
HAL Id: hal-02427608
https://inria.hal.science/hal-02427608

Submitted on 3 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning rule sets and Sugeno integrals for monotonic
classification problems

Quentin Brabant, Miguel Couceiro, Didier Dubois, Henri Prade, Agnès Rico

To cite this version:
Quentin Brabant, Miguel Couceiro, Didier Dubois, Henri Prade, Agnès Rico. Learning rule sets and
Sugeno integrals for monotonic classification problems. Fuzzy Sets and Systems, 2020, 401, pp.4-37.
�10.1016/j.fss.2020.01.006�. �hal-02427608�

https://inria.hal.science/hal-02427608
https://hal.archives-ouvertes.fr

Learning rule sets and Sugeno integrals for monotonic
classification problems

Quentin Brabanta,1, Miguel Couceiroa, Didier Duboisb, Henri Pradeb,
Agnès Ricoc

aUniversité de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
bIRIT, CNRS, Université Paul Sabatier, F-31062 Toulouse, France

cERIC, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France

Abstract

In some variants of the supervised classification setting, the domains of the
attributes and the set of classes are totally ordered sets. The task of learning
a classifier that is nondecreasing w.r.t. each attribute is called monotonic
classification. Several kinds of models can be used in this task; in this pa-
per, we focus on decision rules. We propose a method for learning a set of
decision rules that optimally fits the training data while favoring short rules
over long ones. We give new results on the representation of sets of if-then
rules by extensions of Sugeno integrals to distinct attribute domains, where
local utility functions are used to map attribute domains to a common to-
tally ordered scale. We study whether such qualitative extensions of Sugeno
integral provide compact representations of large sets of decision rules.

Keywords: Monotonic classification, monotonicity constraint, decision
rules, Sugeno integral, decomposable model, MCDA

1. Introduction

The standard classification task can be formulated as follows: for a given
set of classes (or labels), several attributes describing objects to be classified
and given a set of already classified objects, try to learn a classifier that
predicts the classes of a new observation for which only the attribute values
are known. In some real world applications of the classification task, like in
decision-support or recommender systems, the attribute domains and the set
of classes are totally ordered (classes correspond to levels of satisfaction, for
instance). The task of learning a nondecreasing classifier is called monotonic

∗Corresponding author:

Preprint submitted to Fuzzy Sets and Systems December 17, 2019

classification (e.g., the higher the attribute values, the better the object). The
prior knowledge about the data is thus typically that the class of observations
“increases with” their attribute values. In this case, one can require that
the learned classifier conforms with this prior knowledge. A brief review
of monotonic classification methods is provided in the first section of the
Appendix. For a more comprehensive survey see, e.g., [13].

This task can be performed through different approaches, for instance,
through sets of decision rules. In the monotonic case, rules often take special
forms giving conditions under which the class of an object is at least as good
as a given class (selection rules) or at most as good as a given class (rejection
rules). Unsurprisingly, sets of selection rules and sets of rejection rules define
models that are structurally monotonic and have the advantage of relying on
ordinal information only: they can deal with qualitative attribute domains
(e.g., scales such as low < medium < high) without having to map them
into numerical values. Rule sets are often considered as interpretable models.
However, rule sets learned from empirical data are sometimes very large, and
some rules may involve many conditions. Hence, in some cases, rule sets may
provide little “high-level” understanding of the data they are learned from.

An important remark for monotonic classifiers is that they can be viewed
as aggregation functions [36], provided that any object having the worst (resp.
best) possible ratings on all attributes is assigned to the worst (resp. best)
class. However, they are discrete aggregation functions, defined on scales
where only the minimum and maximum operators make sense. A notewor-
thy class of discrete aggregation functions that only use the minimum and
maximum operators is that of Sugeno integrals. However, Sugeno integrals
can be defined only if the attribute scales are all the same, and in one-to-one
correspondence with the totally ordered set of classes. In fact, Greco et al.
[37, 51] had already observed that Sugeno integrals have limited expressive
power. They can only represent selection and rejection rules involving a sin-
gle threshold for all attributes. This problem can be partially circumvented
using qualitative decomposable models based on Sugeno integrals, that we
call Sugeno Utility Functionals (SUFs), first introduced in [38] and exten-
sively studied in [17, 19, 20, 21, 18], where local mappings from attribute
scales to the set of classes are used to make the former commensurate with
latter.

In this paper, which is an extended version of the conference paper [8],
we address two issues relative to sets of selection and rejection rules. Firstly,
we clarify the question of representing monotonic aggregation functions via
SUFs, showing that more than one SUF is usually needed to represent a
monotonic rule set. This work complements results obtained in [38], where it
is shown that any monotonic aggregation function represents a set of selection

2

rules, and Sugeno integrals encode a set of single-threshold selection rules.
Secondly, we propose a non-parametric algorithm that learns a rule set that
optimally fits the training data, while favoring short rules over long ones, as
well as an algorithm that minimizes the number of SUFs needed to represent
a set of rules. The original motivation for this work was to take advantage of
the theoretical result concerning SUFs for learning compact representations
of qualitative monotonic classification data and also to describe such data
in terms of selection rules, thus obtaining a concise, possibly approximate,
user-friendly representation. However, in the paper we shall start with the
problem of representing selection rules with multiple thresholds before finding
the combination of SUFs they correspond to. Our method does not clearly fit
in the taxonomy of methods for monotonic classification proposed in [13]. It
uses a fuzzy integral which is a qualitative counterpart of Choquet integral,
but at the same time, it generates rules that however do not form a decision
tree.

