

#### Reduced-order model for the BGK equation based on POD and optimal transport

Florian Bernard, Angelo Iollo, Sébastien Riffaud

#### ▶ To cite this version:

Florian Bernard, Angelo Iollo, Sébastien Riffaud. Reduced-order model for the BGK equation based on POD and optimal transport. MOREPAS 2018 - Model Reduction of Parametrized Systems IV, Apr 2018, Nantes, France. hal-02427339

#### HAL Id: hal-02427339 https://inria.hal.science/hal-02427339

Submitted on 3 Jan 2020  $\,$ 

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# Universite de BORDEAUX

#### Contribution

We present a model describing a gas flow in both hydrodynamic and rarefied regimes. Since the computational cost of the Bhatnagar-Gross-Krook (BGK) equation can be prohibitive, a reduced-order approximation is developed, leading to fast and accurate simulations.

## **BGK** equation

The dynamics of the gas flow is described by the **BGK equation**:

$$\frac{\partial f}{\partial t}(\mathbf{x},\xi,t) + \xi \cdot \nabla_{\mathbf{x}} f(\mathbf{x},\xi,t) = \frac{M_f(\mathbf{x},\xi,t) - f(\mathbf{x},\xi,t)}{\tau(\mathbf{x},t)}$$

where f is the density distribution function representing the density of gas particles at point  $\mathbf{x} \in \mathbb{R}^3$ , velocity  $\xi \in \mathbb{R}^3$  and time  $t \in \mathbb{R}$ . The Maxwellian distribution function  $M_f$  is in dimensionless form

$$M_f(\mathbf{x}, \xi, t) = \frac{\rho(\mathbf{x}, t)}{(2\pi T(\mathbf{x}, t))^{\frac{3}{2}}} \exp\left(-\frac{\|\xi - U(\mathbf{x}, t)}{2T(\mathbf{x}, t)}\right)$$

where  $\rho \in \mathbb{R}$  is the density,  $U \in \mathbb{R}^3$  is the macroscopic velocity,  $T \in \mathbb{R}$ is the temperature and  $E \in \mathbb{R}$  is the total energy of the gas.

#### **Reduced-order** approximation

The distribution functions are approximated by

$$\widetilde{f}(\mathbf{x},\xi,t) = \sum_{n=1}^{N_{pod}} a_n^f(\mathbf{x},t) \Phi_n(\xi)$$

and

$$\widetilde{M}_f(\mathbf{x},\xi,t) = \sum_{n=1}^{N_{pod}} a_n^M(\mathbf{x},t) \Phi_n(\xi)$$

where the basis functions  $\Phi_n$  are built offline by **Proper Orthogonal Decomposition** (POD) and the coefficients  $a_n$  are computed online by the Galerkin method.

#### References

- [1] P. L. Bhatnagar, E. P. Gross and M. Krook. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 1954.
- [2] F. Bernard. Efficient asymptotic preserving schemes for BGK and ES-BGK models on cartesian grids. PhD thesis, 2015.
- [3] F. Bernard, A. Iollo and S. Riffaud. Reduced-order model for the BGK equation based on POD and optimal transport. Journal of Computational Physics, 2018.

## Reduced-order model for the BGK equation based on POD and optimal transport

<sup>1</sup> Institut de Mathématiques de Bordeaux, Université de Bordeaux, 33400 Talence, France <sup>2</sup> Memphis team, Inria Bordeaux Sud-Ouest, 33400 Talence, France

#### Offline phase

In the offline phase, the BGK equation (1) is sampled to collect information on the distribution functions that we want to approximate. High-fidelity simulations provide snapshots of both the density distribution function and of the Maxwellian distribution function:

$$S^{\mathrm{hf}} = \left\{ f(\mathbf{x}_{i}, \xi, t_{k}) \right\}_{\substack{1 \leq i \leq N_{\mathbf{x}} \\ 1 \leq k \leq N_{t}}} \bigcup \left\{ M_{f}(\mathbf{x}_{i}, \xi, t_{k}) \right\}_{\substack{1 \leq i \leq N_{\mathbf{x}} \\ 1 \leq k \leq N_{t}}}$$
**optimal transport** provides addi-
ow-fidelity snapshots by interpolating
Shots of S^{\mathrm{hf}} to complete the sampling:
S = S^{\mathrm{hf}} \cup S^{\mathrm{lf}}

