 is reached when
both steps take the same time, i.e., t = n/6. This gives a complexity of Õ(25n/6).
Since it uses messages of length at least n/2 · 22t, the optimal complexity is ob-
tained for messages of length at least 2n/3. For messages shorter than 2n/3, it
provides a trade-off of 2n · L−1/2 between the maximal allowed message length
L and the time complexity of attack (see Fig. 12 for a trade-off curve).

18 From now on, we will use “optimal complexity” to mean the minimized complexity
under the optimal choice of parameters for each attack.

30

3.2 Details of the Preimage Attack on XOR Combiners Using the
Interchange Structure

Now, we describe the full preimage attack in detail. We first build an interchange
structure with 2t chains for each of H1 and H2. We denote the ending points as{

Aj | j = 0 . . . 2t − 1
}

and
{

Bk | k = 0 . . . 2t − 1
}

, and we know how to select
a message Mjk to reach any state (Aj , Bk). When adding message fragment
m ‖ pad, to one of the messages Mjk in the interchange structure, where m is
a message block and pad is the final block padded with the length L of the
preimage message, the output of the combiner can be written as follows:

H1(Mjk‖m‖pad)⊕H2(Mjk‖m‖pad) = h1(h1(Aj , m), pad)⊕h2(h2(Bk, m), pad),

Note that we fix the finalization functions of H1 and H2 as their compression
functions, h1 and h2, respectively.

To reach a target value V , we select a random block m, and we evaluate{
A′

j = h1(h1(Aj , m), pad) | j = 0 . . . 2t−1
}

and
{

B′
k = V ⊕h2(h2(Bk, m), pad) |

k = 0 . . . 2t − 1
}

. If there is a match (j∗, k∗) between the two lists, we have the
following:

A′
j∗ = B′

k∗ ⇔ h1(h1(Aj∗ , m), pad) = V ⊕ h2(h2(Bk∗ , m), pad)
⇔ H1(Mjk ‖m ‖ pad)⊕H2(Mjk ‖m ‖ pad) = V.

For a random choice of m, we expect that a match exists with probability 22t−n,
and testing it requires approximately 2t operations19. We will have to repeat
this procedure 2n−2t times on average; therefore, the total cost of the preimage
search is approximately 2n−t evaluations of h1 and h2.

As explained in the previous section, building a 2t-interchange structure re-
quires approximately n/2 ·22t+n/2 operations. Using t = n/6, we balance the two
steps of the attack and reach the optimal complexity of approximately n/2·25n/6

operations for this preimage attack.

4 Improved Preimage Attack on XOR Combiners Based
on Deep Iterates

The first attack works identically for the case in which the combined hash
functions use the HAIFA mode, and the case in which they use the MD con-
struction. However, when they are limited to use the MD construction, we can
launch a more efficient attack than the first. In this case, pairwise dependency
between internal states can be broken efficiently by using repeated message
blocks. Explicitly, we use a different approach to get the two sets of states
A =

{
Aj | j = 0 . . . 2t − 1

}
and B =

{
Bk | k = 0 . . . 2t − 1

}
such that for

any pair of states (Aj , Bk | Aj ∈ A, Bk ∈ B), we can manage to find a message
MA,B such that (IV1, IV2) MA,B−−−−→ (Aj , Bk). For convenience, we name such an
19 It takes O(t · 2t) operations by sorting the lists, but only 2 · 2t using a hash table.

31

abstract procedure GenPairableStates, which is implemented and utilized by
quite different approaches in different attacks – the first attack implements it
using interchange structure, this second attack implements it using deep iterates
in functional graphs, and as will be seen, the third attack implements it using
cyclic nodes in functional graphs.

The first step is to fix an arbitrary message block m to the compression
functions, giving rise to n to n-bit random mappings f1(·) , h1(·, m) and
f2(·) , h2(·, m). Such random mappings and their functional graphs have many
interesting properties and have been extensively studied and used in cryptanal-
ysis, as shown in Sect. 2.7. However, to attack hash combiners, we exploit them
in new ways. In this attack, instead of precisely controlling every computational
step in chains of equal length to obtain two sets of endpoints as in building
an interchange structure, here, we loosely herd computational chains of various
length to collect two sets of states. These collected states have large offsets in the
chains. These chains are iteratively computed using the above defined random
mappings f1 and f2. Thus, the collected states are essentially deep iterates in
the functional graphs of f1 and f2, which are introduced in Sect. 2.7. As has
been shown in Sect. 2.7, such special states are relatively easy (i.e., with high
probability) to be reached from randomly selected starting states. This is where
the advantage of the attack mainly comes from.

In this attack, given a pair of such special states (Aj , Bk), finding a common
message mapping a pair of starting states to them under the two hash compu-
tations is not as efficient as selecting a message from an interchange structure in
Attack 1. However, collecting those final states by expanding functional graphs
is much more efficient than computing endpoints by building an interchange
structure. This attack amortizes computational costs to different steps. Thus, it
provides better balance between different attack steps. Moreover, it also provides
a better trade-off between the message length and time complexity.

However, unlike the interchange-structure-based attack, this approach uses
chains of various lengths, which implies that lengths of message fragments in
intermediate attack steps are not fixed in advance. However, the length of the
preimage needs to be predefined in this attack. Thus, the length padding at
the end of the hash computations will be a problem. We overcome this problem
using our tool, the simultaneous expandable message for two MD hash functions,
which is introduced in Sect. 2.6.

Next, we provide a high-level overview of this attack and then present the
detailed attack steps.

4.1 Overview of the Attack

Suppose that we are given a target n-bit preimage value V and our goal is to find
a message M such that H1(M) ⊕ H2(M) = V . Although the formal problem
does not restrict M in any way, several concrete hash functions restrict the
length of M . Therefore, we will first assume that the size of M is bounded by
a parameter L.

The attack is composed of three main phases.

32

Attack 2: Preimage attack on XOR combiner based on deep iter-
ates

– Phase 1: Build a simultaneously expandable message MSEM for H1
and H2, starting from the initial state pair (IV1, IV2) and ending with
state pair (x̂, ŷ), such that for each length κ in some appropriate range
(which is roughly [n2, L]), there is a message M‖κ of κ blocks that maps
(IV1, IV2) to (x̂, ŷ).

– Phase 2: Find a set S (of size 2s) of tuples of the form ((x, y), w) such
that w is a single block, (x, y) w−→ (a, b), and h1(a, pad)⊕h2(b, pad) = V ,
where pad is the final block of the (padded) preimage message of length
L. Moreover, (x, y) has a special property that will be defined in the
detailed description of this phase.

– Phase 3: Start from (x̂, ŷ) and compute a message fragment M̂‖q of

length q (shorter than L − 2) such that (x̂, ŷ)
M̂‖q−−−→ (x̄, ȳ) for some

((x̄, ȳ), m̄) ∈ S. For this tuple, denote (ā, b̄) , h1,2((x̄, ȳ), m̄).

Finally, we pick a message of L − q − 2 blocks from MSEM, denoted by
M‖L−q−2, giving

(IV0, IV1)
M‖L−q−2−−−−−−→ (x̂, ŷ), and concatenate M‖L−q−2 ‖ M̂‖q ‖ m̄ in order to

reach the state pair (ā, b̄) from (IV1, IV2) with a message of length L − 1.
Indeed, we have

(IV0, IV1)
M‖L−q−2−−−−−−→ (x̂, ŷ)

M̂‖q−−−→ (x̄, ȳ) m̄−→ (ā, b̄).

Altogether, we obtain the padded preimage for the XOR combiner: M =
M‖L−q−2 ‖ M̂‖q ‖ m̄ ‖ pad.

IV1
MSEM

x̂

IV2

MSEM ŷ

H1

H2

⊕ = V

m̄‖pad

m̄‖pad
x̄

ȳ

x0

m̂

y0
m̂

[m]q−1

[m]q−1

M‖L−q−2

M‖L−q−2

- Step 1

- Step 2

- Step 3

- Step 4

- Step 5

- Step 6

Complexity Analysis. Denote L = 2`. For parameters g1 ≥ max(n/2, n − `)
and s ≥ 0, the complexity of phases of the attack (as computed in their detail

33

description) is given below (ignoring constant factors).

Phase 1: 2` + n2 · 2n/2 Phase 2: 2n+s−g1

Phase 3: 23g1/2−s/2 + L · 29g1/2−2n−3s/2 + L · 22g1−n

= 23g1/2−s/2 + 2`+9g1/2−2n−3s/2 + 2`+2g1−n

We balance the time complexities of the second phase and the first term in
the expression of the third phase by setting n + s − g1 = 3g1/2 − s/2, or s =
5g1/3 − 2n/3, giving a value of 2n/3+2g1/3 for these terms. Furthermore, ` +
9g1/2− 2n− 3s/2 = ` + 2g1 − n, and the time complexity expression of Phase 3
is simplified to be 2n/3+2g1/3 + 2`+2g1−n. Since g1 is a positive factor in all the
terms, we optimize the attack by picking the minimal value of g1 under the
restriction g1 ≥ max(n/2, n− `). In case ` ≤ n/2, we set g1 = n− ` and the total
time complexity of the attack20 is

2n/3+2(n−`)/3 = 2n−2`/3.

The optimal complexity is 22n/3, obtained for messages of length 2n/2 (see Fig. 12
for a trade-off curve).

4.2 Details of the Preimage Attack on XOR Combiners using Deep
Iterates

Details of Phase 1 can be found in Sect.2.6. In the following, we describe details
of the other two phases.

Details of Phase 2: Finding a Set of Target State Pairs. In the second
phase, we fix an arbitrary message block m, giving rise to the functional graphs
FGf1 and FGf2 defined by the random mappings f1(·) , h1(·, m) and f2(·) ,
h2(·, m). Given parameters g1 ≥ n/2 and s ≥ 0, our goal is to compute a set S
(of size 2s) of tuples of the form ((x, y), w), where w is a single block such that
for each tuple, the following hold:

1. The state x is a 2n−g1 -th iterate in FGf1 , and y is a 2n−g1 -th iterate in FGf2 .
2. (x, y) w−→ (a, b) and h1(a, pad)⊕ h2(b, pad) = V , where pad is a final block of

the (padded) preimage message of length L.

This algorithm resembles the algorithm used in the final phase in previous
interchange-structure-based preimage attack (Attack 1 in Sect. 3), as both look
for state pairs (x, y) that give h1(x, w ‖ pad) ⊕ h2(y, w ‖ pad) = V (for some
message block w). The difference is that in previous interchange-structure-based
attack, (x, y) is an arbitrary endpoint pair of the interchange structure, while in
this case, we look for x and y that are deep iterates.

20 Note that ` + 2g1 − n = n− ` < n− 2`/3.

34

Phase 2 of Attack 2: Finding a set of target state pairs

1. Fix an arbitrary single-block value m, and construct f1(·) , h1(·, m)
and f2(·) , h2(·, m).

2. Expand FGf1 using Alg. 5 with parameter g1. Store all encountered
2n−g1 -th iterates in a table T1.

3. Expand FGf2 using Alg. 5 with parameter g1. Store all encountered
2n−g1 -th iterates in a table T2.

4. Allocate a set S = ∅. For single-block values w = 0, 1, . . ., perform the
following steps until S contains 2s elements:

(a) For each node x ∈ T1 evaluate h1(x, w ‖ pad), and store the results
in a table T ′

1 , sorted according h1(x, w ‖ pad).
(b) For each node y ∈ T2 evaluate h2(y, w‖pad)⊕V , and look for matches

h2(y, w ‖pad)⊕V = h1(x, w ‖pad) with T ′
1 . For each match, add the

tuple ((x, y), w) to S.

The time complexity of steps 2 and 3 is approximately 2g1 . The time com-
plexity of step 4.(a) and step 4.(b) is also bounded by 2g1 . We now calculate the
expected number of executions of Step 4 until 2s matches are found and inserted
into S.

According to Observation 1 in Sect. 2.7, the expected size of T1 and T2 (the
number of deep iterates) is close to 2g1 . Thus, for each execution of Step 4, the
expected number of matches on n-bit values h2(y, w ‖ pad)⊕ V = h1(x, w ‖ pad)
is 22g1−n. Consequently, Step 4 is executed 2s+n−2g1 times in order to obtain 2s

matches. Altogether, the total time complexity of this step is

2n+s−2g1+g1 = 2n+s−g1 .

Details of Phase 3: Hitting a Target State Pair. In the third and final
phase, we start from (x̂, ŷ) and compute a message M̂‖q of length q (is valid as

long as shorter than L− 2) such that (x̂, ŷ)
M̂‖q−−−→ (x̄, ȳ) for some ((x̄, ȳ), m̄) ∈ S.

We use in a strong way the fact that states x̄ (and ȳ) in S are deep iterate (of
depth 2n−g1) in FGf1 (and FGf2).

The goal of this phase is to find a pair of starting points of chains, reaching
some ((x̄, ȳ), m̄) ∈ S at same distance. This phase is carried out by picking
an arbitrary starting message block m̂, which gives points x0 = h1(x̂, m̂) and
y0 = h2(ŷ, m̂). We then continue to evaluate the chains xi+1 = h1(xi, m) and
yj+1 = h2(yj , m) up to length at most L − 3. We hope to encounter x̄ at some
distance q − 1 from x0 and to encounter ȳ at the same distance q − 1 from y0,
where ((x̄, ȳ), m̄) ∈ S. In case in which for all pairs of ((x̄, ȳ), m̄) ∈ S, x̄ and
ȳ are encountered at different distances in the chains, or at least one of them
is not encountered at all, we pick a different value for m̂ and start again. Once
we find such a value for m̂ and pair of iterates (x̄, ȳ), this gives the required
M̂‖q , m̂ ‖ [m]q−1.

35

According to Observation 2 in Sect. 2.7, for a pair of 2n−g1 -th iterates x̄
and ȳ, the probability that they will be encountered at the same distance from
arbitrary starting points x0 and y0 of chains is (2n−g1)3 · 2−2n = 2n−3g1 . Since
S contains 2s elements, the probability calculation yields the conclusion that we
need to compute about 23g1−n−s chains from different starting points to find
such a value for m̂ generating starting points (x0, y0) reaching a pair of deep
iterates (x̄, ȳ) in S at the same distance.

The next question which we address is to what maximal length L′ should we
evaluate chains ~x and ~y. As we wish to reach iterates x̄ and ȳ of depth 2n−g1 , it
can be shown that L′ = 2n−g1 is optimal. Since the total chain length should be
less than L− 3, this impose the restriction L′ = 2n−g1 < L− 3, or 2g1 < 2n/L.

The naive algorithm described above performs about 23g1−n−s trials, where
each trial evaluates chains of length L′ = 2n−g1 from arbitrary points, giving a
total time complexity of approximately 23g1−n−s+n−g1 = 22g1−s. Since g1 ≥ n/2,
the time complexity of this phase is at least 2n−s, and after making a balance
with that of the Phase 2, the time complexity can be 23n/4 by setting s = n/4.

However, it is possible to optimize this naive algorithm by further expand-
ing the graphs of f1 and f2. As a result, the evaluated chains are expected to
collide with the graphs sooner (before they are evaluated to the full length of
2n−g1). Once a collision occurs, we use a look-ahead procedure to calculate the
distance of the chain’s starting point from x̄ (or ȳ) in each tuple ((x, y), w) ∈ S.
This look-ahead procedure resembles the one used in attacks on hash-based
MACs [GPSW14,PW14] (although the setting and actual algorithm in our case
are obviously different).

We define an S-node (for f1) as a node x such that there exists a node y and a
message block w such that ((x, y), w) ∈ S. An S-node for f2 is defined in a similar
way. To avoid heavy update operations for the distances from all the S-nodes,
we use distinguished points. Essentially, each computed chain is partitioned into
intervals according to distinguished points, where each distinguished point stores
only the distances to all the S-nodes that are contained in its interval up to the
next distinguished point. Given a parameter g2 > g1, the algorithm for this
phase is described below.

Phase 3 of Attack 2: Hitting a target state pair

1. Develop (about) 2g2 nodes in FGf1 (and FGf2) (as specified in Alg. 5)
with the following modifications.
– Store only distinguished points for which the n− g2 LSBs are zero.
– Once an S-node is encountered, update its distance in the previously

encountered distinguished point (which is defined with high proba-
bilitya).

– Stop evaluating each chain once it hits a stored distinguished point.
– The evaluated distinguished points for f1 (resp. f2) are stored in the

data structure G1 (resp. G2).

36

2. For single-block values m̂ = 0, 1, . . ., compute x0 = h1(x̂, m̂) and y0 =
h2(ŷ, m̂) and repeat the following step:

(a) Compute chains ~x and ~y as specified below.
– First, compute the chains in a standard way by evaluating the

compression functions h1 and h2 until they hit stored distin-
guished points in G1 and G2 (respectively).

– Then, allocate a table T1 for f1 (and T2 for f2) and continue
traversing (only) the distinguished points of the chain (using the
links in G1 and G2) up to depth L−2, while updating T1 (resp. T2):
for each visited distinguished point, add all its stored S-nodes to
T1 (resp. T2) with its distance from x0 (resp. y0).

– Once the maximal depth L− 2 is reached, sort T1 and T2. Search
for nodes x̄ and ȳ that were encountered at the same distance q−1
from x0 and y0 (respectively), such that ((x̄, ȳ), m̄) ∈ S. If such
x̄ ∈ T1 and ȳ ∈ T2 exist, return the message M̂‖q = m̂ ‖ [m]q−1

and m̄ (retrieved from S) as output. Otherwise (no such x̄ and ȳ
were found), return to Step 2.

a Since g2 > g1, S-nodes are deeper iterates than distinguished points, and thus
distinguished points are likely to be encountered in an arbitrary chain before
an S-node.

The time complexity of Step 1 is approximately 2g2 (note that we always
perform a constant amount of work per developed node).

For time complexity of Step 2, the analysis is as follows. As concluded above,
the expected number of values for m̂ we need to test until we find a pair of
starting point (x0, y0) of chains encounter at the same distance to a pair of
2n−g1 -th iterates (x̄, ȳ) in S is approximately 23g1−n−s.