The paper is organized as follows. In Section 2 we formalize the task
of monotonic classification. In Section 2.2 we present monotonic rules and
rule-sets as well as the monotonic classifiers they induce. In Section 3, we
present Sugeno integrals and their extensions, called Sugeno Utility Func-
tionals (SUFs). In Section 4, we show how Sugeno integrals and SUFs can be
translated to rules and, conversely, how to identify rule sets that can be rep-
resented by SUFs. We also present the SUF-set models, whose expressiveness
is the same as that of monotonic rule-sets. Section 5 initiates the experimen-
tal part of the paper. We introduce a new rule-set learning algorithm for
monotonic classification with qualitative data. We evaluate its predictive
accuracy on empirical datasets. Our method is compared to some existing
methods that are recalled in the first section of the Appendix. Section 6
deals with the problem of representing a monotonic rule-set by a SUF set of
minimal size. In Section 7, we first give a method for interpolating monotonic
datasets with SUF-sets of minimal cardinality. We also exploit our interpola-
tion methods in a learning algorithm that combines rule extraction and SUF
set construction from rules, and we evaluate it on empirical datasets. In the
conclusion, we discuss the use of sets of SUFs for compact represention of
qualitative data, as well as their role in bridging the gap between numerical
aggregation and rule-based models.

The following table recalls the notation employed throughout the paper.

3

Symbols Meaning

Se
ct
io
n
2

[n] set of integers {1, . . . , n}
X1, . . . , Xn domains of the attributes

X X1 × · · · ×Xn, set of descriptions
L set of classes (or labels)
0, 1 respectively: lowerbound and upperbound of a set
x description, i.e., n-tuple (x1, . . . xn) ∈ X

(x, y) observation, element of X× L
D set of available observations, subset of X× L
ηD ηD : D → N, number of times an observation occurs
XD set of all descriptions appearing in D

Se
ct
io
n
2.
2

(α1, . . . , αn)→ δ selection rule
[
x1 ≥ α1 and . . . and xn ≥ αn

]
⇒ y ≥ δ

Ar active thresholds in the rule r
fr function specified by r
R set of selection rules
fR function specified by R

Eq(R) equivalence class of R
R∗ smallest element of Eq(R)

Se
ct
io
n
3

µ capacity
Sµ Sugeno-integral w.r.t. µ

ϕ1, . . . , ϕn local QNFs, ϕi : Xi → L for each i ∈ [n]
ϕ global QNF, ϕ = ϕ1 × · · · × ϕn
Sµ,ϕ SUF defined by µ and φ, SUF defined by ν and φ
RX,L family of all rule-sets specifying classifiers from X to L
SX,L family of all SUFs from X to L
S-SET function translating SUFs into rule-sets
SUF function translating rule-sets into SUFs

Se
ct
io
n
5 λ−D, λ

+
D smallest and greatest classifiers that fit a monotonic D

£ relabeling function
M relabeled dataset
r\I rule r where the thresholds of I are deactivated

Table 1: Notation used throughout the paper together with the section in which it is
introduced.

4

2. Rules for monotonic classification

In this section, we provide the formal framework for the monotonic classi-
fication of qualitative data and then we describe the links between monotonic
rules and monotonic functions.

Throughout this paper, for any natural number n, we will denote the set
of natural numbers {1, . . . , n} by [n].

2.1. Monotonic classification
We consider the following setting. Let X1, . . . , Xn be bounded totally

ordered sets called attribute domains, and X = X1×· · ·×Xn, their Cartesian
product. An element of X is denoted by x. Let L be a bounded totally
ordered set of classes (also called labels). An observation is a pair (x, y) ∈
X×L. The n-tuple x ∈ X is called the description of the observation, and y
is called its class (or label). The components of x are denoted by x1, . . . , xn;
for each i ∈ [n], xi belongs to Xi and is called an attribute value. Since the
set of classes is finite and totally ordered, we represent it as an ordered set
L = {a1 = 0 < a2 < · · · < a|L| = 1}. Since X1, . . . , Xn, L are finite, we
denote their lower bounds by 0 and their upper bounds by 1.

A function f : X→ L whose aim is to predict the class of an observation
from its description is called a classifier. A monotonically nondecreasing
function f is here called a nondecreasing classifier. A dataset is a multiset
of available observations D = {(xi1, . . . , xin, yi)}mi=1 ⊆ X × L. Let a function
ηD : X×L→ N indicate the number of times each pair (x, y) is present in D
(for all (x, y) ∈ D we have ηD(x, y) > 0, and 0 otherwise). The total number
of available observations is denoted by |D|, and defined as

|D| =
∑

(x,y)∈X×L

ηD(x, y).