Then, **c** tional lo the snap

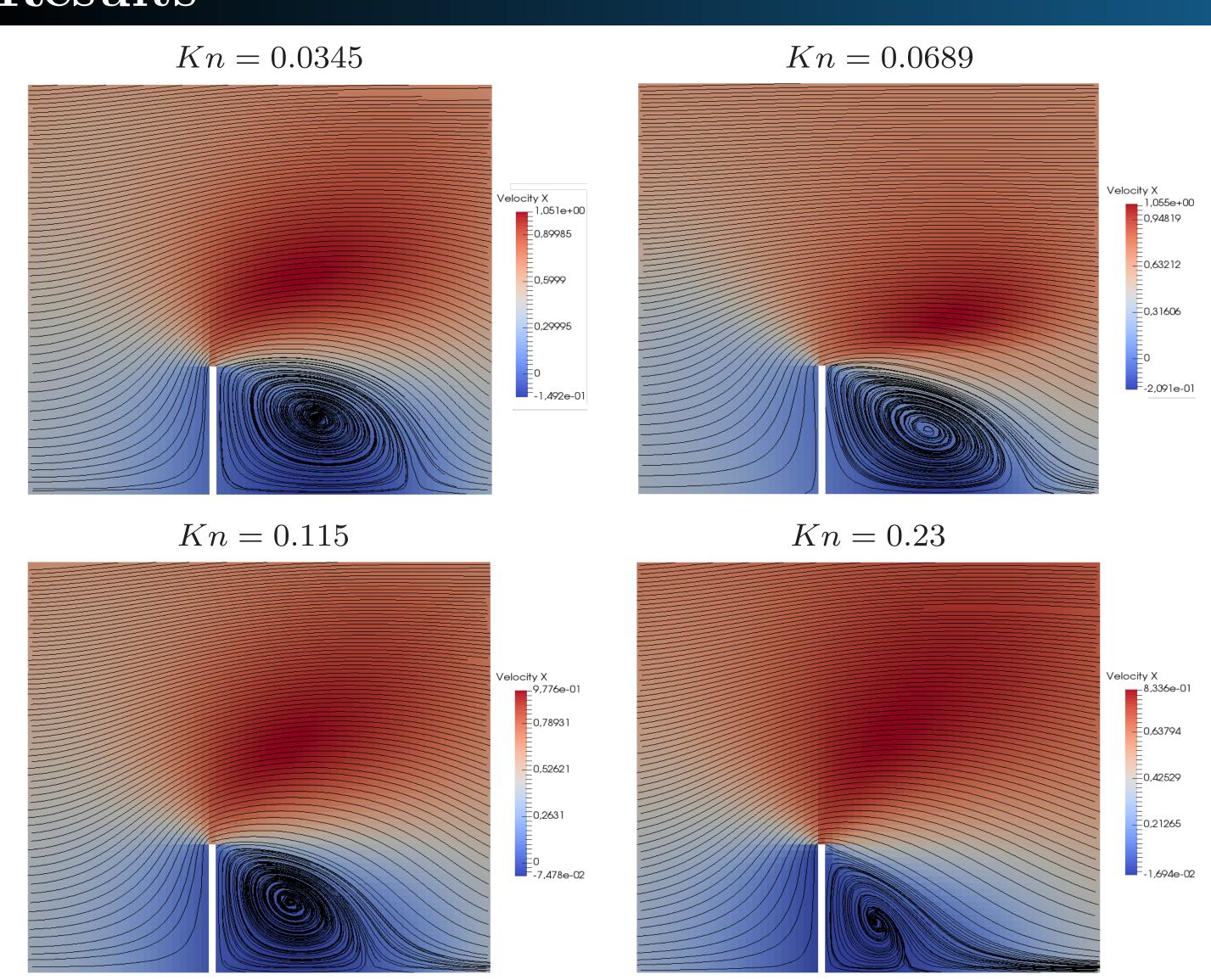
$$S = S^{\mathrm{hf}} \cup S^{\mathrm{lf}}$$

