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Contribution
We present a model describing a gas flow in both hydrodynamic and
rarefied regimes. Since the computational cost of the Bhatnagar-
Gross-Krook (BGK) equation can be prohibitive, a reduced-order ap-
proximation is developed, leading to fast and accurate simulations.

BGK equation
The dynamics of the gas flow is described by the BGK equation:

∂f

∂t
(x, ξ, t) + ξ · ∇xf(x, ξ, t) =

Mf (x, ξ, t)− f(x, ξ, t)

τ(x, t)
(1)

where f is the density distribution function representing the density
of gas particles at point x ∈ R3, velocity ξ ∈ R3 and time t ∈ R. The
Maxwellian distribution function Mf is in dimensionless form

Mf (x, ξ, t) =
ρ(x, t)

(2πT (x, t))
3
2

exp

(
−‖ξ − U(x, t)‖2

2T (x, t)

)
where ρ ∈ R is the density, U ∈ R3 is the macroscopic velocity, T ∈ R
is the temperature and E ∈ R is the total energy of the gas.

Reduced-order approximation
The distribution functions are approximated by

f̃(x, ξ, t) =

Npod∑
n=1

afn(x, t)Φn(ξ)

and

M̃f (x, ξ, t) =

Npod∑
n=1

aMn (x, t)Φn(ξ)

where the basis functions Φn are built offline by Proper Orthog-
onal Decomposition (POD) and the coefficients an are computed
online by the Galerkin method.
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Offline phase
In the offline phase, the BGK equation (1) is sampled to collect infor-
mation on the distribution functions that we want to approximate.
High-fidelity simulations provide snapshots of both the density dis-
tribution function and of the Maxwellian distribution function:

Shf =
{
f(xi, ξ, tk)

}
1≤i≤Nx
1≤k≤Nt

⋃{
Mf (xi, ξ, tk)

}
1≤i≤Nx
1≤k≤Nt

Then, optimal transport provides addi-
tional low-fidelity snapshots by interpolating
the snapshots of Shf to complete the sampling:

S = Shf ∪ Slf

Finally, the basis functions Φn are built by POD to have the best
approximation in the least squares sense of the snapshots sl ∈ S:

minimize
Φ1(ξ)...ΦNpod

(ξ)

Nsnaps∑
l=1

∫
R3

(
sl(ξ)− P[sl](ξ)

)2

dξ

subject to
∫
R3

Φn(ξ)Φm(ξ) dξ = δn,m

where P[sl] is the projection of sl onto the subspace spanned by the

basis functions Φn

(
i.e. P[sl](ξ) =

Npod∑
n=1

∫
R3 sl(ξ

′)Φn(ξ′) dξ′ Φn(ξ)
)
.

Online phase
During the online phase, the offline knowledge is used to compute
approximations of the distribution functions at low cost. In the
Galerkin method, the BGK equation (1) is projected onto the basis
functions Φn, leading to an hyperbolic system of partial differen-
tial equations:

∂af

∂t
(x, t)+A

∂af

∂x
(x, t)+Å

∂af

∂y
(x, t)+

?

A
∂af

∂z
(x, t)=

aM (x, t)− af (x, t)

τ(x, t)

where a = (a1, a2, . . . , aNpod
)T , An,m =

∫
R3 ξuΦn(ξ)Φm(ξ) dξ,

Ån,m =
∫
R3 ξvΦn(ξ)Φm(ξ) dξ and

?

An,m =
∫
R3 ξwΦn(ξ)Φm(ξ) dξ.

These equations are decoupled by linear changes of variables and
are solved by an IMEX Runge-Kutta scheme in time and a finite
volume scheme in space. To improve the accuracy of the model, the
coefficients aMn are computed by constrained projection:

minimize
aM1 (x,t)...aM

Npod
(x,t)

∫
R3

(
Mf (x, ξ, t)− M̃f (x, ξ, t)

)2

dξ

subject to
∫
R3

M̃f (x, ξ, t)

 1
ξ
‖ξ‖2
2

dξ =

 ρ(x, t)
ρ(x, t)U(x, t)

E(x, t)


in order to conserve mass, momentum and total energy of the
gas.

Results
Kn = 0.0345 Kn = 0.0689

Kn = 0.115 Kn = 0.23

In average with Npod = 20 basis functions, the approximation
error is less than 1% and the run time is divided by ap-
proximately 45 with respect to the high-fidelity simulations.