Finally, we denote by XD the set of descriptions appearing in D, i.e.,

XD =
{
x
∣∣ (x, y) ∈ D}.

The purpose of the paper is to learn a nondecreasing classifier from X to L.

Remark 1. In some practical cases, one could want to learn a classifier that
is nondecreasing on certain attributes and non increasing on others. How-
ever, this problem can be reduced to monotonic classification by a suitable
reordering of the attribute domains.

5

Whether we want to measure the fitness of a classifier on available data
or its predictive accuracy on new observations, we need empirical error func-
tions. The empirical error of a classifier f on a dataset D is the average loss
on each observation of D, given by

E`(f,D) =
1

|D|
∑

(x,y)∈X×L

ηD(x, y) · `
(
f(x), y

)
where ` : L2 → R is a loss function that gives the “cost” `(ai, aj) of predicting
that an observation belongs to class i when it actually belongs to class j. As
usual, we assume that any loss function ` verifies `(ai, aj) = 0, whenever
i = j. A widely used loss function is the 0-1 loss `0−1 (also known as the
Kronecker delta) defined by

`0−1(ai, aj) =

{
0 if i = j,

1 if i 6= j.

The empirical error of f on D with respect to `0−1 is called misclassification
error rate (MER).

Since the classes are ordered, it is reasonable to associate greater losses to
predictions that are “far” from the actual class. More precisely, it is natural to
require that `(ai, aj) < `(ai, ak) in all cases where i < j < k. Loss functions
that satisfy `(ai, aj) ≤ `(ai, ak) for all classes i < j < k are called V-shaped
loss functions [44]. When there is no information allowing to define a specific
distance between classes, the `1 loss defined by

`1(ai, aj) = |i− j|

is often used by default. The empirical error with respect to this loss is
equivalent to the mean absolute error (MAE), when the classes in L are
treated as quantitative values.

2.2. Sets of selection rules
In general, a decision rule is an implication of the form

If x1 ∈ A1 and . . . and xn ∈ An, then y ∈ B,

where Ai ⊆ Xi for each i ∈ {1, . . . , n} and B ⊆ L. However, since we assume
that the class increases with the attribute values, we can consider particular
types of rules, of the form (see for instance [37]):

If x1 ≥ α1 and . . . and xn ≥ αn, then y ≥ δ (selection rules),

6

or of the form

If x1 ≤ α1 and . . . and xn ≤ αn, then y ≤ δ (rejection rules).

where δ ∈ L and, for all i ∈ [n], αi ∈ Xi. In what follows, we focus on
selection rules and we call a set of selection rules a monotonic rule set (or
just a rule set, whenever the meaning is clear from the context). We use the
shorthand notation r = (αr1, . . . , α

r
n)→ δr or even αr → δr for selection rules.

Note that any threshold αri = 0 corresponds to the trivial condition xi ≥ 0,
which is always verified. Such a condition does not provide information and
can be removed from the left-hand side of any rule. We say that an attribute
i ∈ [n] is active in r if αri > 0. The set of all active attributes in a rule r is
denoted by Ar and defined by

Ar = {i ∈ [n] | αri > 0}.

The rule r can be written as a condition on active attributes only:

∀i ∈ Ar, xi ≥ αri =⇒ y ≥ δr.

A monotonic rule-set defines a nondecreasing function from X to L. For any
rule r, we define the function fr : X→ L by

fr(x1, . . . , xn) =

{
δr if ∀i ∈ [n], xi ≥ αri ,

0 otherwise.

For any rule-set R we define the function fR : X→ L by

fR(x) =
∨
r∈R

fr(x).

Such rule-sets are quite expressive: any monotonic dataset D can be in-
terpolated by a rule-set, as shown by Greco et al. [38]. These authors made
early contributions to the representation of monotonic datasets by rules, us-
ing the so-called Dominance-based Rough Set Approach (DRSA) [37].

In fact any nondecreasing function X→ L such that f(1, . . . , 1) = 1 and
f(0, . . . , 0) = 0 can be represented by a set Df of selection rules of the form
Df = {(x1, . . . , xn) → f(x1, . . . , xn) : x ∈ X}. We say that a monotonic
rule-set R is equivalent to a nondecreasing function f if fR = f . It is easy to
see that fDf = f .

Let R and R′ be two rule-sets. We say that R and R′ are equivalent
if fR = fR′ , and we denote by Eq(R) the family of rule-sets equivalent to
R. The fact that some sets of rules are equivalent comes from the fact that

7

certain rules bring more information than some others. Let r and s be two
rules. We say that s is redundant with respect to r (denoted by r ⇒ s) if
and only if

δs ≤ δr and ∀i ∈ [n], αri ≤ αsi .

Note that r ⇒ s is equivalent to fs ≤ fr and to f{r,s} = f{r}. Let R be a set
of rules. We say that R is non-redundant if r ⇒ s is verified for no r, s ∈ R.
We define the set R∗ by

R∗ =
{
s ∈ R

∣∣∣ ∀r ∈ R, [r 6⇒ s or s = r
]}
.

The following proposition shows its uniqueness. Its proof can be found in
the Appendix.