The analysis of the complexity of Step 2.(a) is as follows. First, we estimate
the expected number of nodes that we visit during the computation of a chain.
Initially, we compute approximately 2n−g2 nodes until we hit stored distinguished
points. Then, we continue by traversing (only) distinguished points up to depth
of about L. The expected number of such points is L · 2g2−n. Therefore, we
expect to visit approximately 2n−g2 + L · 2g2−n nodes while computing a chain.
Finally, we need to account for all the S-nodes encountered while traversing the
chains of depth L. Basically, there are 2s S-nodes which are iterates of depth
2n−g1 , (essentially) randomly chosen in Phase 2 out of approximately 2g1 such
deep iterates. As a result, the probability of such a deep iterate to be a S-node
is approximately 2s−g1 (while other nodes have probability 0). Therefore, while
traversing chains of depth L, we expect to encounter at most L · 2s−g1 S-nodes
(which is a bound on the sizes of T1 and T2). Altogether, the expected time
complexity of a single execution of Step 2.(a) is at most 2n−g2 +L·2g2−n+L·2s−g1 .

The total time complexity of this phase is 2g2 +23g1−n−s ·(2n−g2 +L ·2g2−n +
L·2s−g1) = 2g2 +23g1−g2−s+L·23g1+g2−2n−s+L·22g1−n. We set g2 = 3g1/2−s/2

37

which balances the first two terms and gives a time complexity of

23g1/2−s/2 + L · 29g1/2−2n−3s/2 + L · 22g1−n.

The time complexity evaluation of the full attack at the beginning of this
section shows that for the optimal parameters of this attack, the extra two terms
L · 29g1/2−2n−3s/2 + L · 22g1−n are negligible compared to the other terms in the
complexity equation. In other words, the distinguished points method allowed
us to resolve with no overhead the complication of keeping track of distances
from the S-nodes.

4.3 Optimizing the Deep-Iterates-Based Preimage Attack on XOR
Combiners using the Interchange Structure

The above deep-iterates-based preimage attack on XOR combiners can be slightly
improved using an interchange structure. Recall that the interchange structure
helps to break the dependency between two hash computations on a common
message. When building a 2r-interchange structure starting from the pair of end-
points (x̂, ŷ) of the simultaneous expandable message and ending at two sets of
states A = {A1, A2, . . . , A2r} and B = {B1, B2, . . . , B2r}, any Ai ∈ A can make
a pair with any Bj ∈ B (for any such a pair, one could easily find a common
message mapping (x̂, ŷ) to this pair). Therefore, by using a single message block
m̂ to generate two sets of 2r random starting nodes respectively from A and
B, we can get 22r pairs of starting nodes. As a result, the required number of
samplings on the random massage block m̂ is reduced by a factor of 22r.

The detailed complexity analysis of the attack using a 2r-interchange struc-
ture is as follows: Denote L = 2`. For parameters g1 ≥ max(n/2, n− `), g2 ≥ 0,
s ≥ 0 and 0 ≤ r ≤ `/2 (because the length 22r of the interchange structure
should be less than the message length 2`), the complexity of phases of the
attack is given below (ignoring constant factors).

Phase 1: 2` + n2 · 2n/2 Phase 2: 2n+s−g1

Phase 3: 2g2 + 23g1−n−s−2r · 2r · (2n−g2 + 2`+g2−n + 2`+s−g1) + 2n/2+2r

= 2g2 + 23g1−g2−s−r + 23g1+g2+`−2n−s−r + 22g1+`−n−r + 2n/2+2r

Compared with the complexity of the attack in Sect.4.1, the difference lies in
Phase 3. In the complexity formula of Phase 3, the term 2g2 is the number
of nodes developed in the look-ahead procedure; the term 23g1−n−s−2r is the
required number of samplings on the value of message block m̂ to get pairs of
starting nodes, which is reduced by a factor of 22r when building a 2r-interchange
structure; the term 2r · (2n−g2 + 2`+g2−n + 2`+s−g1) is the time complexity for
computing distances of pairs of starting nodes (generated using the same value
for m̂) from all 2s target nodes; the term 2n/2+2r is the time complexity for
building the 2r-interchange structure.

We first balance the first two terms in Phase 3 by setting g2 = 3g1 − g2 −
s − r, which gives g2 = 3g1/2 − s/2 − r/2. Thus, the complexity of Phase 3

38

becomes 23g1/2−s/2−r/2 +29g1/2−3s/2−3r/2+`−2n +22g1+`−n−r +2n/2+2r. We then
balance Phase 2 and Phase 3 by setting n + s− g1 = 3g1/2− s/2− r/2, which
gives s = 5g1/3 − r/3 − 2n/3. The sum of all dominant terms turns to be
2` +2n/3+2g1/3−r/3 +22g1+`−n−r +2n/2+2r. Finally, we pick the minimal value of
g1 under the restriction g1 ≥ max(n/2, n− `). In case ` ≤ n/2, we set g1 = n− `.
The sum of dominant terms turns to be 2` + 2n−2`/3−r/3 + 2n−`−r + 2n/2+2r.
Considering n− 2`/3− r/3 > n− `− r always holds, the sum of dominant terms
is

2n−2`/3−r/3 + 2n/2+2r.

Note that there is a restriction on r, that is, r ≤ `/2. As a result (see Fig. 12 for
a trade-off curve),

– For the case ` ≤ 3n/11, we have n − 2`/3 − r/3 > n/2 + ` > n/2 + 2r. We
set r = `/2 to optimize the complexity. Thus, the sum of dominant terms
is 2n−5`/6. The optimal complexity is 217n/22 obtained for message of length
2` = 23n/11.

– For the case 3n/11 < ` ≤ n/2, we set r = 3n/14 − 2`/7 to make a balance,
which fulfils r < `/2 in this case. The sum of dominant terms is 213n/14−4`/7.
The optimal complexity is 29n/14 obtained for message of length 2` = 2n/2.

5 Improved Preimage Attack on XOR Combiners Based
on Multi-Cycles

When the underlying hash functions use the MD construction, and the max-
imum length of the message is allowed to exceed 2n/2 blocks, we can further
improve previous deep-iterates-based preimage attack. The idea is that we uti-
lize more special nodes in function graphs, which are called cyclic nodes, and
exploit a technique named multi-cycles as introduced in Sect. 2.7. Recall that,
in the deep-iterates-based attack, a key step is to find two starting nodes x0 and
y0 in functional graphs of f1 and f2, such that they reach the selected target
nodes x̄ and ȳ at a common distance. We find that when selecting cyclic nodes as
target nodes x̄ and ȳ, the probability of a pair of random node (x0, y0) reaching
them at a common distance can be greatly amplified. Indeed, cyclic nodes are
essentially special deep iterates that are located not only deep in the functional
graph but also in a cycle of the graph. Therefore, for two cyclic nodes in two
independent functional graphs, by looping around the cycles, some differences
between distances from two random nodes to the two cyclic nodes can be cor-
rected by the difference between the two cycle lengths. More precisely, if the
members of a target node pair (x̄, ȳ) are both cyclic nodes within the largest
components in two functional graphs, the probability of a random pair (x0, y0)
reaching (x̄, ȳ) at a common distance is amplified by #C times, the maximum
number of cycles that can be used, by using the set of correctable distance bias as
stated in Sect. 2.7. Moreover, such a probability amplification comes with almost
no increase of complexity at Step 2, which leads to a new complexity trade-off
between Steps 2 and 3. Thus, the usage of cyclic nodes and multi-cycles enables

39

us to reduce the computational complexity of preimage attacks on the XOR
combiner.

5.1 Overview of the Attack

Here, we briefly list the main steps of our preimage attack on the XOR combiner.

Attack 3: Preimage attack on the XOR combiner based on multi-
cycles

– Phase 1: Build a simultaneous expandable message MSEM for H1 and
H2, starting from (IV1, IV2) and ending with (x̂, ŷ).

– Phase 2: Collect cyclic nodes within the largest components of func-
tional graphs FGf1 and FGf2 and compute the set of correctable dis-
tance bias

D = {i ·∆L mod L1 | i = 0, 1, . . . , #C},

where L1 and L2 are the cycle lengths of the largest components of FGf1

and FGf2 , respectively, and ∆L = L2 − L1 mod L1.
– Phase 3: Find a set S (of size 2s) of tuples of the form ((x, y), w) such

that x and y are cyclic nodes located in the largest components of FGf1

and FGf2 , respectively, and (x, y) w−→ (a, b) and h1(a, pad)⊕h2(b, pad) =
V , where pad is the final block of the (padded) preimage message of
length L, V is the target hash digest.

– Phase 4: Find a message fragment MLink that maps (x̂, ŷ) to a pair of
target nodes (x̄, ȳ) for some ((x̄, ȳ), m̄) ∈ S.
That is done by first start from (x̂, ŷ), enumerate a message block m̂
to find a pair of states (x0, y0) with x0 = h1(x̂, m̂) and y0 = h2(ŷ, m̂),
such that in FGf1 and FGf2 , their distance difference d1 − d2 mod L1
from (x̄, ȳ) for some ((x̄, ȳ), m̄) ∈ S belongs to D. Suppose the common
distance after correcting by the cycle lengths is q , d1+i·L1 = d2+j ·L2,
and define a message fragment MLink , m̂ ‖ [m]q.

Up to now, we are able to derive a message M‖L−q−3 from the simultaneous
expandable messageMSEM with an appropriate length L−q−3 and produce
a preimage message:

M ,M‖L−q−3 ‖MLink ‖ m̄ ‖ pad

= M‖L−q−3 ‖ m̂ ‖ [m]q ‖ m̄ ‖ pad.

such that

(IV1, IV2)
M‖L−q−3−−−−−−→ (x̂, ŷ) m̂‖[m]q

−−−−−→ (x̄, ȳ) m̄ ‖ pad−−−−−→ (H1(M),H2(M)) :
H1(M)⊕H2(M) = V

40

IV1
MSEM

x̂

IV2

MSEM ŷ

H1

H2

L1

L2

loop

⊕ = V

m̄‖pad

m̄‖pa
d

x̄

ȳ

loop

x0

m̂

y0
m̂

[m]d1

[m]d2

M‖L−q−3

M‖L−q−3

- Step 1

- Step 2

- Step 3

- Step 4

- Step 5

- Step 6

By balancing the complexities of these steps, we obtain an optimal complexity
of 25n/8.

5.2 Details of the Preimage Attack on the XOR Combiner Using
Multi-Cycles

In this section, we present the completed description of the attack procedure
and complexity evaluation. We point out the length of our preimage is at least
2n/2 blocks due to the usage of (multi-) cycles.

Attack Procedure. Denote by V the target hash digest. Suppose the attacker
is going to produce a preimage message with a length L. The value of L will be
discussed later. The attack procedure is described below.

Detailed Steps of Attack 3

1. Build a simultaneous expandable message structure MSEM with a range
of length being roughly [n2, L], starting from the initial state pair (IV1, IV2)
and ending with a pair of final state (x̂, ŷ) such that for each positive
integer κ of an integer interval, there is a message M‖κ with a block

length κ in MSEM such that (IV1, IV2)
M‖κ−−−→ (x̂, ŷ).

2. Fix a single-block message m, and construct f1(·) , h1(·, m) and f2(·) ,
h2(·, m).

(a) Run the cycle search algorithm several times to find the cycle length
L1 (resp. L2) and cyclic nodes within the largest components in FGf1

(resp. FGf2). Store all the cyclic nodes in a table T1 (resp. T2), denote
T1 = {x1, x2, . . . , xL1} (resp. T2 = {y1, y2, . . . , yL2}). Without loss of
generality, assume L1 ≤ L2.

(b) Compute #C = bL/L1c as the maximum number of cycles that can
be used to correct the distance bias. Compute ∆L = L2 mod L1,

41

and then compute the set of correctable distance bias:

D = {i ·∆L mod L1 | i = 0, 1, 2, . . . , #C}.

3. Find a set

S = {((x̄1, ȳ1), m̄1), ((x̄2, ȳ2), m̄2)}, · · · , ((x̄2s , ȳ2s), m̄2s)

such that x̄i and ȳi are cyclic nodes respectively located in the largest
components of FGf1 and FGf2 , and (xi, yi)

w−→ (ai, bi) and h1(ai, pad)⊕
h2(bi, pad) = V , where pad is the final block of the (padded) preimage
message of length L, V is the target hash digest. The search procedure
is described as follows.

(a) Initialize a set S as empty.
(b) Select a random single-block message w.
(c) Compute h∗

1(x, w ‖ pad) for each cyclic node x in T1, and store them
in a table T ′

1 .
(d) Similarly, for each cyclic node y in T2, compute h∗

2(y, w ‖ pad) ⊕ V ,
and look for matches with elements in T ′

1 . If it is matched to some
h∗

1(x, w ‖ pad), we have h∗
2(y, w ‖ pad) ⊕ h∗

1(x, w ‖ pad) = V , store
((x, y), w) in S.

(e) If S contains less than 2s elements, goto Step 3b and repeat the
search procedure.

Hereafter, we call the pair of nodes (x̄i, ȳi) in ((x̄i, ȳi), m̄i) ∈ S a pair of
target nodes.

4. Run Alg.5 with a parameter t to develop 2t nodes in FGf1 (resp. FGf2),
and store them in a data structure G1 (resp. G2). Moreover,

(a) Store at each node its distance from a particular target node (say
target node x̄1 (resp. ȳ1), together with its distance from the cycle
(i.e., its height, similar to Phase 3 in Section 5 of [PW14]).

(b) Store the distance of other target nodes x̄i (resp. ȳi) to this particular
target node x̄1 (resp. ȳ1) in a table Tx (resp. Ty) by iterating f1 (resp.
f2) along the cycle.

(c) Thus, when the distance of a node from the particular target node
and that from the cycle is known from G1 (resp. G2), the distances of
this node from all the other target nodes can be immediately deduced
from Tx (resp. Ty). Specifically, suppose the distance of a node x0
from x̄1 is d1 and its height is e1, and suppose the distance of a target
node x̄i from x̄1 is di; then, the distance of x0 from x̄i is d1 − di if
di ≤ (d1 − e1), and L1 − di + d1 if di > (d1 − e1).

5. Find a message MLink that maps (x̂, ŷ) to a pair of target nodes (x̄, ȳ)
for some ((x̄, ȳ), m̄) ∈ S. We search for such a linking message among
a set of special messages: MLink = m̂ ‖ m ‖ m ‖ · · · ‖ m, where m̂ is a
random single-block message, and m is the fixed message at Step 2. The
search procedure is as follows.

42

(a) Select a random message block w, and compute x0 = h1(x̂, w) and
y0 = h2(ŷ, w).

(b) Compute a chain by iteratively applying f1 (resp. f2) to update x0
(resp. y0) until either of the following two cases occurs.
− The chain length reaches 2n−t. In this case, goto Step 5a;
− The chain encounters a node stored in G1 (resp. G2). In this case,

compute the distance of x0 (resp. y0) to every target node x̄i

(resp. ȳi) as described in Step 4c, and denote it as dx̄i (resp.
dȳi

). Examine whether (dx̄i
− dȳi

mod L1) is in D. If it is, set
d1 , dx̄i

and d2 , dȳi
, derive the corresponding j and k such

that d1 +j ·L1 = d2 +k ·L2 holds. Set q , d1 +j ·L1 = d2 +k ·L2,
and then MLink , m̂ ‖ [m]q. Besides, set m̂ , w and m̄ , m̄i.
Otherwise, goto Step 5a.

6. Derive a message M‖L−q−3 with a block length of L − q − 3 from the
expandable message MSEM.

7. Produce a preimage M of the target hash digest V as follows:

M ,M‖L−q−3 ‖MLink ‖ m̄ ‖ pad

= M‖L−q−3 ‖ m̂ ‖ [m]q ‖ m̄ ‖ pad.

Complexity Analysis. For parameters L ≥ 2n/2, s ≥ 0 and t ≥ 0, the complex-
ity of the steps of the attack is given below (ignore the constant and polynomial
factors for simplicity of description).

• Step 1: L + n2 · 2n/2 (refer to Sect. 2.6);
• Step 2: 2n/2 + L/L1 ≈ 2n/2 + 2−n/2 · L ≈ 2n/2;
• Step 3: 2s+n/2;

One execution of the search procedure has a complexity of L1 + L2, and
contributes to L1 ·L2 pairs. As L1 ·L2 = Θ(2n), one tuple can be obtained by
a constant number of executions. Hence, the number of necessary executions
is Θ(2s), and the complexity of this step is Θ(2s+n/2).

• Step 4: 2t + 2n/2;
The complexity of developing 2t nodes and computing their distance to a
particular target node is 2t (refer to Alg. 5 and Step 4a). The complexity
to compute the distance of all the other target nodes to the particular target
node is upper bounded by 2n/2 (refer to the expectation of the maximum
cycle length in Thm. 3). Hence, the complexity of this step is 2t + 2n/2.

• Step 5: 22n−t−s/L;
One execution of the search procedure requires a time complexity of 2n−t.
Clearly, a constant factor of both chains encounter nodes stored in G1 and G2.
We mainly need to evaluate the probability of deriving a common distance for
each chain. For every pair of target nodes (x̄i, ȳi), the value of dxi

−dyi
is equal

to a correctable distance bias in D with a probability of #C ·2−n/2 ≈ L ·2−n.
Since there are 2s pairs of target nodes, the success probability of each chain

43

is L · 2s−n. Hence, the total number of chains is 2n−s/L, and the complexity
of this step is 2n−t · 2n−s/L = 22n−t−s/L.

• Steps 6 and 7: O(L).

The overall complexity is computed as (denote L = 2`)

2` + 2s+n/2 + 2t + 2t + 2n/2 + 22n−t−s−`,

where the complexity of Step 2 is ignored.
Now, we search for parameters t and s that give the lowest complexity. First,

we balance Step 3 and Step 4 by setting s+n/2 = t. That gives s = t−n/2. The
complexity becomes (ignoring constant factors) 2` + 2t + 25n/2−2t−`. We then
make a balance by setting t = 2n− 2t + n/2− `, i.e., t = 5n/6− `/3. Thus, the
total complexity becomes

2` + 25n/6−`/3.

Hence,

– for the case n/2 ≤ ` ≤ 5n/8, the final complexity is 25n/6−`/3;
– for the case 5n/8 < `, the final complexity is 2`.

The optimal complexity is 25n/8, obtained for messages of length 25n/8 (see
Fig. 12 for a trade-off curve).

5.3 Optimizing the Multi-Cycles-Based Preimage Attack on the
XOR Combiner Using the Interchange Structure

Again, similar to the previous deep-iterates-based preimage attack, this multi-
cycles-based preimage attack on the XOR combiner can also be improved using
an interchange structure. The complexity of the attack using a 2r-interchange
structure is analysed as follows.