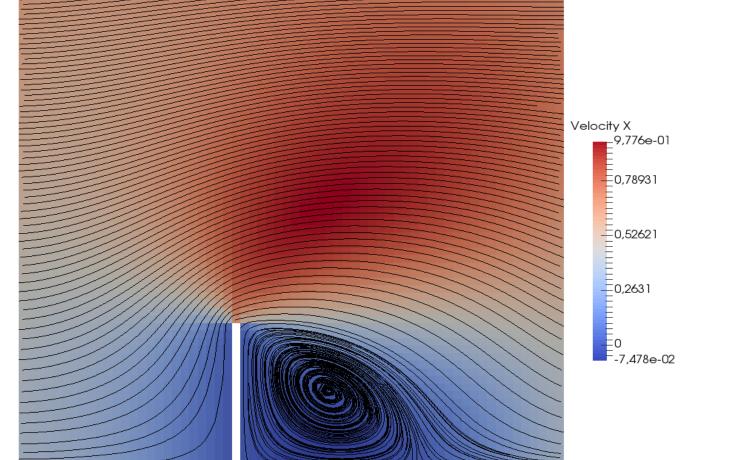
Finally, the basis functions  $\Phi_n$  are built by POD to have the best approximation in the least squares sense of the snapshots  $s_l \in S$ :

$$\begin{cases} \min_{\Phi_1(\xi)\dots\Phi_{N_{pod}}(\xi)} & \sum_{l=1}^{N_{snaps}} \int_{\mathbb{R}^3} \left( s_l(\xi) - \int_{\mathbb{R}^3} \Phi_n(\xi) \Phi_n \right) \\ \text{subject to} & \int_{\mathbb{R}^3} \Phi_n(\xi) \Phi_n \end{cases}$$

where  $\mathcal{P}[s_l]$  is the projection of  $s_l$  onto the subspace spanned by the basis functions  $\Phi_n$  (i.e.  $\mathcal{P}[s_l](\xi) = \sum_{k=1}^{N_{pod}} \int_{\mathbb{R}^3} s_l(\xi') \Phi_n(\xi') d\xi' \Phi_n(\xi)$ ).

## Results







S. Riffaud<sup>1,2</sup>, F. Bernard<sup>1,2</sup>, A.  $Iollo^{1,2}$ 

- $[\xi) \mathcal{P}[s_l](\xi) \Big)^2 \mathrm{d}\xi$
- $m(\xi) \,\mathrm{d}\xi = \delta_{n,m}$

### Online phase

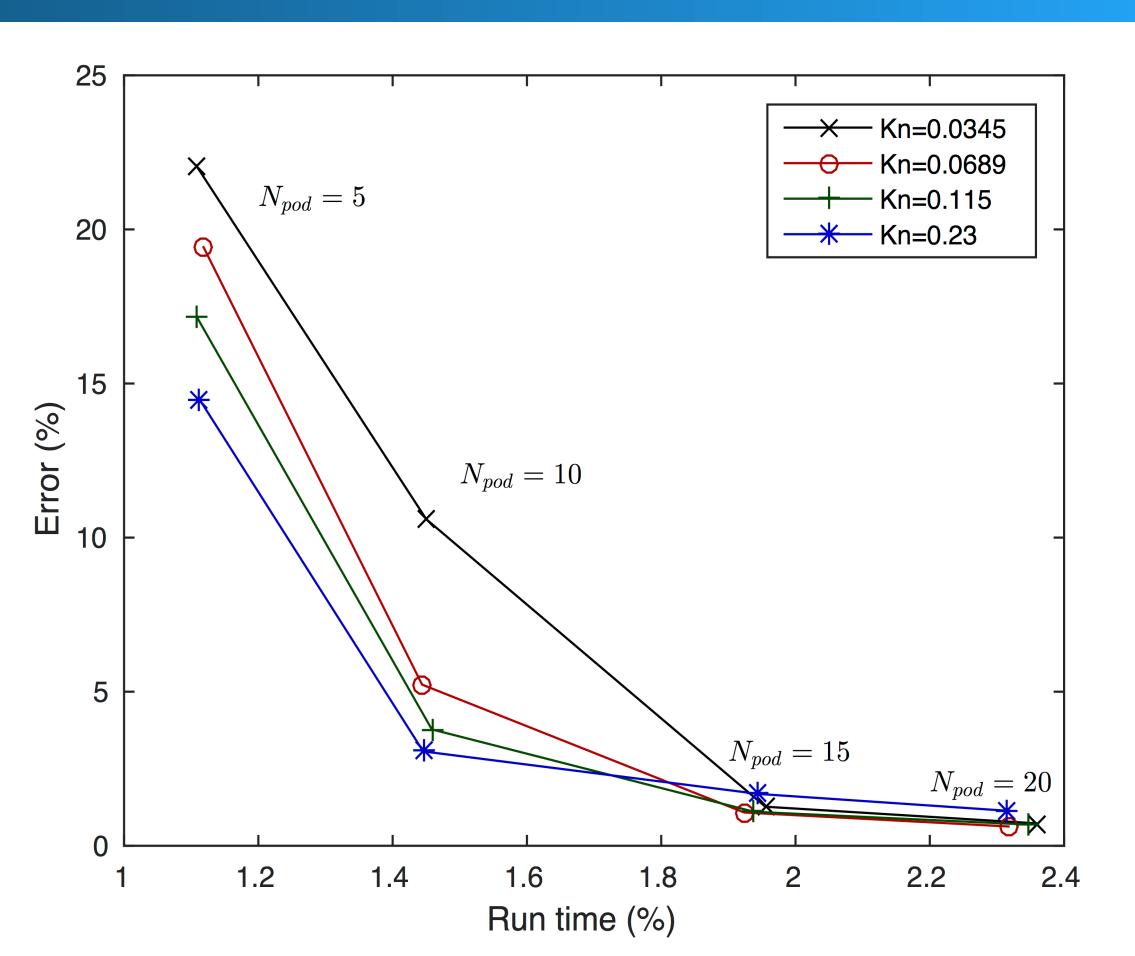
tial equations:

$$\frac{\partial a^f}{\partial t}(\mathbf{x},t) + A \frac{\partial a^f}{\partial x}(\mathbf{x},t) + \mathring{A} \frac{\partial a^f}{\partial y}(\mathbf{x},t) + \mathring{A} \frac{\partial a^f}{\partial z}(\mathbf{x},t) = \frac{a^M(\mathbf{x},t) - a^f(\mathbf{x},t)}{\tau(\mathbf{x},t)}$$

where  $a = (a_1, a_2, \dots, a_{N_{pod}})^T$ ,  $A_{n,m} = \int_{\mathbb{R}^3} \xi_u \Phi_n(\xi) \Phi_m(\xi) d\xi$ ,  $\mathring{A}_{n,m} = \int_{\mathbb{R}^3} \xi_v \Phi_n(\xi) \Phi_m(\xi) d\xi$  and  $\mathring{A}_{n,m} = \int_{\mathbb{R}^3} \xi_w \Phi_n(\xi) \Phi_m(\xi) d\xi$ . These equations are decoupled by linear changes of variables and are solved by an **IMEX Runge-Kutta** scheme in time and a **finite volume** scheme in space. To improve the accuracy of the model, the coefficients  $a_n^M$  are computed by constrained projection:

 $\underset{a_{1}^{M}(\mathbf{x},t)...a_{N_{pod}}^{M}(\mathbf{x},t)}{\text{minimize}}$ subject to

in order to conserve mass, momentum and total energy of the gas.



In average with  $N_{pod} = 20$  basis functions, the approximation error is less than 1% and the run time is divided by ap**proximately 45** with respect to the high-fidelity simulations.

During the online phase, the offline knowledge is used to compute approximations of the distribution functions at low cost. In the Galerkin method, the BGK equation (1) is projected onto the basis functions  $\Phi_n$ , leading to an hyperbolic system of partial differen-

$$\int_{\mathbb{R}^3} \left( M_f(\mathbf{x},\xi,t) - \widetilde{M}_f(\mathbf{x},\xi,t) \right)^2 d\xi$$
$$\hat{f}_f(\mathbf{x},\xi,t) \begin{pmatrix} 1\\ \xi\\ \frac{\|\xi\|^2}{2} \end{pmatrix} d\xi = \begin{pmatrix} \rho(\mathbf{x},t)\\ \rho(\mathbf{x},t)U(\mathbf{x},t)\\ E(\mathbf{x},t) \end{pmatrix}$$