Proposition 1. For any rule-set R, R∗ is the smallest element of Eq(R).
This is to say, R∗ is the unique non-redundant rule-set equivalent to R.

Remark 2. All notions that we just introduced have a dual counterpart for
rejection rules. Indeed, a rejection rule fromX to L can be seen as a selection
rule from X−1 to L−1, where X−1 and L−1 denote the sets X and L with
reversed orders. Therefore, notions pertaining to rejection rules similar to
the above ones for selection rules can be defined, by swapping ≥ and ≤, ∧
and ∨, 0 and 1, etc. in the corresponding definitions. For instance, each
rejection rule induces a function

f r(x) =

{
δr if ∀i ∈ [n], xi ≤ αri ,

1 otherwise.

and a set of rejection rules R yields the function fR(x) =
∧
r∈R f

r(x). For
the sake of brevity we do not explain the results concerning rejection rules.

3. Qualitative aggregation operators for monotonic classification

In this section we introduce Sugeno integrals and Sugeno Utility Func-
tionals, and we explain how they are related to decision rules.

Sugeno integrals, like Choquet integralq, are aggregation functions that
rely on the notion of capacity [36]. These two aggregation functions have been
studied in Multiple Criteria Decision Aid (MCDA), where they are used to
aggregate local utility values (i.e., evaluations of an alternative w.r.t. several
attributes or several points of view) into a single utility value [34, 35]. Note
however that Sugeno integral is the aggregation function of choice on purely
ordinal and non-numerical scales [28].

8

3.1. The Sugeno integral
Let L be a bounded ordered set. A set function µ : 2[n] → L is a capacity

if
∀I ⊆ J ⊆ [n], µ(I) ≤ µ(J)

and if µ(∅) = 0 and µ([n]) = 1. For each I ⊆ [n], the value µ(I) can be
interpreted as an importance value given to the subset of attributes I. The
Sugeno integral [52] w.r.t. µ is the function Sµ : Ln → L defined by

Sµ(x) =
∨
I⊆[n]

µ(I) ∧
∧
i∈I

xi.

The focal sets of µ are the sets F ⊆ [n] such that

µ(F) >
∨
I⊂F

µ(I).

We denote by F(µ) the family of focal sets of µ. The value of µ on each
subset of [n] is entirely determined by its values on the focal sets, and we
obtain a more compact expression of Sugeno integral:

Sµ(x) =
∨

I∈F(µ)

µ(I) ∧
∧
i∈I

xi.

3.2. Sugeno Utility Functionals
Sugeno integrals allow to aggregate values belonging to the same scale.

The so-called Sugeno Utility Functionals (SUF) generalize Sugeno integrals
and enable the fusion of values coming from different scales. They seem to
have been considered for the first time in [38]. The authors of [19, 20] define
a SUF as the composition of a Sugeno integral with functions ϕi : Xi → L,
one for each attribute, where

ϕi(0) = 0 and ϕi(1) = 1.

Here, we consider SUFs for which ϕ1, . . . , ϕn are nondecreasing (see [17]).
A function ϕi : Xi → L is called local qualitative normalization function

(local QNF) if it is nondecreasing and if it satisfies ϕi(0) = 0 and ϕi(1) = 1.
A function ϕ : X → Ln is called global qualitative normalization function
(global QNF) if it is the Cartesian product of n local QNFs, i.e., if

ϕ(x) = (ϕ1(x1), . . . , ϕn(xn)),

where, for each i ∈ [n], the function ϕi : Xi → L is a local QNF. Remark that
the product of local QNFs characterizing a global QNF is unique; thus, for

9

any ϕ : X→ L, we will denote by ϕ1, . . . , ϕn the local QNFs whose product
equals ϕ.

A Sugeno Utility Functional (SUF) from X to L consists in the composi-
tion of a Sugeno integral from Ln to L with a global QNF from X to Ln. Let
µ : 2[n] → L be a capacity, ϕ : X → L be a global QNF. The SUF defined
w.r.t. µ and ϕ is the function Sµ,ϕ : X→ L defined by

Sµ,ϕ(x1, . . . , xn) = Sµ
(
ϕ1(x1), . . . , ϕn(xn)

)
=

∨
I∈F(µ)

µ(I) ∧
∧
i∈I

ϕi(xi).

Remark 3. All Sugeno integrals are SUFs (where X1 = · · · = Xn = L and
where ϕ1, . . . , ϕn are identities).

Since Sugeno integrals are expressed using the operators ∧ and ∨, they
can easily be translated into decision rules [37, 51]; obviously, SUFs also
possess this interesting property. Therefore, each prediction made by a SUF
can be explained by at least one decision rule, and the local interpretability
of SUFs is at least as good as that of decision rules.

Moreover, a SUF being the composition of a global QNF and a capacity, it
constitutes a more compact form of a large rule-set than its usual expression
as a list of rules. Note that the extent to which this is the case certainly
depends on several parameters: the size of the rule-set, the number of focal
sets, etc.