Denote L = 2`. For parameters t ≥ n/2, ` ≥ n/2 and 0 ≤ r ≤ `/2 (because
the length 22r of the interchange structure should be no larger than the message
length L = 2`), the complexity of each step is as follows:

Step 1: 2` + n2 · 2n/2 Step 2: 2n/2 + 2`−n/2 Step 3: 2s+n/2

Step 4: 2t + 2n/2 Step 5: 2n−t+r · 2n−s−2r−` + 2n/2+2r Step 6: 2`

The sum of dominant terms is

2` + 2s+n/2 + 2t + 22n−t−s−r−` + 2n/2+2r.

We first balance the last four terms by setting s + n/2 = t = 2n− t− s− r− ` =
n/2 + 2r. Thus, t = 11n/14 − 2`/7, s = 2n/7 − 2`/7, and r = n/7 − `/7. Note
that for ` ≥ n/2, we have n/7− `/7 ≤ n/14 < n/2. Thus, the restriction r ≤ `/2
always holds in this setting. The total complexity turns to be

2` + 211n/14−2`/7.

Hence,

44

– for the case n/2 ≤ ` ≤ 11n/18, the final complexity is 211n/14−2l/7;
– for the case 11n/18 < `, the final complexity is 2`.

The optimal complexity is 211n/18, obtained for messages of length 211n/18 (see
Fig. 12 for a trade-off curve).

6 Second-Preimage Attack on Concatenation Combiners
Based on Deep Iterates

In this section, we introduce the first second-preimage attack faster than 2n on
concatenation combiners of MD hashes.

In this attack, we are given a challenge message M = m1 ‖m2 ‖ . . . ‖mL,
and our goal is to find another message M ′ such that H1(M ′) ‖ H2(M ′) =
H1(M) ‖ H2(M) (or equivalently H1(M ′) = H1(M) and H2(M ′) = H2(M)).
We denote the sequence of internal states computed during the invocation of h1
(respectively, h2) on M by a0, a1, . . . , aL (respectively, b0, b1, . . . , bL).

The general framework of our attack is similar to the one of the long message
second-preimage attack on a single MD hash proposed by Kelsey and Schneier
and described in Sect.2.2. Namely, we first compute the sequences of internal
states a1, . . . , aL and b1, . . . , bL by applying the compression functions h1 and
h2 on the challenge message M = m1 ‖ . . . ‖mL. Our goal is then to “connect”
to one of the state pairs (ai, bi) using a different message prefix of the same size.
Once we manage to achieve this, we can reuse the same message suffix as in M
and obtain a second preimage.

There are two main challenges in this approach, where the main challenge is
to connect to some state pair (ai, bi) generated by M from a different message.
The secondary challenge is to ensure that the connected message prefixes are of
the same length. We overcome the secondary challenge by building a simultane-
ous expandable message for two Merkle-Damgård hash functions, as described
in Sect. 2.6.

A much more difficult challenge is to actually connect to the challenge mes-
sage on a state pair (ai, bi) from a different message of arbitrary (smaller) length.
Indeed, the obvious approach of attempting to reach an arbitrary 2n-bit state
pair by trying random messages requires more than 2n time, since the number
of target state pairs is equal to the message length which is smaller than 2n.
A more promising approach is to use the interchange structure introduced in
Sect.3. Recall that, the interchange structure consists of an initial state pair
(a, b), a set of message fragments M and two sets of internal states A (for H1)
and B (for H2) such that for any value A ∈ A and any value B ∈ B, it is possible
to efficiently construct a message MA,B ∈M that maps (a, b) to (A, B). Assume
that there exists an index i ∈ {1, 2, . . . , L} such that ai ∈ A and bi ∈ B; then,
we can connect to (ai, bi) using Mai,bi as required. Unfortunately, this does not
result in an efficient attack, essentially because the complexity of building an
interchange structure for sufficiently large sets A and B is not efficient enough.

Here, as in the deep-iterate-based preimage attack on XOR combiner, we use
deep iterates in functional graphs of f1(·) , h1(·, m) and f2 , h2(·, m) (as a

45

result, it is not applicable when any one of the underlying hash functions are of
the HAIFA framework). More specifically, our goal is to find a state pair (ap, bp)
composed of two deep iterates in FGf1 and FGf2 , respectively.21 Once we find
such a “special” state pair, we show how to simultaneously reach both of its
states in an efficient manner from an arbitrary state pair. Combined with the
simultaneous expandable message, this gives the desired second preimage.

Next, as in previous attack, we start by providing a high-level overview of
the attack and then give technical details.

6.1 Overview of the Attack

The attack is composed of three main phases.

Attack 4: Second-preimage attack on the concatenation combiner
based on deep iterates

– Phase 1: Build a simultaneous expandable message MSEM for H1 and
H2 as described in Sect.2.6, starting from the initial state pair (IV1, IV2)
and ending at a final state pair (x̂, ŷ).

– Phase 2: Find a pair of states (x̄, ȳ), a message block m̄ and an index p

such that (x̄, ȳ) m̄−→ (ap, bp) (note that the state pair (ap, bp) is computed
during the evaluation of the challenge message). Moreover, the state pair
(x̄, ȳ) should have the special property that will be defined in the detailed
description of this phase.

– Phase 3: Start from (x̂, ŷ) and compute a message fragment M̂‖q (shorter

than p − 1) such that (x̂, ŷ)
M̂‖q−−−→ (x̄, ȳ). This phase can be performed

efficiently due to the special property of (x̄, ȳ).

To compute the second preimage, we pick M‖p−q−1 from the simultane-

ous expandable message MSEM, giving (IV0, IV1)
M‖p−q−1−−−−−−→ (x̂, ŷ), and con-

catenate M‖p−q−1 ‖ M̂‖q ‖ m̄ in order to reach the state pair (ap, bp) from
(IV1, IV2) with a message of appropriate length p. Indeed, we have

(IV0, IV1)
M‖p−q−1−−−−−−→ (x̂, ŷ)

M̂‖q−−−→ (x̄, ȳ) m̄−→ (ap, bp).

Altogether, we obtain the second preimage: M ′ = M‖p−q−1 ‖ M̂‖q ‖ m̄ ‖
mp+1 ‖ . . . ‖mL.

21 The actual attack is slightly different, as it searches for deep iterates from which
(ap, bp) can be reached with a common message block.

46

a0
IV1

b0
IV2

H1

H2

a1

m1

b1

m1

a2

m2

b2

m2

ap−1

bp−1

ap

mp

bp

mp

aL−1

bL−1

aL

mL

bLmL

‖

IV1
MSEM

x̂

IV2

MSEM ŷ

m̄

m̄

x̄

ȳ

x0

m̂

y0
m̂

[m]q−1

[m]q−1

M‖p−q−1

M‖p−q−1

- Step 1

- Step 2

- Step 3

- Step 4

- Step 5

- Step 6

Complexity Analysis. Denote L = 2`. For a parameter g1 ≥ max(n/2, n− `),
the complexity of the phases of the attack (as computed in their detail descrip-
tion) is given below (ignoring constant factors).

Phase 1: L + n2 · 2n/2 = 2` + n2 · 2n/2 Phase 2: 1/L · 22n−g1 = 22n−g1−`

Phase 3: 23g1/2

We balance the second and third phases by setting 2n − g1 − ` = 3g1/2, or
g1 = 2/5 · (2n − `), giving time complexity of 23/5·(2n−`). This trade-off holds
as long as 2` + n2 · 2n/2 ≤ 23/5(2n−`), or ` ≤ 3n/4. The optimal complexity is
23`/4, obtained for ` = 3n/4 (see Fig. 12 for a trade-off curve). The attack is
faster than 2n (Joux’s preimage attack) for22 ` > n/3. The message range for
which the attack is faster than 2n can be slightly improved to L ≥ 22n/7 using
the optimized attack, described in Sect. 6.3.

6.2 Details of the Second-Preimage Attack on Concatenation
Combiners using Deep Iterates

Details of Phase 1 can be found in Sect. 2.6.

Details of Phase 2: Finding a Target State Pair. In the second phase, we
fix an arbitrary message block m, giving rise to the functional graph FGf1 of
f1(·) , h1(·, m) and FGf2 of f2(·) , h2(·, m) and let g1 ≥ n/2 be a parameter
(to be determined later). Our goal is to find a pair of states (x̄, ȳ), a message
block m̄ and an index p such that the following two conditions hold:

1. The state x̄ is a 2n−g1-th iterate in FGf1 and ȳ is a 2n−g1-th iterate in FGf2 .
2. The state pair (x̄, ȳ) is mapped to (ap, bp) by m̄, or (x̄, ȳ) m̄−→ (ap, bp).

The algorithm of this phase is given below.

22 Note that for ` > n/3, g1 = 2/5 · (2n− `) > 2n/3 > max(n/2, n− `), as required.

47

Phase 2 of Attack 4: Finding a target state pair

1. Fix an arbitrary single-block value m and get f1(·) , h1(·, m) and
f2(·) , h2(·, m).

2. Expand FGf1 using Alg. 5 with parameter g1. Store all encountered
2n−g1 -th iterates in a table T1.

3. Expand FGf2 using Alg. 5 with parameter g1. Store all encountered
2n−g1 -th iterates in a table T2.

4. For single-block values m′ = 0, 1, . . ., perform the following steps:
(a) For each node x ∈ T1, evaluate x′ = h1(x, m′) and store the matches

x′ = ai with thea sequence a1, . . . , aL in a table T ′
1 , sorted according

to the index i of ai.
(b) Similarly, for each node y ∈ T2 evaluate y′ = h2(y, m′) and look

for matches y′ = bj with the sequence b1, . . . , bL. For each match
with some bj , search for the index j in the table T ′

1 . If a match
i = j is found, set p , i (namely, (ap, bp) , (x′, y′)), m̄ , m′ and
(x̄, ȳ) , (x, y). This gives (x̄, ȳ) m̄−→ (ap, bp), as required. Otherwise,
(no match i = j is found), go back to Step 4.

a More precisely, due to the minimal-length restriction of the expandable mes-
sage, matches x′ = ai with i less than (approximately) C2 ≈ n2 cannot be
exploited in the full attack. Moreover, the maximal exploitable value of i is
L− 2. However, the fraction of these nodes is very small and can be ignored in
the complexity analysis.

The time complexity of steps 2 and 3 (which execute the Alg. 5) is approxi-
mately 2g1 . The time complexity of step 4.(a) and step 4.(b) is also bounded by
2g1 (given that a1, . . . , aL and b1, . . . , bL are sorted in memory), as the size of T1
and T2 is at most 2g1 and the number of matches found in each step can only
be smaller.

We now calculate the expected number of executions of Step 4 until the
required (ap, bp) is found. According to Observation 1 in Sect. 2.7, the expected
size of T1 and T2 (that contain iterates of depth 2n−g1) is close to 2g1 . According
to the birthday paradox, the expected size of T ′

1 is approximately L · 2g1−n.
Similarly, the number of matches y′ = bj is also approximately L · 2g1−n. The
probability of a match i = j in Step 4.(b) is computed using a birthday paradox
on the L possible indexes, namely, 1/L · (L · 2g1−n)2 = L · 22g1−2n. As a result,
Step 4 is executed approximately 1/L · 22n−2g1 times until the required (ap, bp)
is found (the executions with different blocks m′ are essentially independent).
Altogether, the total time complexity of this step is

2g1 · 1/L · 22n−2g1 = 1/L · 22n−g1 .

Since the index p is uniformly distributed in the interval [1, L], we will assume
that p = Θ(L).

48

Details of Phase 3: Hitting the Target State Pair. In the third and final
phase, we start from the pair of endpoints (x̂, ŷ) of the simultaneous expandable
message constructed in Phase 1 and compute a message fragment M̂‖q of length

q < p− 1 such that (x̂, ŷ)
M̂‖q−−−→ (x̄, ȳ). Like in the deep-iterates-based preimage

attack on the XOR combiner, here, we again use in a strong way the fact that
the state x̄ (and ȳ) is a deep iterate (of depth 2n−g1) in the functional graph of
f1(x) (f2(y)).

This phase is carried out by picking an arbitrary starting message block
m̂, which gives points x0 = h1(x̂, m̂) and y0 = h2(ŷ, m̂). We then continue to
evaluate the chains xi = h1(xi−1, m) and yj = h2(yj−1, m) up to a maximal
length L′ = 2n−g1 . We hope to encounter x̄ at some distance q − 1 from x0 and
to encounter ȳ at the same distance q−1 from y0. Given that q−1 < p, this will
give the required M̂ = m̂ ‖ [m]q−1 (where [m]q−1 denotes the concatenation of
q−1 message blocks m), which is of length q < p−1. If x̄ and ȳ are encountered
at different distances in the chains, or at least one of them is not encountered at
all, we pick a different value for m̂ and start again.

Since x̄ (resp. ȳ) is an iterate of depth 2n−g1 in FGf1 (resp. FGf2), it is an
endpoint of a chain of states of length L′ = 2n−g1 (such a chain was computed
in Phase 2). According to Observation 2, the probability that x̄ and ȳ will be
encountered at the same distance from arbitrary starting points x0 and y0 of
chains is 2n−3g1 . The probability calculation gives rise to the conclusion that
we need to compute approximately 23g1−n chains from different starting points.
Each chain is of length up to L′ = 2n−g1 . This gives a total time complexity
of about 23g1−n+n−g1 = 22g1 . Since g1 ≥ n/2, the time complexity of the full
algorithm is at least 2n, and the attack is not faster than Joux’s preimage attack.

To optimize the algorithm, as we did in the deep-iterates-based preimage
attack, we use a look-ahead procedure by further expanding the graphs of f1
and f2. The difference is that since we only select a single pair of deep iterate
as the target, we do not use the distinguished point technique23 24. We pick a
parameter g2 > g1 and execute the algorithm below.

Phase 3 of Attack 4: Hitting the target state pair

1. Develop 2g2 nodes in FGf1 (and FGf2) (as specified in Alg. 5) with the
following modifications.

23 One may ask why we did not compute a larger set S, as we did in Phase 3 of Attack 2.
The reason for this is that it can be shown that in this case, a set of size 1 is optimal.

24 One may also ask why we did not use cyclic nodes and multi-cycles to further improve
this second-preimage attack on concatenation combiners as we did for the preimage
attack on XOR combiners. The reason is that optimization on Phase 2 of Attack 4
has reached it limitation because of the limited number of candidate state pairs
for (x̄, ȳ). Thus, the complexity of Phase 2 becomes the bottleneck and cannot be
improved using cyclic nodes.

49

– Store at each node its distance from x̄ in FGf1 (or ȳ in FGf2) (the
maximal stored distance is L′ = 2n−g1): for each computed chain,
once it hits a previously visited node in the graph, obtain its stored
distance from x̄ (or ȳ) and update it in all the computed nodes in
the current chain up to the maximal value L′ = 2n−g1 .

– If a chain does not hit x̄, then the distance of its nodes is undefined
and stored as a special value ⊥. This special value is also used for
nodes whose distance from x̄ is greater than L′.

– The evaluated nodes for FGf1 (FGf2) are stored in a data structure
G1 (G2).

2. For single-block values m̂ = 0, 1, . . ., compute x0 = h1(x̂, m̂) and y0 =
h2(ŷ, m̂) and repeat the following step:

(a) Compute the chains ~x and ~y up to maximal length L′ = 2n−g1 or
until they hit G1 and G2 (respectively).
– If ~x (or ~y) does not hit G1 (G2), return to Step 2.
– Otherwise, once ~x (~y) hits G1 (G2), obtain the stored distance

from x̄ (ȳ) at the collision point. If the distance to x̄ (or ȳ) is
undefined, return to Step 2.

– Compute the respective distances i and j of x0 and y0 from x̄ and
ȳ. If i 6= j, return to Step 2.

– Otherwise (i = j), denote q = i+1. If q ≥ p−1, return to Step 2.
– Otherwise (q < p − 1), return the message M̂ = m̂ ‖ [m]i =

m̂ ‖ [m]q−1 as output.

G1

4 3 2 1 x̄ ⊥
⊥

⊥

⊥
5 4 3

4 ⊥ ⊥ ⊥

x̂
m̂

x0(3) x1(2)

G2

4 3 2 1 ȳ ⊥ ⊥

⊥4 3 2

⊥ ⊥ ⊥ ⊥

ŷ

m̂

y0(3) y1(2) y2(1)

The time complexity of Step 1 is approximately 2g2 . As concluded above, in
Step 2, we perform approximately 23g1−n trials on the value of m̂ before finding
two starting points x0 and y0 at the same distance from x̄ and ȳ. According to
the analysis of Sect. 2.7, each trial requires approximately 2n−g2 computation
(before hitting G1 and G2). Therefore, the total time complexity of this phase
is 2g2 + 23g1−n · 2n−g2 = 2g2 + 23g1−g2 . The complexity is minimized by setting
g2 = 3g1/2 which balances the two terms and gives a time complexity of

23g1/2.

Finally, we note that the memory complexity of this algorithm can be opti-
mized using distinguished points. A detailed way to achieve this has been pre-
sented in the closely related algorithm in Sect. 4.2.

50

6.3 Optimizing the Deep-Iterates-Based Second-Preimage Attack
on Concatenation Combiners using an Interchange Structure

Similar to the deep-iterates-based preimage attack on the XOR combiner, this
deep-iterates-based second-preimage attack can also be slightly improved using
an interchange structure. The detailed complexity analysis of the attack using a
2r-interchange structure is as follows:

Denote L = 2`. For parameters g1 ≥ max(n/2, n − `), g2 ≥ 0, and 0 ≤ r ≤
`/2 (because the length 22r of the interchange structure should be less than
the message length 2`), the complexity of the phases of the attack is (ignoring
constant factors)

Phase 1: 2` + n2 · 2n/2 Phase 2: 22n−g1−`

Phase 3: 2g2 + 23g1−n−2r · 2r+n−g2 + 2n/2+2r = 2g2 + 23g1−g2−r + 2n/2+2r

Compared with the complexity of the attack in Sect.6.1, the difference lies in
Phase 3. In the complexity formula of Phase 3, the term 2g2 is the number of
nodes developed in the look-ahead procedure; the term 23g1−n−2r is the required
number of samplings on the random massage block m̂ when trying to find a
pair of starting nodes reaching the pair of 2n−g1 -th iterates (x̄, ȳ) at a common
distance; the term 2r+n−g2 is the time complexity for computing the distances of
a set of 2r starting nodes (generated using the same value for m̂) from a target
node; and the term 2n/2+2r is the time complexity for building a 2r-interchange
structure.