3.3. The expressiveness of SUFs
Let us illustrate the notion of SUF with a simple example.

10

X2

X1

ϕ2(x2) = 0

ϕ2(x2) = 1

ϕ1(x1) = 0 ϕ1(x1) = 1

0

a

b

c

1

0 a b c 1

Sµ(0, 0) Sµ(1, 0)

Sµ(0, 1) Sµ(1, 1)

X2

X1

ϕ1(x1) = 0 ϕ1(x1) = 1

0

a

b

c

1

0 a b c 1

Figure 1: The figure on the left depicts local QNFs ϕ1 and ϕ2. These two functions divide
X in four parts, and map each part to a point of L2, to which Sugeno integral Sµ is applied.
The figure on the right depicts a “stair-shaped” function, which is a typical example of a
function that cannot be expressed in the form of a SUF.

Example 1. Let L = {0, 1}, and X = X1×X2, with X1 = X2 = {0, a, b, c, 1},
where 0 < a < b < c < 1. We define the mappings ϕ1 : X1 → L and
ϕ2 : X2 → L by

ϕ1(x1) =

{
0 if x1 ≤ a,

1 otherwise
and ϕ2(x2) =

{
0 if x2 ≤ a,

1 otherwise.

When the functions ϕ1 and ϕ2 are specified, the definition of Sµ,ϕ depends
on the choice of the values of µ, as shown in Figure 1. It shows in particular
that there exist nondecreasing functions that cannot be expressed as SUFs,
such as the function on the right. The latter corresponds to the monotonic
rule set {(0, 1)→ 1, (a, c)→ 1, (b, b)→ 1, (c, a)→ 1, (1, 0)→ 1}. �

The last example highlights the fact that SUFs are less expressive than
rule-sets. In fact, SUFs suffer from several limitations, which come from the
loss of information induced by QNFs and from the poor expressiveness of
Sugeno integrals, first highlighted by Greco et al. [37, 51, 38]. Firstly, for
any SUF Sµ,ϕ , the global QNF ϕ associates to each description x ∈ X a
value ϕ(x) ∈ Ln, and we have

Sµ,ϕ(x) = Sµ(ϕ(x)).

We can see Ln as an intermediary description space, to which X is mapped
through ϕ1 × · · · × ϕn. Thus, the size of Ln is determined by the number

11

of classes, which is quite restrictive when L has a small size, in particular,
in the case of binary classification, as we illustrated in the last example.
Secondly, Sugeno integrals constitute a more restricted class of functions
than the aggregation functions on L, see [15] and references therein. For
instance it does not include associative operations studied by Fodor [33].
The limitations of SUFs follow from the following characterization [17, 21]:

Proposition 2. A nondecreasing function f : X → L is a SUF if and only
if, for all x,x’ ∈ X, i ∈ [n] and a ∈ Xi we have

f(x|0i) < f(x|ai) and f(x’|ai) < f(x’|1i) =⇒ f(x|ai) < f(x’|ai)

where x|ai denotes the tuple which is equal to x on every component except
the i-th one, which equals a.

In the next section we show how SUFs can be translated into sets of
selection rules. For the converse, We need a model introduced in [16], that
consists in the maximum (or minimum) of several SUFs.

4. From SUFs to rule-sets and back

For any SUF S, there is exactly one non-redundant set of selection rules
R such that S = fR and a non-redundant set of rejection rules R′ such that
S = fR

′ . In this Section we define the function S-SET : SX,L → RX,L,
which associates to each SUF its equivalent non-redundant rule-set.

4.1. Translating a Sugeno integral into a rule-set
Let Sµ : Ln → L be the Sugeno integral w.r.t. the capacity µ. This

Sugeno integral is of the form:

Sµ(x) =
∨

F∈F(µ)

gF (x), where gF (x) = µ(F) ∧
∧
i∈F

xi.

Each term gF can be represented by a rule-set as follows. For each δ ∈ L,
the inequality

µ(F) ∧
∧
i∈F

xi ≥ δ

holds if and only if

µ(F) ≥ δ and ∀i ∈ F, xi ≥ δ.

Therefore, gF is equivalent to the following non-redundant rule-set

S-SET(gF) =
{[
∀i ∈ F, xi ≥ δ

]
⇒ y ≥ δ

∣∣∣ δ ∈ L, δ ≤ µ(F)
}
.

12

and Sµ is equivalent to the non-redundant rule-set

S-SET(Sµ) =

(⋃
F∈F(µ)

S-SET(gF)

)∗
.

where, as previously, for any rule-set R, R∗ denotes its smallest equivalent
rule-set. See [26] for a concrete example of a qualitative dataset represented
by a Sugeno integral from which a rule-set is derived.

4.2. Translating a SUF into a rule-set
For any capacity µ and any global QNF ϕ, the SUF Sµ,ϕ verifies

Sµ,ϕ(x) = Sµ(ϕ1(x1), . . . , ϕn(xn))

for all x ∈ L. Consequently, Sµ,ϕ can be expressed by the following set of
rules ⋃

F∈F(µ)

{[
∀i ∈ F, ϕi(xi) ≥ δ

]
⇒ y

∣∣∣ δ ∈ L, δ ≤ µ(F)
}
.

Strictly speaking, this set is not a rule-set, since its rules are formulated w.r.t.
the values of ϕ1(x1), . . . , ϕn(xn). However, for any i ∈ [n], the inequality

ϕi(xi) ≥ δ

is equivalent to

xi ≥ α(i, δ) =
∧{

ai ∈ Xi

∣∣ ϕi(ai) ≥ δ
}
.

The SUF Sµ,ϕ should therefore equivalent to the following non-redundant
rule-set:

S-SET(Sµ,ϕ) =

(⋃
F∈F(µ)

{[
∀i ∈ F, xi ≥ α(i, δ)

]
⇒ y ≥ δ

∣∣∣ δ ∈ L, δ ≤ µ(F)
})∗

as we shall see later.

4.3. Translating a rule-set into a SUF
We say that a rule-set R is SUF-representable if it is equivalent to a SUF,

that is, the function fR induced by R in Section 2.2 is a SUF. We define the
function

SUF : RX,L → SX,L

13

that associates a SUF to each rule-set as follows: if R is a non-redundant
rule-set,

SUF(R) = Sµ,ϕ

where µ is the capacity defined by

µ(I) =
∨
{δr | r ∈ R, Ar ⊆ I}, (1)

for all ∅ ⊂ I ⊂ [n], and where ϕ is the global QNF defined by

ϕi(xi) =
∨
{δr | r ∈ R, 0 < αri ≤ xi} (2)

for all i ∈ [n] and xi ∈ Xi\{0, 1}. Note that we always have µ(∅) = 0,
µ([n]) = 1, and ϕi(0) = 0 and ϕi(1) = 1 for all i ∈ [n].

More precisely, we can also see SUF(R) as the SUF iteratively defined
by the following steps.

1. We set

µ(I) =

{
1 if I = [n],

0 otherwise,

and, for all i ∈ [n],

ϕi(xi) =

{
1 if xi = 1,

0 otherwise.

The SUF Sµ,ϕ so-defined is the smallest SUF from X to L.

2. For each rule r ∈ R

(a) we increase µ(Ar) to δr,
(b) for each i ∈ Ar, we increase ϕi(αi) to δr.

Remark 4. In the previous procedure, “we increase g(x) to y” means that,
for each x′ belonging to the domain of g and verifying x′ ≥ x, if g(x′) < y
then we set g(x′) to y.

Note that for any rule-set R we have SUF(R∗) ≥ R. We first prove
that if a rule-set R is obtained from a SUF Sµ,ϕ as explained in the previous
subsection, then SUF(R) = Sµ,ϕ.

Proposition 3. For any SUF S we have

S = fS-SET(S) = SUF(S-SET(S)).

14

0

a

b

1

0 a b 1

r1

r2
0

a

b

1

0 a b 1

Sµ(1, 1)

Sµ(1, 0)

S
µ
(0
,1
)

Sµ
(0
, 0
)

Figure 2: Representation of the function defined by the rules r1 =
[
(a, b) → 1

]
and

r2 =
[
(b, a) → 1

]
(left) and the function SUF({r1, r2}) (right). The dashed lines show

how X is partitioned by ϕ1 and ϕ2.

Corollary 4. A rule-set R is SUF-representable if and only if SUF(R∗) =
fR.

This corollary allows to check whether a rule-set R is SUF-representable
by testing if R∗ = S-SET(SUF(R∗)). The proof of Proposition 3 and its
corollary are given in the Appendix.

Example 2. Consider L = {0, 1}, X1 = X2 = {0, a, b, 1} with 0 < a < b < 1,
and the rules r1 =

[
(a, b) → 1

]
and r2 =

[
(b, a) → 1

]
. We will compute ϕ1,

ϕ2 and µ such that SUF({r1, r2}) = Sµ,ϕ. The rule r1 implies

ϕ1(a) = 1 and ϕ2(b) = 1.

The rule r2 implies
ϕ1(b) = 1 and ϕ2(a) = 1.

Those two rules imply the trivial condition µ({1, 2}) = 1. Therefore we have

ϕ1(a) = 1, ϕ2(a) = 1 and µ({1, 2}) = 1.

The functions f{r1,r2} and SUF({r1, r2}) are depicted in Figure 2. The trans-
lation of SUF({r1, r2}) into rules reduces to the single rule (a, a) → 1. We
have SUF({r1, r2}) > f{r1,r2}, and thus {r1, r2} is not SUF-representable, for
the same reason as for the function on the right of Figure 1. �

For any non-redundant rule-sets R and R′ such that R ⊆ R′, we have
SUF(R) ≤ SUF(R′). However, for two rule-sets R and R′, it is possible
that fR < fR′ while SUF(R′) < SUF(R), as we show in the following
example.

15

Example 3. Consider X1 = X2 = L = {0, a, b, c, 1}, and the non-redundant
rule-sets

R = {(b, a)→ 1, (0, b)→ 1, (c, 0)→ 1}

and
R′ = {(b, 0)→ 1, (0, b)→ 1}.