We first balance the first two terms in Phase 3 by setting g2 = 3g1 − g2 − r,
which gives g2 = 3g1/2− r/2. The sum of all dominant terms is

2` + 22n−g1−` + 23g1/2−r/2 + 2n/2+2r.

For ` > 7n/17, we set 2n − g1 − ` = 3g1/2 − r/2 = n/2 + 2r, which gives
g1 = 19n/22 − 5`/11 and r = 7n/22 − 3`/11. The total complexity is then
2` + 225n/22−6`/11. For ` > 25n/34, we have 25n/22 − 6`/11 < `. Thus, the
time complexity is 2` for ` > 25n/34. Note that, g1 = 19n/22− 5`/11 fulfils the
restriction g1 ≥ max(n/2, n − `) for n/4 ≤ ` ≤ 4n/5, and r = 7n/22 − 3`/11
fulfils the restriction 2r < l as long as ` > 7n/17. Thus, the time complexity is
225n/22−6`/11 for 7n/17 < ` ≤ 25n/34.

For ` ≤ 7n/17, we directly set r = `/2 (the maximum under the restric-
tion 2r < `) to optimize the complexity (because as shown next, the bal-
anced sum 22n−g1−` + 23g1/2−r/2 is greater than 2n/2+2r under the restrictions
g1 ≥ max(n/2, n − `), 2r < ` and ` ≤ 7n/17). The formula is 22n−g1−` +
23g1/2−`/4 + 2n/2+`. We balance the first two terms by setting 2n − g1 − ` =
3g1/2 − `/4, from which we deduced that g1 = 4n/5 − 3`/10 (fulfills the re-
striction g1 ≥ max(n/2, n − `) as long as ` > 2n/7). Then, the complexity is
26n/5−7`/10 + 2n/2+`. Since 6n/5− 7`/10 ≥ n/2 + ` for ` ≤ 7n/17, the total time
complexity is then 26n/5−7`/10. It is no less than 2n for ` < 2n/7.

Thus, the final time complexity of this attack using interchange structure is
summarized as follows:

51

– For the case ` < 2n/7, the complexity is 2n achieved by Joux’s attack;
– For the case 2n/7 ≤ ` ≤ 7n/17, the complexity of this attack is 26n/5−7`/10;
– For the case 7n/17 < ` ≤ 25n/34, the complexity of this attack is 225n/22−6`/11;
– For the case ` > 25n/34, the complexity of this attack is 2`.

The optimal complexity is 225n/34, obtained for messages of length 225n/34 (see
Fig. 12 for a trade-off curve).

7 Second-Preimage Attack on the Zipper Hash

In this section, we present the first second-preimage attack on the Zipper hash,
which is applicable for idealized compression functions and hence a generic at-
tack. Again, the attack is based on the deep iterates and multi-cycles in the
functional graphs defined by f1(·) , h1(·, m) and f2(·) , h2(·, m) with a fixed
single-block message value m. The general framework is similar to that of the
above ones on combiners of MD hashes. However, some special specifications on
the Zipper hash allow the attacker to choose an optimal configuration for the
attack and to launch a more efficient connecting phase in the attack. More pre-
cisely, as opposed to the two parallel combiners, in the Zipper hash, the message
length is placed in the middle of the two passes. Thus, when we first connect
our crafted message to the challenge message on an internal state in the second
pass, the message prefix of our crafted message is fixed. This prefix does not
include the length padding. As a result, the length of our crafted message is not
necessarily equal to the length of the challenge message. Thus, we can choose
a proper length for our crafted message that optimizes the attack complexity.
A further uniqueness of the Zipper hash is that its second pass processes the
message blocks in a reversed order. Thus, in the attack, when looking for a pair
of nodes (x̌, y̌) reaching two predefined nodes of deep iterates (x̄, ȳ) at a common
distance, x̌ and y̌ are computed with different message blocks. This enables us to
launch an efficient meet-in-the-middle procedure during the connecting phase.
Accordingly, Joux’s multi-collision (see Sect.2.1) is used to facilitate the meet-
in-the-middle procedure, and the previous simultaneous expandable message in
Sect.2.6 is fine-tuned to adapt to the Zipper hash.

7.1 Overview of the Attack

Given a message M = m1 ‖ · · · ‖mL, the goal of the second-preimage attack on
the Zipper hash is to find another message M ′ such that H2(H1(IV, M),←−M) =
H2(H1(IV, M ′),

←−
M ′), where ←−M is a message generated by reversing the order

of message blocks of M (we call ←−M the reverse of M), i.e., ←−M = mL ‖mL−1 ‖
· · · ‖m1, and

←−
M ′ is the reverse of M ′. Here, we briefly list the main steps of the

attack.

52

Attack 5: Second-preimage attack on the Zipper hash

– Phase 1: Get a cyclic node x̄ (resp. ȳ) located in the largest com-
ponent of FGf1 (resp. FGf2); Get the cycle length L1 (resp. L2), and
compute the set of correctable distance bias D = {i ·∆L mod L1 | i =
0, 1, . . . , #C}, where ∆L = L2 mod L1 and #C is the number of cy-
cles to the maximum. After that, generate a Joux’s multi-collisionMMC1
(resp.MMC2) starting from x̄ (resp. ȳ) and denote its final endpoints by
x̂ (resp. ŷ).

– Phase 2: Build a cascade simultaneous expandable messageMSEM across
the two passes starting from x̂ and denote its final endpoint by ỹ.

– Phase 3: Find a message block m̄ mapping the final endpoint ŷ of the
second Joux’s multi-collision MMC2 to one of the chaining states bp in
the second pass of the original message; Then, in the first pass, use m̄
to update the corresponding chaining state ap to a state x̃.

– Phase 4: Find a message MLink such that (x̃, ỹ) MLink−−−→ (x̄, ȳ)a.
This is a meet-in-the-middle procedure. First, exploit the messages in
the two Joux’s multi-collisions MMC1 and MMC2 to map (x̃, ỹ) to two
independent sets of starting nodes, compute and store their distances
from target node x̄ and ȳ in two tables T1 and T2 independently. Then,
find a match between T1 and T2 (check whether the difference between
some stored distances is correctable by values in D), denote the matched
distances by d1 and d2, set the common distance d , d1+i·L1 = d2+j·L2
for some i and j, and retrieve the corresponding messages M2 ∈ MMC2
and M1 ∈MMC1 that generate the corresponding starting nodes.

At the end, select a message suffix M‖q with a proper block length q = L′−
p− 2r− d from the simultaneous expandable message MSEM and construct
a second preimage M ′: m1 ‖ · · · ‖mp ‖M2 ‖ [m]d ‖M1 ‖M‖L′−p−2r−d.

a0 = IV

H(M) = b0

H1

H2

a1

m1

b1

m1

ap−1

bp−1

ap

mp

bp

mp

aL−2

bL−2

aL−1

mL−1

bL−1

mL−1

aL

mL

bL = aL

mL

x̃
m̄

ŷ

m̄

x̌

MMC2

M2

ȳ

|G2| = 2t

MMC2

r

x̄

|G1| = 2t

[m] d1

y̌
[m]d2

x̂MMC1

r

ỹ
MMC1

M1

ẍ
MSEM

MSEM

ÿ
=

h
2
(h

1
(ẍ

,
m

′ L
′)
,
m

′ L
′)

M‖q

M‖q

- Step 1

- Step 2

- Step 3

- Step 4

- Step 5

- Step 6

- Step 7 ∼ 8

- Step 9

53

a Rigorously, we should write ỹ
MLink←−−− ȳ.

There are two main differences between the attack on the Zipper hash and the
second-preimage attack on concatenation combiners (Attack 4) and the preimage
attacks on XOR combiners (Attacks 2 and 3). One is that linking x̃ to x̄ and ỹ to
ȳ can be carried out independently, resulting in a meet-in-the-middle-like effect.
The other is that the message length is embedded inside the expandable message
MSEM, which enables us to choose the length of second preimage to optimize the
complexity.

7.2 Details of the Second-Preimage Attack on the Zipper Hash

In this subsection, we present the detailed procedure of Attack 5.

Detailed Steps of Attack 5

1. Fix an arbitrary single-block message value m and get f1(·) = h1(·, m)
and f2(·) = h2(·, m).

(a) Run the cycle search algorithm several times to locate the largest
cycles C1 and C2 in FGf1 and FGf2 , get the cycle lengths L1 and L2.
Without loss of generality, assume L1 ≤ L2.

(b) Pick a cyclic node x̄ located in C1 and a cyclic node ȳ located in C2.
(c) Compute the set of correctable distance bias D = {i ·∆L mod L1 |

i = 0, 1, . . . , #C} as in Step 2 of Attack 3.
2. Run Alg. 5 with a parameter t to develop 2t nodes in FGf1 (resp. FGf2),

compute their distance from the target node x̄ (resp. ȳ). Store these
nodes in FGf1 (resp. FGf2) in a data structure G1 (resp. G2).

3. Build a 2r-Joux’s multi-collision MMC1 (resp. MMC2) starting from the
cyclic node x̄ (resp. ȳ) and denote its final endpoint by x̂ (resp. ŷ).

4. Construct a simultaneous expandable messageMSEM across the two hash
functions that starts from the state x̂ in the first pass, and denote its
final endpoint by ỹ in the second pass. The details of constructing such
an expandable message are provided in Sect. 7.3.

5. Find a single-block m̄ mapping ŷ to some internal state bp in the second
pass of the original message M . The search procedure is trivial and
hence omitted. Then, use m̄ updating the corresponding chaining state
ap in the first pass to a state x̃, i.e., compute x̃ = h1(ap, m̄).

6. For each message M ′
2 in MMC2,

(a) Compute x̌ = h∗
1(x̃, M ′

2).
(b) Compute a chain ~x by applying f1 to update x̌ iteratively until up

to a maximum length 2n−t or until it hits G1. In the latter case,
compute the distance d1 of x̌ to x̄, and store (d1, M ′

2) in a table T1.
7. For each message M ′

1 in MMC1,

54

(a) Compute y̌ = h∗
2(ỹ, M ′

1);
(b) Compute a chain ~y by applying f2 to update y̌ up to a maximum

length 2n−t or until it hits G2. In the latter case, compute the distance
d2 of y̌ to ȳ, and store (d2, M ′

1) in a table T2.
8. Find (d1, M ′

2) in T1 and (d2, M ′
1) in T2 such that (d1−d2 mod L1) ∈ D.

The search is a meet-in-the-middle procedure to match elements between
T1 and T2. Denote the common distance corrected by values in D by
d , d1 + i · L1 = d2 + j · L2 for some i and j, and the corresponding
messages M1 ,M ′

1 and M2 ,M ′
2 (retrieved from T1 and T2).

9. Derive a message M‖q with a block length q = L′ − p − 1 − r − d − r
from MSEM, where L′ is the length of the constructed second-preimage.
Construct a message M ′ = m1 ‖m2 ‖ · · · ‖mp ‖ m̄‖M2 ‖ [m]d ‖M1 ‖M‖q

and output M ′ as a second-preimage.

Complexity Analysis. The complexities of each step in this attack are as
follows (ignoring constant factors and the factor n):

Step 1: 2n/2 Step 2: 2t Step 3: 2n/2

Step 4: 2`′
+ 2n/2+2 log2(n)+1 Step 5: 2n−` Step 6: 2r · 2n−t

Step 7: 2r · 2n−t Step 8: 2r Step 9: 2`′

The sum of dominant terms is

2t + 2`′
+ 2n−` + 2r · 2n−t,

where 2t is the complexity for developing more nodes in the look-ahead proce-
dure; 2`′ is the complexity for building the simultaneous expandable message;
2r · 2n−t is the complexity for generating tables T1 and T2.

We first balance the first term with the fourth term by setting t = r + n− t,
which gives t = n/2 + r/2. As a result, the sum of dominant terms is

2n/2+r/2 + 2`′
+ 2n−`.

– When the allowed length L′ of the second preimage is limited by 2n/2, we
set `′ = n/2 to optimize the complexity. The multi-cycle technique is not ap-
plicable. The required number of samplings on pairs of starting nodes before
finding one pair reaching any one of the 22r pairs of target nodes at a common
distance is 22n−3n/2. Thus, it is required that 22r = 22n−3n/2 = 2n/2. This
gives r = n/4. The total complexity is then 25n/8 for all ` ≥ 3n/8.

– When the allowed length L′ of the second preimage is not limited and can be
greater than 2n/2, multi-cycles can be used. In this case, the required number
of samplings on pairs of starting nodes before finding one pair reaching any
one of the 22r pairs of target nodes at a common distance is 22n−3n/2−(`′−n/2).
Thus, 22r = 2n−`′ . This gives r = n/2 − `′/2. The total complexity is then
23n/4−`′/4 +2`′ +2n−`. We then balance the first two terms by setting 3n/4−
`′/4 = `′, which gives `′ = 3n/5.

55

• For the case ` < 2n/5, the total complexity is 2n−`;
• For the case 2n/5 ≤ `, the total complexity is stabilized at 23n/5.

(see Fig. 13 for trade-off curves).

7.3 Step 4: Constructing an Expandable Message
The constructing method is similar to that in Sect. 2.6, with slight modifications.
Detailed steps and the method used are shown in Alg. 6, where C ≈ n/2+log(n):

Algorithm 6: Building and using a simultaneous expandable mes-
sage applicable to attacks on the Zipper hash

1. x′
0 ← x̂

2. For i← 1, 2, · · · , C − 1 + t:
(a) Build a 2C−1 standard Joux’s multi-collision in h1 starting from x′

i−1,
and denote its final endpoint by spi.

(b) Compute xpi = h∗
1(spi, [0]s), where [0]s is an all-zero message of

size s blocks, where s = i if i ≤ C − 1 and s = C2i−(C−1)−1 if
C − 1 < i ≤ C − 1 + t.

(c) Find a collision h1(spi, mi) = h1(xpi, m′
i) with single block messages

mi, m′
i. Denote the collision by x′

i.
(d) We obtain a multi-collision in h1 with 2C messages that map x′

i−1
to x′

i.
i. Out of these messages, 2C−1 are of length b (obtained by combin-

ing one of the 2C−1 Joux’s multi-collisions with mi). We denote
this set of messages by Mshorti, where b = C.

ii. Out of these messages, 2C−1 are of length b (obtained by com-
bining one of the 2C−1 Joux’s multi-collisions with [0]s ‖m′

i) and
we denote this set of messages by Mlongi

, where b = C + i if
i ≤ C − 1 and b = C(2i−(C−1)−1 + 1) if C − 1 < i ≤ C − 1 + t.

3. Denote the last collision state x′
C−1+t by ẍ, and compute

ÿ = h2(h1(ẍ, m′
L′), m′

L′), where m′
L′ is a message block padded with the

length L′ of the second preimage.
4. y′

C−1+t ← ÿ, MSEMshort ← ∅, MSEMlong ← ∅.
5. For i← C − 1 + t, C − 1 + t− 1, . . . , 2, 1:

(a) For each ~msi ∈Mshorti, compute ui = h∗
2(y′

i,
←−
~msi) where

~msi = msi,1 ‖msi,2 ‖ · · · ‖msi,C−1 ‖msi,C and
←−
~msi = msi,C ‖msi,C−1 ‖ · · · ‖msi,1. Store each pair (ui, ~msi) in a

table Ui indexed by ui. The final size of Ui is 2C−1.
(b) For each ~mli ∈Mlongi

, compute vi = h∗
2(y′

i,
←−
~mli) where

~mli = mli,1 ‖mli,2 ‖ · · · ‖mli,s−1 ‖mli,s and
←−
~mli = mli,s ‖ mli,s−1 ‖ · · · ‖ mli,1, where s = C(2i−(C−1)−1 + 1) if
C− 1 < i ≤ C− 1 + t and s = C + i if 1 ≤ i ≤ C− 1. Store each pair
(vi, ~mli) in a table Vi indexed by vi. The final size of Vi is 2C−1.

56

(c) Find a match ui = vi between Ui and Vi, and denote the matched
state by y′

i−1 , ui = vi. Combine the corresponding message frag-
ment ~msi indexed by y′

i with MSEMshort and ~mli indexed by y′
i

with MSEMlong, i.e., MSEMshort = ~msi ‖ MSEMshort and MSEMlong =
~mli ‖MSEMlong.

Then, the whole simultaneous expandable message MSEM can be fully de-
fined byMSEMshort andMSEMlong. For any length κ lying in the appropriate
range of [C(C−1)+tC, C2−1+C(2t +t−1)], one can construct a message
M‖κ mapping x̂ to ỹ = y′

0 through h1 and h2 by picking messages fragment
either from MSEMshort or from MSEMlong as also described in Sect.2.6:

1. Select the length κ′ ∈ [C(C − 1), C2 − 1] such that κ′ = κ mod C,
defining the first C − 1 message fragment choices: selecting the message
fragment ~msi in MSEMshort for 1 ≤ i ≤ C − 1 and i 6= κ′ − C; selecting
the message fragment ~mli in MSEMlong for i = κ′ − C.

2. Compute kp ← (κ − κ′)/C, which is an integer in the range of [t, 2t +
t − 1], and select the final t message fragment choices as in a standard
expandable message using the binary representation of kp− t.

x′
0 = x̄

ỹ = y′
0

sp1

C − 1 1

C − 1 1 + i

x′
1

m1

xp1

~0
m′

1

y′
1

m1

m′
1

~0

sp2

C − 1 1

C − 1 2 + i

x′
2

m2

xp2

~0
m′

2

y′
2

m2

m′
2

~0

C − 1

[C(C − 1), C2 − 1]

spC−1+t

C − 1 1

C − 1 C2t−1 + 1

x′
C−1+t

mC−1+t

xpC−1+t~0
m′

C−1+t

y′
C−1+t

mC−1+t

m′
C−1+t

~0

t

C[t, 2t + t − 1]

[C(C − 1) + tC,C2 − 1 + (2t + t − 1)C]-expandable message

8 Second-Preimage Attack on Hash-Twice

In this section, we present an efficient second-preimage attack on another cas-
cade hash construction – Hash-Twice (a generalized specification HT (M) ,
H2(H1(IV, M), M)). Similar to the previous second-preimage attack on Hash-
Twice in [ABDK09], this attack builds a diamond structure for one hash func-
tion by exploiting messages in a long multi-collision built for the other hash
function. Like all our previous functional-graph-based (deep-iterates-based and
multi-cycles-based) attacks, it improves the attack from [ABDK09] because of
the efficiency brought by exploiting the special nodes in the functional graphs. It
follows the same structure as the second-preimage attack on the concatenation

57

combiner, but the result shows that attacking Hash-Twice can be much more
efficient than attacking the concatenation combiner. That is mainly because the
attack tries to connect to an n-bit internal state in the case of Hash-Twice, in-
stead of a 2n-bit internal state in the case of the concatenation combiner. Note
that similar to all previous functional-graph-based attacks, this attack applies
when the underlying hash functions use the MD construction.

8.1 Overview of the Attack

Given a challenge message M = m1 ‖ m2 ‖ · · · ‖ mL, the goal of the second-
preimage attack on Hash-Twice is to find another message M ′ such that
H2(H1(IV, M ′), M ′) = H2(H1(IV, M), M). The framework of this attack is
sketched as follows.

Attack 6: Second-preimage attack on Hash-Twice

– Phase 1: Generate a set of pairs of nodes S = {(x̄1, ȳ), (x̄2, ȳ), . . . , (x̄2s , ȳ)},
where x̄i’s are cyclic nodes randomly located in the largest cycle of FGf1 ,
and ȳ is a cyclic node in the largest cycle of FGf2 .
In addition, like in Step 2 of Attack 3, compute the set of correctable
distance bias D = {j ·∆L mod L1 | j = 0, 1, . . . , #C} with parameters
L1, L2 and #C (where ∆L = L2 mod L1, L1 and L2 are the two cycle
lengths, #C is the number of cycles to the maximum).

– Phase 2: Build a long Joux’s multi-collision MMC starting from ȳ and
denote its endpoint by ỹ. Then, by exploiting messages in MMC, build
a diamond structureMDS with the cyclic nodes x̄1, x̄2, . . . , x̄2s as leaves
and denote its root by x̃. Find a message block m̄ mapping the endpoint
ỹ of Joux’s multi-collision to one of the chaining states bp in the second
pass of the original message. After finding m̄, starting from the root x̃
of the diamond MDS, compute the final state x̄L in the first pass with
message fragment m̄ ‖mp+1 ‖ · · · ‖mL.

– Phase 3: Build a simultaneous expandable messageMSEM (with lengths
covering roughly [n2, L]) starting from (IV, x̄L). Denote its endpoints by
(x̂, ŷ).

– Phase 4: Find a message fragment MLink such that (x̂, ŷ) MLink−−−→ (x̄, ȳ)
for some (x̄, ȳ) ∈ S.
This is done by first build a 2r-interchange structureMIS starting from
(x̂, ŷ). Denote its two sets of endpoints by X and Y. Then, for states
in X and Y, launch a meet-in-the-middle procedure to find a pair of
nodes (x0, y0) with x0 = h1(x̌, m̌) and y0 = h1(y̌, m̌) and x̌ ∈ X and
y̌ ∈ Y, such that in FGf1 and FGf2 , the distance difference of x0 and y0
from some targeted nodes (x̄, ȳ) ∈ S is correctable by the values in D.
Denote the common distance after corrected as d. Retrieve the message
fragment MI from MIS such that (x̂, ŷ) MI−−→ (x̌, y̌). The desired MLink
is then defined as MLink ,MI ‖ m̌ ‖ [m]d.

58

At the end, select a message fragment ME ∈ MSEM with a proper block
length, and a message fragment MJ ∈MDS such that x̄

MJ−−→ x̃, and construct
a second preimage:

M ′ ,ME ‖MLink ‖MJ ‖ m̄ ‖mp+1 ‖ · · · ‖mL

= ME ‖MI ‖ m̌ ‖ [m]d ‖MJ ‖ m̄ ‖mp+1 ‖ · · · ‖mL.

a0 = IV

b0 = aL

a1

m1

b1

m1

ap−1

bp−1

ap

mp

bp

mp

aL−1

bL−1

aL

mL

H(M) = bL

mL

IV
x̂MSEM

x̄L

ŷ

MSEM

L1

L2

ȳ

x̄1

x̄i
x̄j

x̄2s

ỹMMC

x̃

MDS

m̄

m̄

x̄L

mp+1‖ · · · ‖mL

x0m̌
x̌

y0
m̌
y̌

X

Y

MIS

MIS

[m]d1

[m]d2

MI

MI

ME

ME

MJ

MJ

- Step 1 - Step 2 - Step 3 - Step 4 - Step 5 - Step 6 - Step 7 - Step 8

8.2 Details of the Second-Preimage Attack on Hash-Twice Based
on Multi-Cycles, Diamond and Interchange Structure for Long
Messages

The detailed steps of the second-preimage attack on Hash-Twice are follows:

Detailed Steps of Attack 6

1. Fix an arbitrary single-block message m and construct f1(·) , h1(·, m)
and f2(·) , h2(·, m).

(a) Run the cycle search algorithm several times to locate the largest
cycles in FGf1 and FGf2 , and obtain the cycle lengths L1 and L2.
Without loss of generality, assume L1 ≤ L2.

(b) Generate a set of 2s pairs of target nodes

S = {(x̄1, ȳ), (x̄2, ȳ), . . . , (x̄2s , ȳ)},

where x̄i are cyclic nodes randomly located in the largest cycle of
FGf1 and ȳ is a cyclic node in the largest cycle of FGf2 .

(c) Compute the set of correctable distance bias

D = {j ·∆L mod L1 | j = 0, 1, . . . , #C}

59

with parameters L1, L2 and #C (where #C is the allowed maximum
number of cycles and ∆L = L2 mod L1), as in Step 2 of Attack 3.

2. Develop 2t nodes in FGf1 (resp. FGf2) by running Alg. 5, and record
these together with their distances from a particular target node x̄i

(resp. ȳ) in FGf1 (resp. FGf2) in a table Tx (resp. Ty). Note that the
distance of a node from all other target nodes x̄j can be directly deduced
from the distance of it from the particular target node x̄i, as explained
in Step 4c of Attack 3.

3. Build a long Joux’s multi-collisionMMC of length s·n/2 (blocks) starting
from state ȳ, and denote its endpoint by ỹ. Then, by exploiting mes-
sages inMMC, build a diamond structureMDS starting from cyclic nodes
x̄1, x̄2, . . . , x̄2s (as leaves) and denote its root by x̃.

4. Find a message block m̄ mapping the endpoint ỹ of Joux’s multi-collision
to one of the chaining values bp in the second pass of the original mes-
sage, as done in the second-preimage attack on a single MD [KS05]. After
finding m̄, starting from the root x̃ of the diamond, directly compute
a final state (denoted by x̄L) in the first pass with message fragment
m̄ ‖mp+1 ‖ · · · ‖mL. The initial state in the second pass on the second
preimage is then determined to be x̄L.

5. Build a parallel simultaneous expandable message MSEM starting from
(IV, x̄L), and denote their endpoints by (x̂, ŷ).

6. Build a 2r-interchange structure MIS starting from (x̂, ŷ), and denote
its two sets of endpoints by X and Y.

7. Find a message fragment MLink such that (x̂, ŷ) MLink−−−→ (x̄, ȳ) for some
(x̄, ȳ) ∈ S. The search procedure is described as follows.

(a) Select a random single-block message w.
(b) Initialize a table Ty as empty.
(c) For each of the 2r states y̌′ ∈ Y:

– Compute y0 = h2(y̌′, w)
– Derive the distance dȳ of y0 from the target node ȳ in FGf2 (if it

is undefined ⊥, go to Step 7a), store (y̌′, dȳ) in Ty.
(d) For each of the 2r states x̌′ ∈ X :

– Compute x0 = h1(x̌′, w)
– For each of the 2s target node x̄i ∈ {x̄1, x̄2, · · · , x̄2s}
• Derive the distance of x0 from x̄i (as described in Step 4c of

Attack 3), denote it by dx̄i
.

• Make a match between dx̄i
and elements in Ty by checking

whether there exists a dȳ ∈ Ty such that (dx̄i
−dȳ mod L1) ∈

D. If one exists, retrieve y̌′ corresponding to dȳ from Ty. Derive
the common distance d , dx̄i +j ·L1 = dȳ +k ·L2. Set m̌ , w,
x̌ , x̌′, y̌ , y̌′, and x̄ , x̄i. Retrieve the message fragment MI

from MIS such that (x̂, ŷ) MI−−→ (x̌, y̌). Set MLink , MI ‖ m̌ ‖
[m]d, and go to the next step.

60

8. Select a message fragment ME ∈ MSEM with a proper length q = p −
(2t+1 + (2t − 1)2 · n/2) − 1 − d − s · n/2 − 1 = p − 2t+1 − (2t − 1)2 ·
n/2− d− s · n/2− 2, select the message fragment MJ ∈MDS such that
x̄

MJ−−→ x̃, and construct a second preimage:

M ′ ,ME ‖MLink ‖MJ ‖ m̄ ‖mp+1 ‖ · · · ‖mL

= ME ‖MI ‖ m̌ ‖ [m]d ‖MJ ‖ m̄ ‖mp+1 ‖ · · · ‖mL.

Complexity Analysis. The complexity of each step in this second-preimage
attack on Hash-Twice is as follows (denote L = 2`):

Step 1: 2n/2 Step 2: 2t Step 3: n
√

s · 2n/2+s/2

Step 4: 2n−` + 2` Step 5: 2` + n2 · 2n/2 Step 6: 2n/2+2r

Step 7: 2r · 2n−t · 2n−2r−s−` Step 8: 2`

For ` > n/2, we have 2n−` < 2n/2. The sum of dominant terms is (ignoring
polynomial factors)

2t + 2n/2+s/2 + 2` + 2n/2+2r + 22n−t−r−s−`.

We balance different terms by setting t = n/2 + 2r = n/2 + s/2 = 2n− t−
r − s− `, i.e., r = t/2− n/4, s = 2t− n and t = 13n/18− 2`/9. Consequently,
the total complexity is approximately

2` + 213n/18−2`/9.

The improved attack is valid for all ` > n/2 (even when we account for the
message length 22r of the interchange structure, which should be less the 2`).
The optimal complexity for this attack is 213n/22, obtained when 2` = 213n/22.
Compared with the original optimal complexity 22n/3 for messages of length
213n/22, the improvement is 25n/66 (see Fig. 13 for a trade-off curve).

8.3 Details of the Second-Preimage Attack on Hash-Twice Based
on Deep-iterates, Diamond and Interchange Structure for Short
Messages

Note that for L = 2` ≤ 2n/2, we can no longer apply the multi-cycles technique.
However, we can still choose deep-iterates with depth less than 2n/2 as target
nodes and selected proper iterate depth to improve the second-preimage attack
on Hash-Twice for short messages.

The procedure of this new attack is similar to that of the previous attack
in Sect.8.2. The difference lies in that in Step 1, we collect a set of 2s pairs of
target nodes {(x̄1, ȳ), (x̄2, ȳ), . . . , (x̄2s , ȳ)}, where x̄i’s are 2n−g-th iterate nodes
in FGf1 for 1 ≤ i ≤ 2s and ȳ is a 2n−g-th iterate node in FGf2 . It is required

61

that g ≥ max(n/2, n− `). In addition, in Steps 2 and 7, we use the distinguish-
point technique in the look-ahead procedure as we did in the preimage attack on
XOR combiner in Sect.4.2. The procedures in other steps are the same as those
in Sect.8.2.

In this case, required number of samplings before finding a pair of (x̌, y̌) such
that they reach one of a target pair of nodes (x̄i, ȳ) at a common distance changes
to be 23g−n−s−2r. Consequently, the complexity of Step 7 is 2r · 23g−n−s−2r ·
(2n−t + 2`+t−n + 2`+s−g). Thus, complexity of each step in this second-preimage
attack on Hash-Twice for short message is as follows:

Step 1: 2g Step 2: 2t Step 3: n
√

s · 2n/2+s/2

Step 4: 2n−` + 2` Step 5: 2` + n2 · 2n/2 Step 6: 2n/2+2r

Step 7: 23g−t−s−r + 23g+t−s−r+`−2n + 22g+`−n−r Step 8: 2`

For ` ≤ n/2, we have 2n−` ≥ 2n/2. Thus, the sum of dominant terms is

2g + 2t + 2n/2+s/2 + 2n−` + 2n/2+2r + 23g−s−t−r + 23g+t−s−r+`−2n + 22g+`−n−r.

We first set t = n/2+s/2 = n/2+2r = 3g−s−t−r, i.e., t = 2g/3+5n/18, s =
4g/3− 4n/9, and r = g/3−n/9 to make a balance. The sum of dominant terms
is 2g + 22g/3+5n/18 + 2n−` + 22g+`−7n/6 + 25g/3+`−8n/9. We optimize the attack
by picking the minimal value of g under the restriction g ≥ max(n/2, n− `), i.e.,
g = n− ` for ` ≤ n/2. Consequently, the total complexity becomes (for g = n− `
and ` < n/2, with the last two terms always less than 2n−`, the distinguished
points method allowed us to resolve with no overhead the complication of keeping
track of distances from 2s target nodes):

217n/18−2`/3 + 2n−`.

The improved attack is better than that in [ABDK09] for ` > 5n/12 (in which
case 17n/18− 2`/3 < 2n/3, the message length 22r of the interchange structure
is less the 2`, thus applicable). The optimal complexity for this attack is 211n/18,
obtained when ` = n/2. Compared with the previous best-known complexity
22n/3 at message length L = 2n/2, the improvement is 2n/18 (see Fig. 13 for a
trade-off curve).

9 More Applications and Extensions

9.1 Applications Beyond MD Construction and Beyond XOR
Operation

Application to HAIFA mode. The first preimage attack on the XOR combiner
purely bases on interchange structure. Thus, it works identically if the hash
functions use the HAIFA mode rather than the plain Merkle-Damgård iteration,
whereas the other attacks all based on functional graphs requiring identical com-
pression functions and thus cannot work if the underlying hash functions use the
HAIFA mode.

62

Application to Cryptophia’s short combiner. All of our attacks on XOR com-
biner can also be applied to Cryptophia’s short combiner, as proposed by Mit-
telbach [Mit13], and to the revised version of Mennink and Preneel [MP14]. This
combiner computes the sum of two hash functions with some pre-processing of
the message to allow non-independent functions:

C(M) = H1
(
m̃1

1 ‖ . . . ‖ m̃1
`

)
⊕H2

(
m̃2

1 ‖ . . . ‖ m̃2
`

)
m̃1

j = H1(0 ‖ l1 ‖mj ⊕ k1)⊕H2(0 ‖ l2 ‖mj ⊕ k2)
m̃2

j = H1(1 ‖ l1 ‖mj ⊕ k1)⊕H2(1 ‖ l2 ‖mj ⊕ k2)

where k1, k2, l1, l2 is a randomly chosen key. The security proof in the ideal model
shows that C is optimally preimage resistant if at least one of the hash functions
is ideal.

However, if both H1 and H2 are narrow-pipe, we can apply our preimage
attacks with the same corresponding complexity. This does not violate the se-
curity proof because we need both functions to be narrow-pipe and hence not
n-bit ideal25. From a practical point of view, though, they show that in many
cases (e.g. using SHA-512 and Whirlpool) the combiner is weaker than the initial
functions.

Application beyond XOR. All preimage attacks on XOR combiner can easily be
extended to H1(M)�H2(M) where � denotes an easy to invert group operation
(for instance, a modular addition rather than the exclusive or). These attacks can
also be extended to hash functions H1 and/or H2 using an internal checksum,
such as the GOST family of hash functions, using pairs of blocks with a constant
sum.

9.2 Applications to the Combination of Wide-Pipe Hash Functions

Our attacks can also be used when the internal state size n′ is (not much) larger
than the output size n.

The interchange-structure-based preimage attack on the XOR com-
biner. In Attack 1, the complexity of building a 2t-interchange structure is
related to n′ as (n′/2) · 22t+n′/2. On the other hand, the complexity of the meet-
in-the-middle preimage search is related to n as 2n−t. The optimal complexity is
(n′/2) ·22n/3+n′/6 by matching the two complexities with t = n/3−n′/6. There-
fore, our attack can be applied as long as n′ +6 log(n′) ≤ 2n holds. For instance,
we can compute preimages of SHA-224 ⊕ BLAKE-224 using the interchange-
structure-based attack with complexity roughly 2199.26

25 A large multi-collisions can be built with a cost of roughly 2n/2 in a narrow-pipe
function, but this costs almost 2n for an ideal hash function.

26 However, the message length can be a problem with some hash functions that do
not accept long inputs. For example, SHA-256 and SHA-224 are only defined for

63

The deep-iterates-based preimage attack on the XOR combiner. For
parameters g1 ≥ max(n′/2,
n′ − `) and s ≥ 0, the complexity of each phase in Attack 2 is as follows:

Phase 1: 2` + n′2 · 2n′/2 Phase 2: 2n+s−g1

Phase 3: 23g1/2−s/2 + 2`+9g1/2−2n′−3s/2 + 2`+2g1−n′

We balance the time complexities of different phases similar to what we did
before. In case of ` ≤ n′/2, we set g1 = n′ − `, the total time complexity of
the attack is 2n/3+2n′/3−2`/3 + 2n′−`. The optimal complexity is 2n/3+n′/3,27

obtained for ` = n′/2. It is less than 2n when n′ < 2n.

The multi-cycles-based preimage attack on the XOR combiner. The
complexity of each detailed step in Attack 3 is no longer related to the output
size n but related to the internal state size n′ except for Step 3. For Step 3, the
complexity is 2s+n−n′/2. For other steps, the complexity can be obtained by sim-
ply replacing n with n′ from the original formula. Then, the overall complexity
is approximately (note that ` ≥ n′/2)

2` + 2s+n−n′/2 + 2t + 22n′−t−s−`.

We balance the last three terms by setting s + n − n′/2 = t = 2n′ − t − s − `,
i.e., s = n′ − 2n/3 − `/3, t = n′/2 + n/3 − `/3. Then, the total complexity is
2` + 2n′/2+n/3−`/3. The optimal complexity is 23n′/8+n/4 for ` = 3n′/8 + n/4.
The complexity is less than 2n when n′/2 < ` < n and n′ < 2n.