Note that fR < fR′. Moreover, the SUF Sµ,ϕ defined as follows is equal to
SUF(R). We have µ({1}) = µ({2}) = 1 and:

x 0 a b c 1
ϕ1(x) 0 0 1 1 1
ϕ2(x) 0 1 1 1 1

Similarly, the SUF Sµ′,ϕ′ defined as follows is equal to SUF(R′). We have
µ′({1}) = µ′({2}) = 1 and:

x 0 a b c 1
ϕ′1(x) 0 0 1 1 1
ϕ′2(x) 0 0 1 1 1

�

Thus we have fR < fR′ and SUF(R′) < SUF(R). This phenomenon is
due to the expression of QNFs (2), in which non-active attributes are ignored.
Fewer attributes are active in the rule (b, 0) → 1 than in (b, a) → 1, even
though f(b,a)→1 < f(b,0)→1.

4.4. Translating monotonic rule-sets into SUF-sets
As pointed out earlier, any aggregation function f : X → L, namely

nondecreasing and f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1 can be represented
by a set of selection rules Df . Each rule ri = αi → δi ∈ (Df)∗ can be
represented by a min-term of the form fi = min(minj∈Ai ϕij(xj), δi) where
Ai contains the active attributes of ri, ϕij(αj) = δi, each mapping ϕi,j being
a local QNF, for the min-term indexed by i.

Let S a set of SUFs. We call
∨
S the function defined by∨

S(x) =
∨
S∈S

S(x).

The following proposition lays bare the expressive power of functions of the
form

∨
S as shown in [16].

16

Proposition 5. For any nondecreasing function f : X→ L such that

f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1,

there exists a set of SUFs S such that f =
∨

S.

Proof. We express f as

f(x1, . . . xn) =
∨
i∈I

(
δi ∧

∧
j∈Ai

ϕij(xj)
)
,

translating each rule in (Df)∗. Note that the domain Ln, can be partitioned
into subsets where f(x1, . . . xn) = ϕij(xj) or is a constant δi ∈ L. Moreover,
as f(1, 1, . . . , 1) = 1, there exists i ∈ I such that δi = 1, and ∀j ∈ Ai, ϕij(1) =
1 and ϕij(0) = 0. It is clear that we can rewrite f as

f(x1, . . . , xn) =
∨
i∈I

[(
δi ∧

∧
j∈Ai

ϕij(xj)
)
∨
(∧
k∈[n]

ϕik(xk)
)]
,

provided that ∀k 6∈ Ai, ϕik(1) = 1 and ϕik(xk) = 0 if xk < 1. The inner
expression

Si(x) =

[
δi ∧

∧
j∈Ai

ϕij(xj)

]
∨

[∧
k∈[n]

ϕik(xk)

]
is a SUF with respect to the capacity µi with focal sets Ai such that µi(Ai) =
δi, and [n] such that µi([n]) = 1 in the case Ai 6= [n]. So we have f(x) =∨
S(x) =

∨
i∈I Si(x).

This result completes those in [38], where it is shown that monotonic
functions correspond to selection rules (Th. 1), and Sugeno integrals to
single threshold selection rules (Th. 3).

The representation obtained in the proof of Proposition 5 is not parsi-
monious. Some min-terms can be grouped into a single SUF with respect
to a more complex capacity by unifying some local QNFs for each attribute
into a single one. To do so, the idea is that we extract a maximal number of
subsets Ai ⊂ [n], such that

• whenever Ai ∩ Ai′ 6= ∅, the utility functions ϕij and ϕi′j for all j ∈
Ai ∩ Ai′ must be equal.

• whenever Ai ⊂ Ai′ , we have that δi < δi′ .

17

In order to determine a set of SUFs equivalent to a given rule-set, we rely
on the notion of SUF-cover. A family P of rule-sets is a cover of a rule-set
R if ⋃

P∈P

P = R.

Moreover, a cover P of R is a SUF-cover of R if the SUF-set

S = {SUF(P) | P ∈ P}

is equivalent to R, that is to say if
∨
S = fR. In fact, it is easy to show that

P is a SUF-cover of R if and only if

∀P ∈ P, SUF(P) ≤ fR. (3)

Indeed, this condition is necessary. It is also sufficient, because when it holds
we have

fR ≥
∨
P∈P

SUF(P) ≥
∨
P∈P

fP =
∨
P∈P

∨
r∈P

fr = fR.

The main difficulty is to find a minimal SUF cover that accounts for a
monotonic dataset D or the corresponding bunch of selection rules R, so as
to have fD = fR =

∨
S where S contains a minimal number of SUFs.

5. A rule set learning algorithm

The theoretical results obtained above motivates new algorithms for mono-
tonic classification, exploiting the synergy between rule sets and SUFs. In
this section, we introduce and evaluate a non-parametric monotonic rule-set
learning algorithm that we call SRL.

5.1. Interpolation of a monotonic dataset by short rules
LetD be a monotonic dataset, i.e., a dataset in which all pairs {(x, y), (x’, y′)} ⊆

D verify
x ≤ x’ =⇒ y ≤ y′.

We define functions λ−D : X→ L and λ+D : X→ L by

λ−D(x) =
∨{

y′
∣∣ (x’, y′) ∈ D and x’ ≤ x

}
λ+D(x) =

∧{
y′
∣∣ (x’, y′) ∈ D and x ≤ x’

}
.