The deep-iterates-based second-preimage attack on the concatenation
combiner. The complexity of Attack 4 is no longer related to the output size n
but rather is related to the internal state size n′ and the message length L = 2`.
The time complexity is 2(3/5)·(2n′−`) as long as ` ≤ 3n′/4 and is less than 2n for
` > 2n′ − 5n/3. Therefore, this attack can be applied when n′ < 4n/3.

The second-preimage attack on the Zipper hash. The complexity of At-
tack 5 is no longer related to the output size n but is related to the internal
state size n′. We can get the complexity by simply replacing n with n′ in the
formula. Accordingly, when the length L′ of the second preimage is limited by
2n′/2, the optimal complexity is 25n′/8 for all ` ≥ 3n′/8. It is less than 2n when
n′ < 8n/5. When the length L′ is not limited, the optimal complexity is 23n′/5

for all ` ≥ 2n′/5. It is less than 2n when n′ < 5n/3.

messages with less than 264 bits (i.e., 255 blocks). In this case, one can apply the
attack with a smaller value of t: this reduces the length of the messages at the cost
of more time spent in the preimage search step. Thus, to mount a preimage attack
against SHA-224 ⊕ BLAKE-224, we should use t = 24 instead of t = 32. Then, the
optimal complexity is 2200 instead of 2199.

27 Note that n/3 + n′/3 > n′/2 when n′ < 2n.

64

The second-preimage attack on Hash-Twice. The complexity of Attack 6
is no longer related to the output size n but rather is related to the internal
state size n′. Accordingly, when the length L = 2` is limited by 2n′/2, the total
complexity is 2n′−` +217n′/18−2`/3. The optimal complexity is 211n′/18, obtained
for ` = n′/2, which is less than 2n when n′ < 18n/11. When the length is not
limited, the total complexity is 2` + 213n′/18−2`/9. The optimal complexity is
213n′/22, obtained for ` = 13n′/22, which is less than 2n when n′ < 22n/13.

9.3 Extensions to the combination of three or more hash functions

The interchange-structure-based preimage attack on the XOR com-
biner. The interchange-structure-based attack on the XOR combiner, i.e., At-
tack 1, can be extended to the sum of three or more hash functions. To attack
the sum of k functions, two different strategies are possible: either we use a sim-
pler structure that only gives two degrees of freedom and fixes k − 2 functions
to a constant value, or we build an interchange structure to control all the k
functions independently.

Controlling only two functions. The easiest way to extend the attack is to use a
single chain in the k−2 extra hash functions. The procedure to build a switch is
modified in order to use multi-collisions for k−1 functions instead a simple multi-
collisions for one function; this costs O(nk−1 ·2n/2) using Joux’s method [Jou04].
As in the basic attack, we need O(t2) switches to generate a 2t-interchange for
two functions, and the preimage search costs O(2n−t); the optimal complexity
is therefore O(nk−1 · 25n/6) with t = n/6.

Controlling all the functions. Alternatively, we can build a more complex in-
terchange structure in order to control all the functions independently. When
attacking three functions, we will use the switch structure to jump from chains
(~aj0 ,~bk0 ,~cl0) to (~aj0 ,~bk0 ,~cl1) (or (~aj0 ,~bk1 ,~cl0) or (~aj1 ,~bk0 ,~cl0)). We need 23t − 1
switches in the interchange structure to reach all the 23t triplets of chains (a
switch makes only one new triplet reachable). Each switch is built using a 2n/2-
multi-collision on two functions, which can be built for a cost of O(n2 · 2n/2)
following Joux’s technique [Jou04]. Therefore, we can build a 2t-interchange for
a cost of O(n2 ·23t+n/2). More generally, for the sum of k hash functions, we can
build an interchange structure for k functions for a cost of O(nk−1 · 2kt+n/2).

In the preimage search phase, we generate k lists of size 2t, and we need to
detect efficiently whether we can combine then to generate a zero-sum. This prob-
lem can be solved using an algorithm similar to Wagner’s generalized birthday
algorithm [Wag02]. If k = 2κ, we find a solution with probability O(2(κ+1)·t−n)
for a cost of O(k · 2t). Therefore, the preimage search costs O(k · 2n−κt). With
k = 4 (i.e., κ = 2), this yields a complexity of O(n3 · 25n/6). However, this
approach is less efficient than the previous one for k = 3 and for k > 4.

To summarize, attacking the sum of k hash functions (k ≥ 2) using interchange
structure costs O(nk−1 · 25n/6). Controlling chains independently in more than

65

two hash function might be useful for further work, but it does not improve the
preimage attack on the sum of k hash functions.

The deep-iterates-based preimage attack on the XOR combiner. Sup-
pose the combiner outputs the sum of k hash digests of n bits. To extend At-
tack 2, one needs to first construct a simultaneous expandable message for k
independent hash functions, this costs O(2` + n2(k−1) · 2n/2) by setting C ≈
(n/2 + log(n))k−1 (see Fig.9a).

To extend Phase 2, one collects 2g1 deep-iterates for each of the k random
functional graphs. Then, tries to find a set of 2s tuples of k deep-iterates by
mapping a single-block message to states whose sum equals the target V . Again,
this can be solved using an algorithm similar to Wagner’s generalized birthday
algorithm, with k lists of size 2g1 . Let k = 2κ, and then finding 2s tuples costs
O(2s · k · 2n−κg1) ≈ 2n+s−κg1 .

To extend Phase 3, one expands the k functional graphs independently with
parameter g2 in the look-ahead procedure and then tries to find a tuple of k start-
ing nodes simultaneously hitting one of the 2s tuples of k deep-iterates obtained
in Phase 2. Note that for one tuple of k deep-iterates of depth 2d in indepen-
dent random functional graphs, the probability for a tuple of k random nodes
reaching them simultaneously is approximately 2−kn

∑2d

i=1 ik ≈ 2(k+1)d−kn. In
the attack, d = n− g1. Thus, the complexity of Phase 3 becomes

2g2 + 2kn−(k+1)(n−g1)−s · (2n−g2 + 2l+g2−n + 2l+s−g1)
=2g2 + 2(k+1)g1−g2−s + 2(k+1)g1+g2+l−2n−s + 2kg1+l−n

Note that in this attack, the restrictions are ` ≤ n/2 and g1 ≥ max(n/2, n− l).
Thus, the last term in the complexity of Phase 3, i.e., 2kg1+l−n, cannot be less
than 2n for k ≥ 3. In other words, when combining more than two hashes, under
any configuration for parameters of the attack, the distinguished points method
no longer allowed us to resolve with no overhead the complication of keeping
track of distances from the S-nodes. Thus, this extended attack is not more
efficient than 2n.

The multi-cycles-based preimage attack on the XOR combiner. The
extension of Attack 3 is very similar to the above extension of the deep-iterates-
based preimage attack. However, because this attack does not need to use the
distinguished points method, it can be more efficient than 2n for k ≥ 3. Let
k = 2κ. Following a similar analysis for the complexity of each step to the above
one, we have the following:

Step 1: 2` + n2(k−1) · 2n/2 Step 2: 2n/2 + 2`−n/2 Step 3: 2s+n−κ·n/2

Step 4: k · 2t Step 5: 2n−t+kn/2−s−` Step 6: 2`

We make a balance by setting s + n − κ · n/2 = t = n − t + kn/2 − s − `, i.e.,
s = (k +2κ−2)n/6−`/3, and t = (k−κ)n/6+2n/3−`/3. Then, the complexity

66

becomes 2` + 2(k−κ)n/6+2n/3−`/3. It is optimally 2(k−κ+4)n/8 by setting ` = (k−
κ + 4)n/8 (in this attack, we assume n/2 < ` < n).

Accordingly, it costs less than 2n computations for k < 7. For k = 3, the
optimal complexity is approximately 2(7−log2 3)n/8 ≈ 20.677n. For k = 4, the
optimal complexity is approximately 23n/4 ≈ 20.75n. For k = 5 and k = 6, this
extension is less efficient than the above extended interchange-structure-based
attack.

The deep-iterates-based second-preimage attack on the concatenation
combiner. Suppose the combiner outputs the concatenation of k hash digests
of n bits. The direct way to extend Attack 4 is to simultaneously control k
hash functions. To do that, again, one needs to first construct a simultaneous
expandable message for k independent hash functions, this costs O(2` +n2(k−1) ·
2n/2) (see Fig.9a). To extend Phase 2, one collects 2g1 deep iterates for each of
the k random functional graphs and then tries to find a tuple of k deep iterates
hitting k internal states at the same offset p which uniformly distributed in the
interval [1, 2`]. The complexity of Phase 2 is 2g1 · 2−` · 2kn−kg1 = 2kn−(k−1)g1−`.
To extend Phase 3, one expands the k functional graphs with parameter g2
independently and tries to find a tuple of k starting nodes simultaneously hitting
the tuple of k deep iterates obtained in Phase 2. As calculated above, for a tuple
of k deep iterates of depth 2n−g1 in independent random functional graphs, the
probability for a tuple of k random nodes reaching them simultaneously is about
2(k+1)(n−g1)−kn. Thus, the complexity of Phase 3 becomes 2(k+1)g1/2 by setting
g2 = (n − g2) + kn − (k + 1)(n − g1), i.e., g2 = (k + 1)g1/2. After making a
balance between different phases by setting g1 = 2(kn − `)/(3k − 1), one will
find that the optimal complexity is 2(k+1)n/4, obtained for l = (k + 1)n/4. Thus,
for k ≥ 3, the attack is not more efficient than 2n.

x0

y0

z0

H1

H2

H3

Step 1

Step 2

Step 3

sp
m1

xp

[0]i−C m′
1

x′
1 x1

m1

[0]i−C
m′

1

y′
1 y1

M
1

M
′
1

C ≈ (n
2)2

m1

[0]i−C
m′

1

y′
1

M1

M ′
1

z1

1
n
2 − 1 n

2 (n
2 − 1)

(i − C) + 1 n
2 − 1 n

2 (n
2 − 1)

(a) Parallel

y1

yp

y′
1 y0

m1

m′
1 [0]i−C

1
n
2 − 1 n

2 (n
2 − 1)

(i − C) + 1 n
2 − 1 n

2 (n
2 − 1)

C ≈ (n
2)2

x1 x′
1 x0

m1

m′
1 [0]i−C

M
1

M
′
1

z1 z0

m1

m′
1 [0]i−C

M1

M ′
1

H1

H2

H3

Step 2

Step 1

Step 3

(b) Zipper (built in the
front)

x′
1

z′
1

H1

H2

H3

Step 1

Step 3

Step 2

sp
m1

xp

[0]i−C m′
1

x1x0

y1y0

m1

[0]i−C m′
1

M
1

M
′
1

m1

[0]i−C
m′

1

z1z0
M

1

M
′
1

1
n
2 − 1n

2 (n
2 − 1)

(i − C) + 1 n
2 − 1n

2 (n
2 − 1)

C ≈ (n
2)2

(c) Zipper (built at the end)

Fig. 9: Construct a building block for a 3-pass simultaneous expandable message

67

The second-preimage attack on the Zipper hash. When the Zipper hash
combines k > 2 hash functions by alternatively forward computing and reverse
computing, one can still extend Attack 5.

To construct a simultaneous expandable message adaptable for the Zipper
hash, one first constructs partial building blocks for all the computational passes
in one direction and then constructs them for all the computational passes in
the other direction. Note that in each of the building blocks in a simultaneous
expandable message for the Zipper hash, there are two pieces of Joux’s multi-
collisions, each at one of the two ends of the building block. The left Joux’s multi-
collisions are for synchronizing the reverse computations, and the right Joux’s
multi-collisions are for synchronizing the forward computations. The complexity
to build a cascade simultaneous expandable message for k hash functions can
be the same as that of building a parallel one, which is approximately O(2` +
n2(k−1) · 2n/2). Note that for even k, the simultaneous expandable message is
placed at the end of each pass, and the length of the second preimage encoded
in the simultaneous expandable message can be chosen to optimize the attack,
while for odd k, the simultaneous expandable message is placed in the front end
of each pass (see Fig.9b and 9c).

Next, we take k = 3 for example to briefly describe the extended attack
(see Fig.10). The attack first collects a triple of cyclic nodes (x̄, ȳ, z̄), each
node located in each of the three random functional graphs generated using
the three compression functions. Start from z̄, we build a 2r· n

2 -Joux’s multi-
collisions MMC3, ending with ẑ. By exploiting messages in MMC3, we can start
from x̄ and build a 2r-Joux’s multi-collisions MMC1, ending with x̂. This is es-
sentially computing a 2r-simultaneous Joux’s multi-collision starting from state
pair (x̄, z̄) and ending with (x̂, ẑ). We denoted it by MMC13. Start from ȳ, we
build a 2r-Joux’s multi-collisionsMMC2 for the reverse computation, ending with
ŷ. Then, find a message block m̄ mapping ẑ to an internal state cp in the original
computation with M . Afterwards, the suffix of the second preimage is fixed to
be mp+1 ‖mp+2 ‖ · · · ‖mL.

Starting from ŷ, we compute the cascade simultaneous expandable message.
Note that, only after we completed the computation in the second pass (which
is a reverse computation in the middle of the two forward computations) and
get the terminal point ÿ, can we start the computation in the first and third
passes. The first pass starts from IV and the third pass starts from the terminal
point of the second pass, i.e., z̈ = ÿ. Because there is only one reverse pass,
in each building block, only the right piece of Joux’s multi-collision is required
(see Fig.9b, if k ≥ 4, there should be another piece of Joux’s multi-collision at
the left end in each building block). At last, we launch a meet-in-the-middle
procedure using messages inMMC13 andMMC2, to find a triple of starting nodes
(x̌, y̌, ž) simultaneously reach the triple of deep-iterates (x̄, ȳ, z̄), and output the
concatenation of the obtained message fragments.

We analysis the complexity of the extended attack in general supposing that
there are k computational passes. Note that, among the k computation passes,
there are dk/2e forward computations and bk/2c reverse computations. We have

68

- Step 1

- Step 2

- Step 3

- Step 4

- Step 5

- Step 6

- Step 7 ∼ 8

- Step 9

a0 = IV a1

m1

ap−1 ap

mp

ap+1

mp+1

aL−1 aL

mL

b0 b1

m1

bp−1 bp

mp

bp+1

mp+1

bL−1 bL = aL

mL

c0 = b0 c1

m1

cp−1 cp

mp

cp+1

mp+1

cL−1 cL

mL

ẑ

m̄

z̄ MMC13

r · n
2

ž [m]d3

z̃
MMC2

M2z̈
MSEM

M‖q

ỹ ỹp

m̄

ỹL = x̂L

mp+1‖ · ‖mL

y̌

MMC13

M1

ȳ

[m]d2

ÿ
ŷMSEM

M‖q

MMC2

r

x̂ x̂p

m̄

x̂L

mp+1‖ · ‖mL

x̄ MMC13

r · n
2

x̌
[m

]
d1

x̃
MMC2

M2IV
MSEM

M‖q

Fig. 10: Second-preimage attacks on 3-pass Zipper

22r pairs of starting nodes in the meet-in-the-middle procedure in the extended
attack, which is the Cartesian product between the set of 2r nodes for the for-
ward computations and the set of 2r nodes for the reverse computations. Let
the deep-iterates nodes be of depth 2d; then, each pair succeeds with probabil-
ity 2(k+1)d−kn without using multi-cycles, and the probability amplified to be
2(k+1)n/2−kn−n/2+`′ by using multi-cycles.

If the message length is limited to be no more than 2n/2, we cannot use the
multi-cycles technique. The success of the attack requires 2r = kn− (k + 1) · d,
and the attack complexity is approximately 2t + 2`′ + 2n−` + 2r · 2n−t. Setting
d = n/2 and `′ = ` = n/2, we get r = kn/4−n/4, and the optimal complexity is
2kn/8+3n/8, which is less than 2n for k < 5. Concretely, the complexity is 23n/4

for k = 3 and 27n/8 for k = 4.
If the message length is not limited, we can use the multi-cycles technique.

The success of the attack requires 2r = kn−(k+1)·n/2+n/2−`′, i.e., r = kn/4−
`′/2. The attack complexity is approximately 2t + 2`′ + 2n−` + 2kn/4−`′/2+n−t.
We balance the terms by setting t = kn/4 − `′/2 + n − t = `′ and achieve the
optimized complexity 2kn/10+2n/5 for n − ` < `′ and `′ = kn/10 + 2n/5. It is
less than 2n when k < 6. Concretely, the complexity is 27n/10, 24n/5, 29n/10 for
k = 3, 4, 5 respectively.

The second-preimage attack on Hash-Twice. Attack 6 can be extended
using two different strategies: either we only build an interchange structure for
two of the k computational passes or we build an interchange structure to control
all the k computational passes. The second strategies cannot be more efficient

69

than the first. Thus, we only describe the extended attack following the first
strategy here.

In the extended attack on hashing k times, the frameworks for constructing
the first and last passes are almost identical to that of the original attack (see
Fig.11). We collect 2s special nodes in the functional graph of the first hash
function. We collect one special node in each of the last k− 1 hash functions. If
the message length is not limited, we select cyclic node as special nodes to be
targeted (when using multi-cycles technique, we only consider the correctable
distances between two of the k cycles); if the message length is limited, we select
deep-iterate nodes as the special nodes to be targeted. We thus get 2s tuples of k
target nodes. From those target nodes in the last k−1 passes, we build a 2s·n/2-
simultaneous Joux’s multi-collisionMMC (that is, a set of messages that is Joux’s
multi-collision for the k− 1 independent hash functions simultaneously, and is a
2s·(n/2)k−i+1 -Joux’s multi-collision for the i-th hash). We herd the 2s target nodes
in the first pass to a single state x̃ by building a diamond using messages inMMC.
We try to hit an internal state in the last computational pass from the endpoint
of the last Joux’s multi-collision. After that, suffix of the second preimage is
fixed. We can then compute the final states of the first k − 1 passes, which are
also initial states of the last k−1 passes. We then start from the initial states in
the k computational passes, compute a k-pass simultaneous expandable message
(see Fig.9a). Starting from the terminal states of the simultaneous expandable
message, we build an interchange structure in which two of the k passes have 2r

chains and the remaining k − 2 passes have a single chain (which essentially is
a simultaneous Joux’s multi-collision for the remaining k− 2 passes). We finally
try to use the endpoints of the interchange structure to find a tuple of k starting
nodes reaching one of the 2s tuples of k target nodes at the same distance.

If the message length is limited to be no more than 2n/2, we use deep-iterates
nodes (with depth 2n−g, where g ≥ max(n/2, n − `)) as targeted nodes in the
above extended attack. Following an analysis similar to the one in Sect. 8.3,
one finds that the complexity is as follows (ignore the constant and polynomial
factors):

Step 1: k · 2g Step 2: k · 2t Step 3: n
√

s · 2n/2+s/2 + s · nk−1 · 2n/2

Step 4: 2n−` + 2` Step 5: 2` + n2k+2 · 2n/2 Step 6: nk−1 · 2n/2+2r

Step 7: 2(k+1)g−t−s−r + 2(k+1)g+t−s−r+`−2n + 2kg+`−n−r

In Sect. 8.3, for the case k = 2, we balance the complexity using the first term
in the formula of Step 7, because the last two terms in the formula of Step
7 is less than the first term under the best configuration. Here, for the case
k ≥ 3, we balance the complexity using the third term in the formula of Step
7, because the third term is greater than the first two terms. Specifically, we
set t = n/2 + s/2 = n/2 + 2r = kg + ` − n − r, i.e., t = 2kg/3 + 2`/3 − n/2,
s = 4kg/3+4`/3−2n, and r = kg/3+`/3−n/2. The complexity of the dominant
terms is 2g+22kg/3+2`/3−n/2+2−4kg/3+g−7`/3+3n, in which the mid term is always
greater than 2n for k ≥ 4 under the restrictions g ≥ max(n/2, n−`) and ` ≤ n/2.
Thus, the attack can be more efficient than 2n only for k < 4. For k = 3, we set

70

a0 = IV

b0 = aL

c0 = bL

a1

m1

b1

m1

c1

m1

ap−1

bp−1

cp−1

ap

mp

bp

mp

cp

mp

aL−1

bL−1

cL−1

aL

mL

bL

mL

cL

mL

IV
x̂MSEM

x̄L

ŷMSEM

ȳL

ẑMSEM

x0m̌
x̌

y0
m̌

y̌

z0
m̌
ž

X

Z

MIS

MIS

L1

L2

L3

x̄1

x̄i
x̄j

x̄2s

ȳ

z̄

ỹMMC

z̃MMC

m̄

x̃

MDS

m̄

m̄

x̄L

mp+1‖ · · · ‖mL

ȳL

mp+1‖ · · · ‖mL

[m]d1

[m]d2

[m]d3

MI

MI

MI

ME

ME

ME

MJ

MJ

MJ

- Step 1

- Step 2

- Step 3

- Step 4

- Step 5

- Step 6

- Step 7

- Step 8

Fig. 11: Second-preimage attacks on 3-pass Hash-Twice

g = n− ` to optimize the complexity. In this case, r = k(n− `)/3 + `/3− n/2,
which fulfils the restriction 2r ≤ ` when k ≤ 3. The complexity is then

2n−` + 2(4k−3)n/6−2(k−1)`/3.

It is optimally (2k − 1)n/6, obtained for ` = n/2. As a result, for k = 3, the
optimal complexity is 25n/6.

If the message length is not limited and ` > n/2, we use the multi-cycles
technique. Following an analysis similar to the one in Sect. 8.2, one can find that
the complexity is as follows (ignoring the constant and polynomial factors):

Step 1: k · 2n/2 Step 2: k · 2t

Step 3: n
√

s · 2n/2+s/2 + s · nk−1 · 2n/2

Step 4: 2n−` + 2` Step 5: 2` + n2k+2 · 2n/2

Step 6: nk−1 · 2n/2+2r Step 7: 2(k+2)n/2−t−r−s−` Step 8: 2`

We make a balance by setting t = n/2+s/2 = n/2+2r = (k+2)n/2−t−r−s−`,
i.e., t = (2k + 9)n/18 − 2`/9, s = 2kn/9 − 4`/9, and r = kn/18 − `/9. The
complexity is then

2` + 2(2k+9)n/18−2`/9.

It is optimally 2(2k+9)n/22 when ` = (9 + 2k)n/22. Thus, the attack costs less
than 2n for k < 7. Concretely, it is 215n/22, 217n/22, 219n/22, 221n/22 for k =
3, 4, 5, 6 respectively.

71

Remark. From the above results, in the functional-graph-based attacks, when
use a set of deep iterates as targeted states for attacks with short messages, one
has to use the distinguished points method, which is not adequately efficient
to attack combiners of more than three hash functions. In contrast, when using
a set of cyclic nodes for attacks with long messages, one does not need the
distinguished points method and thus can extend the attacks to combiners with
n-bit output of up to six Merkle-Damgård hash functions.

10 Summary and Open Problems

In this paper, we study the security of various of hash combiners by devising
generic attacks. These attacks show rather surprising results — the security
upper bounds of most hash combiners are not as high as commonly believed.
Regarding basic security requirements (preimage resistance, second-preimage
resistance), they fail to provide more (or even the same) security than that
provided by a single ideal hash function, or even less than that provided by its
underlying hash functions. See Tab. 1 for a summary of their current security
status. In Fig. 12 and Fig. 13, we summarize their detailed security status by
drawing trade-off curves between the length of the message and the complexity
of the attacks. From these trade-off curves, for combiners with underlying hash
functions using Merkle-Damgård construction, the gaps between the security up-
per bounds and the security lower bounds provided by security proof are quite
narrow. However, that is true only for very long messages. For short messages,
the gap remains large. That mainly results from the limitation of the key tech-
niques used in our attacks. Our attacks highly exploit the iterated property of
the underlying hash functions. Particularly, most of our attacks exploit prop-
erties of functional graphs of random mappings generated by fixing a message
block input to the compression functions. Thus, they usually involve iterating
the compression functions with fixed message block many times. Therefore, our
crafted messages are very long, and they are typically composed of a large num-
ber of repeated message blocks (which can be easily recognized). Thus, one open
problem is how to extend the attacks to apply to short messages or with small
patches. Another open problem is how to extend the attacks to combiners with
at least one underlying hash function following the HAIFA framework.

72

1
24

1
12

1
8

1
6

5
24

1
4

7
24

1
3

3
8

5
12

11
24

1
2

13
24

7
12

5
8

2
3

17
24

3
4

19
24

5
6

7
8

11
12

23
24

1

1
2

13
24

7
12

5
8

2
3

17
24

3
4

19
24

5
6

7
8

11
12

23
24

1

(1
3 , 5

6)

(1
2 , 2

3)

(3
11 , 17

22)

(1
2 , 9

14) (5
8 , 5

8)
(11

18 , 11
18)

(1
3 , 1)

(3
4 , 3

4)

(2
7 , 1)

(7
17 , 31

34)

(25
34 , 25

34)

Length of the original messages (log2(L)/n)

C
om

pl
ex

it
y

(l
og

2
(C

)/
n

)

[Sect. 3.1] Preimage on H1(M) ⊕ H2(M) of HAIFA, Tech. IS
[Sect. 4.1] Preimage on H1(M) ⊕ H2(M) of MD, Tech. SEM+FGDI
[Sect. 4.3] Preimage on H1(M) ⊕ H2(M) of MD, Tech. SEM+FGDI+IS
[Sect. 5.2] Preimage on H1(M) ⊕ H2(M) of MD, Tech. SEM+FGMC
[Sect. 5.3] Preimage on H1(M) ⊕ H2(M) of MD, Tech. SEM+FGMC+IS
[Sect. 6.1] 2nd-preimage on H1(M) ‖ H2(M) of MD, Tech. SEM+FGDI
[Sect. 6.3] 2nd-preimage on H1(M) ‖ H2(M) of MD, Tech. SEM+FGDI+IS

Fig. 12: Trade-offs between the message length and the complexity of attacks on
parallel hash combiners

1
24

1
12

1
8

1
6

5
24

1
4

7
24

1
3

3
8

5
12

11
24

1
2

13
24

7
12

5
8

2
3

17
24

3
4

19
24

5
6

7
8

11
12

23
24

1

1
2

13
24

7
12

5
8

2
3

17
24

3
4

19
24

(3
8 , 5

8)

(2
5 , 3

5)

(1
3 , 2

3)

(1
2 , 11

18)

(5
12 , 2

3)

(13
22 , 13

22)

Length of the original messages (log2(L)/n)

C
om

pl
ex

it
y

(l
og

2
(C

)/
n

)

[Sect. 7] 2nd-preimage on Zipper of MD, Limit L ≤ 2n/2, Tech. SEM+MC+FGDI
[Sect. 7] 2nd-preimage on Zipper of MD, No limit on L, Tech. SEM+MC+FGMC
[ABDK09] 2nd-preimage on Hash-Twice of MD, Tech. EM+MC+DS

[Sect. 8.3] 2nd-preimage on Hash-Twice of MD for L ≤ 2n/2, Tech. SEM+IS+FGDI+DS

[Sect. 8.2] 2nd-preimage on Hash-Twice of MD for L > 2n/2, Tech. SEM+IS+FGMC+DS

Fig. 13: Trade-offs between the message length and the complexity of attacks on
cascade hash combiners

Acknowledgments
This research is supported by the National Research Foundation, Prime Minis-
ter’s Office, Singapore under its Strategic Capability Research Centres Funding

73

Initiative, Nanyang Technological University under research grant M4082123,
and Singapore’s Ministry of Education under grant M4012049. Itai Dinur is sup-
ported in part by the Israeli Science Foundation through grant No. 573/16. Lei
Wang is supported by National Natural Science Foundation of China (61602302,
61472250, 61672347), Natural Science Foundation of Shanghai (16ZR1416400),
Shanghai Excellent Academic Leader Funds (16XD1401300), 13th five-year Na-
tional Development Fund of Cryptography (MMJJ20170114).

References

ABD+16. Elena Andreeva, Charles Bouillaguet, Orr Dunkelman, Pierre-Alain
Fouque, Jonathan J. Hoch, John Kelsey, Adi Shamir, and Sébastien Zim-
mer. New Second-Preimage Attacks on Hash Functions. J. Cryptology,
29(4):657–696, 2016.

ABDK09. Elena Andreeva, Charles Bouillaguet, Orr Dunkelman, and John Kelsey.
Herding, second preimage and trojan message attacks beyond merkle-
damgård. In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-
Naini, editors, Selected Areas in Cryptography, 16th Annual International
Workshop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009, Re-
vised Selected Papers, volume 5867 of Lecture Notes in Computer Science,
pages 393–414. Springer, 2009.

ABF+08. Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan J.
Hoch, John Kelsey, Adi Shamir, and Sébastien Zimmer. Second Preimage
Attacks on Dithered Hash Functions. In Nigel P. Smart, editor, Advances in
Cryptology - EUROCRYPT 2008, 27th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey,
April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes in Computer
Science, pages 270–288. Springer, 2008.

ADG+08. Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors. Automata, Languages
and Programming, 35th International Colloquium, ICALP 2008, Reykjavik,
Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics,
and Theory of Programming & Track C: Security and Cryptography Foun-
dations, volume 5126 of Lecture Notes in Computer Science. Springer, 2008.

BB06. Dan Boneh and Xavier Boyen. On the Impossibility of Efficiently Com-
bining Collision Resistant Hash Functions. In Cynthia Dwork, editor, Ad-
vances in Cryptology - CRYPTO 2006, 26th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 20-24, 2006,
Proceedings, volume 4117 of Lecture Notes in Computer Science, pages
570–583. Springer, 2006.

BD07. Eli Biham and Orr Dunkelman. A Framework for Iterative Hash Functions
- HAIFA. IACR Cryptology ePrint Archive, 2007:278, 2007.

BGW18. Zhenzhen Bao, Jian Guo, and Lei Wang. Functional Graphs and Their
Applications in Generic Attacks on Iterated Hash Constructions. IACR
Trans. Symmetric Cryptol., 2018(1):201–253, 2018.

Bra90. Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer
Science. Springer, 1990.

74

BSU12. Simon R. Blackburn, Douglas R. Stinson, and Jalaj Upadhyay. On the com-
plexity of the herding attack and some related attacks on hash functions.
Des. Codes Cryptography, 64(1-2):171–193, 2012.

BWGG17. Zhenzhen Bao, Lei Wang, Jian Guo, and Dawu Gu. Functional graph revis-
ited: Updates on (second) preimage attacks on hash combiners. In Jonathan
Katz and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017
- 37th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 20-24, 2017, Proceedings, Part II, volume 10402 of Lecture
Notes in Computer Science, pages 404–427. Springer, 2017.

CJ15. Shiwei Chen and Chenhui Jin. A second preimage attack on zipper hash.
Security and Communication Networks, 8(16):2860–2866, 2015.

Cra05. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceed-
ings, volume 3494 of Lecture Notes in Computer Science. Springer, 2005.

CRS+07. Ran Canetti, Ronald L. Rivest, Madhu Sudan, Luca Trevisan, Salil P. Vad-
han, and Hoeteck Wee. Amplifying Collision Resistance: A Complexity-
Theoretic Treatment. In Menezes [Men07], pages 264–283.

DA99a. Richard Drews Dean and Andrew Appel. Formal Aspects of Mobile Code
Security. PhD thesis, Princeton University Princeton, 1999.

DA99b. Tim Dierks and Christopher Allen. The TLS Protocol Version 1.0. RFC,
2246:1–80, 1999.

Dam89. Ivan Damgård. A Design Principle for Hash Functions. In Brassard [Bra90],
pages 416–427.

Din16. Itai Dinur. New Attacks on the Concatenation and XOR Hash Combiners.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology
- EUROCRYPT 2016 - 35th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part I, volume 9665 of Lecture Notes in Computer
Science, pages 484–508. Springer, 2016.

DL14. Itai Dinur and Gaëtan Leurent. Improved Generic Attacks against Hash-
Based MACs and HAIFA. In Garay and Gennaro [GG14], pages 149–168.

DP07. Orr Dunkelman and Bart Preneel. Generalizing the Herding Attack to
Concatenated Hashing Schemes. In In ECRYPT Hash Function Workshop.
Citeseer, 2007.

DR08. Tim Dierks and Eric Rescorla. The transport layer security (TLS) protocol
version 1.2. RFC, 5246:1–104, 2008.

FKK11. Alan O. Freier, Philip Karlton, and Paul C. Kocher. The secure sockets
layer (SSL) protocol version 3.0. RFC, 6101:1–67, 2011.

FL07. Marc Fischlin and Anja Lehmann. Security-Amplifying Combiners for
Collision-Resistant Hash Functions. In Menezes [Men07], pages 224–243.

FL08. Marc Fischlin and Anja Lehmann. Multi-property Preserving Combiners
for Hash Functions. In Ran Canetti, editor, Theory of Cryptography, Fifth
Theory of Cryptography Conference, TCC 2008, New York, USA, March
19-21, 2008., volume 4948 of Lecture Notes in Computer Science, pages
375–392. Springer, 2008.

FLP08. Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. Robust Multi-
property Combiners for Hash Functions Revisited. In Aceto et al.
[ADG+08], pages 655–666.

75

FLP14. Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. Robust Multi-
Property Combiners for Hash Functions. J. Cryptology, 27(3):397–428,
2014.

FO89. Philippe Flajolet and Andrew M. Odlyzko. Random Mapping Statistics. In
Jean-Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryp-
tology - EUROCRYPT ’89, Workshop on the Theory and Application of
of Cryptographic Techniques, Houthalen, Belgium, April 10-13, 1989, Pro-
ceedings, volume 434 of Lecture Notes in Computer Science, pages 329–354.
Springer, 1989.

GG14. Juan A. Garay and Rosario Gennaro, editors. Advances in Cryptology
- CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of Lecture
Notes in Computer Science. Springer, 2014.

GPSW14. Jian Guo, Thomas Peyrin, Yu Sasaki, and Lei Wang. Updates on Generic
Attacks against HMAC and NMAC. In Garay and Gennaro [GG14], pages
131–148.

Hel80. Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans.
Information Theory, 26(4):401–406, 1980.

Her05. Amir Herzberg. On Tolerant Cryptographic Constructions. In Alfred
Menezes, editor, Topics in Cryptology - CT-RSA 2005, The Cryptographers’
Track at the RSA Conference 2005, San Francisco, CA, USA, February 14-
18, 2005, Proceedings, volume 3376 of Lecture Notes in Computer Science,
pages 172–190. Springer, 2005.

Her09. Amir Herzberg. Folklore, practice and theory of robust combiners. Journal
of Computer Security, 17(2):159–189, 2009.

HS06. Jonathan J. Hoch and Adi Shamir. Breaking the ICE - finding multicol-
lisions in iterated concatenated and expanded (ICE) hash functions. In
Matthew J. B. Robshaw, editor, Fast Software Encryption, 13th Interna-
tional Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised
Selected Papers, volume 4047 of Lecture Notes in Computer Science, pages
179–194. Springer, 2006.

HS08. Jonathan J. Hoch and Adi Shamir. On the Strength of the Concatenated
Hash Combiner When All the Hash Functions Are Weak. In Aceto et al.
[ADG+08], pages 616–630.

JN15. Ashwin Jha and Mridul Nandi. Some Cryptanalytic Results on Zipper
Hash and Concatenated Hash. IACR Cryptology ePrint Archive, 2015:973,
2015.

Jou04. Antoine Joux. Multicollisions in Iterated Hash Functions. Application to
Cascaded Constructions. In Matthew K. Franklin, editor, Advances in
Cryptology - CRYPTO 2004, 24th Annual International CryptologyCon-
ference, Santa Barbara, California, USA, August 15-19, 2004, Proceed-
ings, volume 3152 of Lecture Notes in Computer Science, pages 306–316.
Springer, 2004.

Jou09. Antoine Joux. Algorithmic cryptanalysis. Chapman and Hall/CRC, 2009.
KK06. John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nos-

tradamus Attack. In Serge Vaudenay, editor, Advances in Cryptology -
EUROCRYPT 2006, 25th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, St. Petersburg, Russia, May
28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer
Science, pages 183–200. Springer, 2006.

76

KS05. John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions
for much less than 2n work. In Cramer [Cra05], pages 474–490.

Leh10. Anja Lehmann. On the security of hash function combiners. PhD thesis,
Darmstadt University of Technology, 2010.

Lis06. Moses Liskov. Constructing an Ideal Hash Function from Weak Ideal Com-
pression Functions. In Eli Biham and Amr M. Youssef, editors, Selected
Areas in Cryptography, 13th International Workshop, SAC 2006, Montreal,
Canada, August 17-18, 2006 Revised Selected Papers, volume 4356 of Lec-
ture Notes in Computer Science, pages 358–375. Springer, 2006.

LPW13. Gaëtan Leurent, Thomas Peyrin, and Lei Wang. New Generic Attacks
against Hash-Based MACs. In Kazue Sako and Palash Sarkar, editors, Ad-
vances in Cryptology - ASIACRYPT 2013 - 19th International Conference
on the Theory and Application of Cryptology and Information Security,
Bengaluru, India, December 1-5, 2013, Proceedings, Part II, volume 8270
of Lecture Notes in Computer Science, pages 1–20. Springer, 2013.

LW15. Gaëtan Leurent and Lei Wang. The Sum Can Be Weaker Than Each Part.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 345–367. Springer, 2015.

Men07. Alfred Menezes, editor. Advances in Cryptology - CRYPTO 2007, 27th
Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2007, Proceedings, volume 4622 of Lecture Notes in Computer
Science. Springer, 2007.

Mer89. Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [Bra90],
pages 428–446.

Mit12. Arno Mittelbach. Hash Combiners for Second Pre-image Resistance, Tar-
get Collision Resistance and Pre-image Resistance Have Long Output. In
Ivan Visconti and Roberto De Prisco, editors, Security and Cryptography for
Networks - 8th International Conference, SCN 2012, Amalfi, Italy, Septem-
ber 5-7, 2012. Proceedings, volume 7485 of Lecture Notes in Computer Sci-
ence, pages 522–539. Springer, 2012.

Mit13. Arno Mittelbach. Cryptophia’s Short Combiner for Collision-Resistant
Hash Functions. In Michael J. Jacobson Jr., Michael E. Locasto, Pay-
man Mohassel, and Reihaneh Safavi-Naini, editors, Applied Cryptography
and Network Security - 11th International Conference, ACNS 2013, Banff,
AB, Canada, June 25-28, 2013. Proceedings, volume 7954 of Lecture Notes
in Computer Science, pages 136–153. Springer, 2013.

MP14. Bart Mennink and Bart Preneel. Breaking and Fixing Cryptophia’s Short
Combiner. In Dimitris Gritzalis, Aggelos Kiayias, and Ioannis G. Askoxy-
lakis, editors, Cryptology and Network Security - 13th International Con-
ference, CANS 2014, Heraklion, Crete, Greece, October 22-24, 2014. Pro-
ceedings, volume 8813 of Lecture Notes in Computer Science, pages 50–63.
Springer, 2014.

MRS09. Florian Mendel, Christian Rechberger, and Martin Schläffer. MD5 Is
Weaker Than Weak: Attacks on Concatenated Combiners. In Mitsuru Mat-
sui, editor, Advances in Cryptology - ASIACRYPT 2009, 15th International
Conference on the Theory and Application of Cryptology and Information

77

Security, Tokyo, Japan, December 6-10, 2009. Proceedings, volume 5912 of
Lecture Notes in Computer Science, pages 144–161. Springer, 2009.

NS07. Mridul Nandi and Douglas R. Stinson. Multicollision Attacks on Some
Generalized Sequential Hash Functions. IEEE Trans. Information Theory,
53(2):759–767, 2007.

Pie07. Krzysztof Pietrzak. Non-trivial Black-Box Combiners for Collision-
Resistant Hash-Functions Don’t Exist. In Moni Naor, editor, Advances in
Cryptology - EUROCRYPT 2007, 26th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Barcelona,
Spain, May 20-24, 2007, Proceedings, volume 4515 of Lecture Notes in
Computer Science, pages 23–33. Springer, 2007.

Pie08. Krzysztof Pietrzak. Compression from Collisions, or Why CRHF Combin-
ers Have a Long Output. In David A. Wagner, editor, Advances in Cryp-
tology - CRYPTO 2008, 28th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, volume 5157
of Lecture Notes in Computer Science, pages 413–432. Springer, 2008.

PK14. Léo Perrin and Dmitry Khovratovich. Collision Spectrum, Entropy Loss,
T-Sponges, and Cryptanalysis of GLUON-64. In Carlos Cid and Christian
Rechberger, editors, Fast Software Encryption - 21st International Work-
shop, FSE 2014, London, UK, March 3-5, 2014. Revised Selected Papers,
volume 8540 of Lecture Notes in Computer Science, pages 82–103. Springer,
2014.

Pre93. Bart Preneel. Analysis and design of cryptographic hash functions. PhD
thesis, Katholieke Universiteit te Leuven, 1993.

PW14. Thomas Peyrin and Lei Wang. Generic Universal Forgery Attack on It-
erative Hash-Based MACs. In Phong Q. Nguyen and Elisabeth Oswald,
editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume
8441 of Lecture Notes in Computer Science, pages 147–164. Springer, 2014.

Rja09. Michal Rjasko. On Existence of Robust Combiners for Cryptographic Hash
Functions. In Peter Vojtás, editor, Proceedings of the Conference on Theory
and Practice of Information Technologies, ITAT 2009, Horský hotel Kralova
studna, Slovakia, September 25-29, 2009, volume 584 of CEUR Workshop
Proceedings, pages 71–76. CEUR-WS.org, 2009.

vOW99. Paul C. van Oorschot and Michael J. Wiener. Parallel Collision Search
with Cryptanalytic Applications. J. Cryptology, 12(1):1–28, 1999.

Wag02. David A. Wagner. A Generalized Birthday Problem. In Moti Yung, editor,
Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 18-22, 2002,
Proceedings, volume 2442 of Lecture Notes in Computer Science, pages
288–303. Springer, 2002.

WY05. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash
Functions. In Cramer [Cra05], pages 19–35.

WYY05. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the
Full SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture
Notes in Computer Science, pages 17–36. Springer, 2005.

78

A Pseudo-codes of Algorithms

Algorithm 1 Building a 2t-Joux’s Multi-Collision

1: function JouxMultiCollision(h, x0, t)
2: MMC ← {}
3: for 1 ≤ i ≤ t do
4: (xi, m, m′) ← Collision1(h,

xi−1)
5: MMC ←MMC ‖ (m, m′)
6: end for
7: return (xt,MMC)
8: end function

9: function Collision1(h, x)
10: T ← {}
11: loop
12: m← $, y ← h(x, m)
13: if T [y] exists then return

(y, m, T [y])
14: else T [y]← m
15: end if
16: end loop
17: end function

Algorithm 2 Building a single switch
1: function Switch(h1, h2, a, b, b′)
2: x← ∅, MMC ← ∅
3: (x,MMC)← JouxMultiCollision(h1, a, n/2)
4: T ← {}
5: for each M ∈MMC do
6: y ← h∗

2(b, M), T [y]←M
7: end for
8: for each M ∈MMC do
9: y ← h∗

2(b′, M)
10: if T [y] exists then
11: return (T [y], M)
12: end if
13: end for
14: end function

79

Algorithm 3 Building and using a T -interchange structure
1: function Interchange(h1, h2, IV1, IV2)
2: a0 ← IV1, b0 ← IV2
3: for 1 ≤ k < T do
4: ak ← $, bk ← $
5: end for
6: for 1 ≤ j < T do
7: (M, M ′)← Switch(h1, h2, a0, b0, bj)
8: M ←M ‖M, M ′ ←M ′ ‖M ′

9: for 0 ≤ k < T do
10: ak ← h∗

1(ak, M), bk ← h∗
2(bk, M)

11: end for
12: end for
13: for 1 ≤ j < T do
14: for 1 ≤ i < T do
15: (M, M ′)← Switch(h2, h1, bj , a0, ai)
16: M ←M ‖M, M ′ ←M ′ ‖M ′

17: for 0 ≤ k < T do
18: ak ← h∗

1(ak, M), bk ← h∗
2(bk, M)

19: end for
20: end for
21: end for
22: return (M , M ′)
23: end function
24:
25: function SelectMessage(M , M ′, j, k)
26: µ←M
27: if k 6= 0 then
28: µ[k − 1]←M ′[k − 1]
29: end if
30: if j 6= 0 then
31: µ[(k + 1) · (T − 1) + j − 1]←M ′[(k + 1) · (T − 1) + j − 1]
32: end if
33: return µ
34: end function

80

Algorithm 4 Constructing a building block for a simultaneous expandable mes-
sage
1: function SEMblock(x0, y0, i)
2: xp← h∗

1(x0, [0]i−C)
3: (sp, m1, m′

1)← Collision2(h1, x0, xp)
4: (x1,MMC)← JouxMultiCollision(h1, sp, C − 1)
5: Mshort ← m1 ×MMC, Mlong ← ([0]i−C ‖m′

1)×MMC

6: Yshort ← ∅
7: for each ms′ ∈Mshort do
8: ys′ ← h∗

2(y0, ms′), Yshort ←insert (ys′, ms′)
9: end for

10: for each ml′ ∈Mlong do
11: yl′ ← h∗

2(y0, ml′)
12: if yl′ ∈ Yshort then
13: (y1, ms, ml)← (yl′, ms′, ml′)
14: end if
15: end for
16: return (x1, y1, ms, ml)
17: end function

18: function Collision2(h, x, x′)
19: T ← {}
20: for 1 ≤ i ≤ 2n/2 do
21: m← $, y ← h(x, m), T [y]← m
22: end for
23: loop
24: m′ ← $, y′ ← h(x′, m′)
25: if T [y′] exists then
26: return (y′, T [y′], m′)
27: end if
28: end loop
29: end function

Algorithm 5 Expanding the functional graph of f (generating 2t nodes in FGf)
1: procedure Gen(t)
2: G ← ∅
3: while |G| < 2t do
4: C ← ∅, x←$ {0, 1, . . . , 2n − 1} \ G
5: while true do
6: if x ∈ G or x ∈ C then
7: G ←merge C, go to line 3
8: else C ←insert x, x← f(x)
9: end if

10: end while
11: end while
12: return G
13: end procedure

81

B Optimized Interchange Structure

We now describe an optimized attack using only (2t− 1)(2t− 1) switches rather
than 22t − 1. The attack also requires multi-collision structures, as introduced
by Joux [Jou04].

We replace the first 2t−1 switches with a 2t- Joux’s multi-collision inH1, and
we use those messages to initialize all the bk chains in H2. We can also optimize
the first series of switches in H2 in the same way: we build a 2t-multi-collision
in H2 starting from b0, and we use those messages to initialize the aj chains in
H1. This is illustrated by Fig. 14, and the detailed attack is given in Alg. 6.

H1

H2

IV1

IV2

A0

B0

A1

B1

A2

B2

A3

B3

M ′ M M M M M ′ M M M M M

Fig. 14: Optimized interchange structure

82

Algorithm 6 Optimized T -interchange structure (denote T = 2t)
1: function Interchange(h1, h2, IV1, IV2, T)
2: a0 ← IV1, b0 ← IV2
3: (a0,MMC0)← JouxMultiCollision(h1, a0, t)
4: for 0 ≤ k < T do
5: bk ← h∗

2(b0,MMC0[k])
6: end for
7: (b0,MMC1)← JouxMultiCollision(h2, b0, t)
8: a0 ← h∗

1(a0,MMC1[0])
9: for 1 ≤ k < T do

10: ak ← h∗
1(a0,MMC1[k])

11: bk ← h∗
2(bk,MMC1[0])

12: end for
13: for 2 ≤ j < T do
14: for 1 ≤ i < T do
15: (M, M ′)← Switch(h2, h1, bj , a0, ai)
16: M ←M ‖M, M ′ ←M ′ ‖M ′

17: for 0 ≤ k < T do
18: ak ← h∗

1(ak, M)
19: bk ← h∗

2(bk, M)
20: end for
21: end for
22: end for
23: return (MMC0,MMC1, M , M ′)
24: end function

25: function SelectMessage(M0,M1, M , M ′, j, k)
26: if j = 0 then
27: return M0[k] ‖M1[0] ‖M
28: else if k = 0 then
29: return M0[0] ‖M1[j] ‖M
30: else
31: µ←M
32: µ[(k − 1) · (T − 1) + j − 1]←M ′[(k − 1) · (T − 1) + j − 1]
33: return M0[k] ‖M1[0] ‖ µ
34: end if
35: end function

83

C On Problem Raised by Dependency Between Chain
Evaluations

Suppose x̄ and ȳ are both of depth 2n−g1 . From Observation 2 in Sect. 2.7, we
conclude that the probability of encountering x̄ and ȳ at the same distance in
chains (of f1 and f2) evaluated from x0 and y0 is approximately 2n−3g1 . Thus, in
Sect. 4.2 and Sect. 6.2, we conclude that if the trials of chain evaluations are inde-
pendent, we need to compute about 23g1−n chains from different starting points.
However, since various trials performed by selecting different starting points for
the chains are dependent, it might require further proof for the conclusion.

More specifically, when the number of nodes evaluated along chains exceeding
2n−d, a new chain of length 2d is very likely to collide with a previously evaluated
node due to the birthday paradox (2d × 2n−d = 2n). Thus, the outcome of
this chain evaluation is determined. As a result, new chains are all related with
already evaluated chains, and the dependency between them affects the outcome
non-negligibly after having evaluated 2n−d nodes.

However, we notice that in our attacks, the actual birthday bound for the non-
negligible dependency between trials is 22n−2d instead of 2n−d because in each
trail, there are two chain evaluations. One is in FGf1 , and the other is in FGf2 .
The chain evaluation in FGf1 can be seen as independent with a chain evaluation
in FGf2 . After having evaluated 2n−d nodes in each of the two functional graphs,
there is indeed a high probability for each new chain colliding with previously
evaluated chains. However, for a new pair of chain evaluations, the probability
for both chains colliding with the chains evaluated in a previous trial is significant
only after having evaluated 22n−2d nodes due to the birthday paradox. That is,
trials cannot be seen as independent only after having evaluated 22n−2d nodes.
Note that in our attacks, required number of trials is 22n−3d, thus the total
evaluated number of nodes is 22n−3d · 2d+1 ≈ 22n−2d which exactly falls on the
birthday bound. Thus, the dependency between the trials is negligible and the
complexity analysis of the corresponding attacks is justified.

84

	Generic Attacks on Hash Combiners
	1 Introduction
	1.1 Related Works
	Analysis of the concatenation combiner.
	Analysis of the XOR combiner.
	Analysis of Hash-Twice.
	Analysis of the Zipper hash.

	1.2 Our Results
	Preimage attacks on the XOR combiner.
	Second-preimage attack on the concatenation combiner.
	Second-preimage attack on the Zipper hash.
	Second-preimage attack on Hash-Twice.

	1.3 Notations and Roadmap of the Rest of Paper

	2 Preliminaries
	2.1 Joux's Multi-Collision (MC) and Its Applications in Attacks on the Concatenation Combiner DBLP:conf/crypto/Joux04
	2.2 Expandable Message (EM) and the Long Message Second-Preimage Attack DBLP:conf/eurocrypt/KelseyS05
	2.3 Diamond Structure (DS) DBLP:conf/eurocrypt/KelseyK06
	2.4 Distinguished Points (DP)
	2.5 Interchange Structure (IS)
	Switch Structure.
	Interchange Structure.

	2.6 Simultaneous Expandable Messages (SEM)
	Construction of the Building Block.
	Complexity Analysis of the Full Building Procedure.

	2.7 Functional Graph (FG) of Random Mappings
	Deep Iterates in the Functional Graphs (FGDI).
	Multi-Cycles in Functional Graphs (FGMC)

	3 Preimage Attack on XOR Combiners Based on the Interchange Structure
	3.1 Overview of the Attack
	Complexity Analysis.

	3.2 Details of the Preimage Attack on XOR Combiners Using the Interchange Structure

	4 Improved Preimage Attack on XOR Combiners Based on Deep Iterates
	4.1 Overview of the Attack
	Complexity Analysis.

	4.2 Details of the Preimage Attack on XOR Combiners using Deep Iterates
	Details of Phase 2: Finding a Set of Target State Pairs.
	Details of Phase 3: Hitting a Target State Pair.

	4.3 Optimizing the Deep-Iterates-Based Preimage Attack on XOR Combiners using the Interchange Structure

	5 Improved Preimage Attack on XOR Combiners Based on Multi-Cycles
	5.1 Overview of the Attack
	5.2 Details of the Preimage Attack on the XOR Combiner Using Multi-Cycles
	Attack Procedure.
	Complexity Analysis.

	5.3 Optimizing the Multi-Cycles-Based Preimage Attack on the XOR Combiner Using the Interchange Structure

	6 Second-Preimage Attack on Concatenation Combiners Based on Deep Iterates
	6.1 Overview of the Attack
	Complexity Analysis.

	6.2 Details of the Second-Preimage Attack on Concatenation Combiners using Deep Iterates
	Details of Phase 2: Finding a Target State Pair.
	Details of Phase 3: Hitting the Target State Pair.

	6.3 Optimizing the Deep-Iterates-Based Second-Preimage Attack on Concatenation Combiners using an Interchange Structure

	7 Second-Preimage Attack on the Zipper Hash
	7.1 Overview of the Attack
	7.2 Details of the Second-Preimage Attack on the Zipper Hash
	Complexity Analysis.

	7.3 Step 4: Constructing an Expandable Message

	8 Second-Preimage Attack on Hash-Twice
	8.1 Overview of the Attack
	8.2 Details of the Second-Preimage Attack on Hash-Twice Based on Multi-Cycles, Diamond and Interchange Structure for Long Messages
	Complexity Analysis.

	8.3 Details of the Second-Preimage Attack on Hash-Twice Based on Deep-iterates, Diamond and Interchange Structure for Short Messages

	9 More Applications and Extensions
	9.1 Applications Beyond MD Construction and Beyond XOR Operation
	9.2 Applications to the Combination of Wide-Pipe Hash Functions
	The interchange-structure-based preimage attack on the XOR combiner.
	The deep-iterates-based preimage attack on the XOR combiner.
	The multi-cycles-based preimage attack on the XOR combiner.
	The deep-iterates-based second-preimage attack on the concatenation combiner.
	The second-preimage attack on the Zipper hash.
	The second-preimage attack on Hash-Twice.

	9.3 Extensions to the combination of three or more hash functions
	The interchange-structure-based preimage attack on the XOR combiner.
	The deep-iterates-based preimage attack on the XOR combiner.
	The multi-cycles-based preimage attack on the XOR combiner.
	The deep-iterates-based second-preimage attack on the concatenation combiner.
	The second-preimage attack on the Zipper hash.
	The second-preimage attack on Hash-Twice.

	10 Summary and Open Problems
	A Pseudo-codes of Algorithms
	B Optimized Interchange Structure
	C On Problem Raised by Dependency Between Chain Evaluations