18

They are (respectively) the lowest and the highest classifiers that make no
error on D. For all x ∈ X we have λ−D(x) ≤ λ+D(x), and for all (x, y) ∈ D we
have

λ−D(x) = λ+D(x) = y.

We say that a function f interpolates D if f(x) = y for all (x, y) ∈ D. The
interval [λ−D(x), λ

+
D(x)] contains all nondecreasing functions that interpolate

D.

Figure 3: Example of monotonic data; two attributes with discrete domains, two classes
(0 and 1). Each possible description is represented by a square of the grid. Observations
of class 0 (resp. 1) are depicted by white (resp. gray) circles. The first schema depicts
λ−D as a frontier separating all x ∈ X such that λ−D(x) = 0 (in the white zone) from all
x ∈ X such that λ−D(x) = 0 (in the gray zone). The second schema depicts λ+D in an
analogous manner. The third schema depicts the interval [λ−D, λ

+
D]: white (resp. gray)

zones correspond to all x ∈ X such that f(x) = 0 (resp. such that f(x) = 1) for all
f ∈ [λ−D, λ

+
D]. The shaded zone contains all x ∈ X for which λ−D(x) < λ+D(x).

We denote by R− the non-redundant set of selection rules equivalent to
λ−D, and by R+ the non-redundant set of rejection rules equivalent to λ+D. The
functions fR− = λ−D and fR

+
= λ−D are respectively the least and greatest

interpolations of D. Let us focus on R−. We have

R− =
{
x→ y

∣∣ (x, y) ∈ D}∗.
It is likely that most rules in R− have many active attributes. In order to
prevent overfitting and to improve readability, the rules in R− should be
simplified (which may cause a possible information loss). For any r ∈ R−, a
rule s such that δs = δr, As ⊂ Ar and such that ∀i ∈ As, αsi = αri , is called
a simplification of r.

The SRL algorithm returns a rule-set containing simplifications of the
rules in R−. We say that a rule α → δ is compatible with D if for all
(x, y) ∈ D

x ≥ α =⇒ y ≥ δ.

19

For each rule r ∈ R−, we search for a subset A ⊂ Ar (as small as possible)
such that the rule

∀i ∈ A, xi ≥ αri =⇒ y ≥ δr

is compatible with D. For any rule r and any I ⊆ [n], we denote by r\I the
rule defined by

r\I = (α1, . . . αn)→ δr,

where, for each i ∈ [n],

αi =

{
0 if i ∈ I,
αri otherwise.

In other words, the rule r\I corresponds to the rule r in which the attributes
of I are deactivated.

For each rule r in R−, we search for a set I ⊆ [n] (as large as possible) such
that r\I is compatible with D. We use a greedy approach, where attributes
are iteratively added to I. Before adding an attribute i to I, we test whether
r\I ∪ {i} is compatible with D. Since it can happen that r\I ∪ {i} and
r\I ∪ {j} are compatible with D while r\I ∪ {i, j} is not, the order in which
attributes are added to I affects the result. We choose this order w.r.t.
an evaluation of the discrimination power of each threshold α1, . . . , αn of the
considered rule. We call discrimination power of a threshold αi the number of
observations for which knowing whether xi ≥ αi allows to determine whether
y ≥ δ. It is given by the function ui : Xi × L→ N defined by

ui(αi, δ) =
∣∣∣{(x, y) ∈ D ∣∣∣ [y ≥ δ and xi ≥ αi

]
or
[
y < δ and xi < αi

]}∣∣∣.
The process of simplifying rules is formalized by Algorithm 1.
Algorithm 1: Simplification of R−.
input : A monotonic dataset D and a rule-set R− equivalent to λ−D
output: A rule-set compatible with D

1 function SIMPLIFICATION(D, R−)
2 R← {}
3 for each r ∈ R− do
4 I ← {}
5 for i ∈ [n] in increasing order of u(αi, i) do
6 if r\(I ∪ {i}) is compatible with D then
7 I ← I ∪ {i}

8 R← R ∪
{
r\I
}

9 return R∗

20

Running SRL on a dataset where the ranking of values in each set of
X1, . . . , Xn and L has been reversed is equivalent to running, on the original
dataset, a dual method which returns a rule-set containing simplifications of
the rejection rules in R+. We call this dual method SRL−1.

5.2. Handling non-monotonic datasets
Now suppose that D is not monotonic. This is to say: there exist some

pairs of data {(x, y), (x’, y′)} ⊆ D that are decreasing, i.e., such that

x ≤ x’ and y′ < y,

while other pairs are increasing. For a decreasing pair, we have

λ+D(x) < λ−D(x) and λ+D(x’) < λ−D(x’).

In that case, the interval [λ−D, λ
+
D] is empty (no nondecreasing function in-

terpolates D). The lack of monotonicity makes interpolation impossible.
Moreover, this defect is often interpreted as the result of noise and, for this
reason, several pre-processing methods for restoring monotonicity from data
have been proposed.

One approach consists in selecting a subset of the dataset that does not
contain any decreasing pair [49]. A more popular approach tries to modify
the class of certain observations and is called monotonic relabeling. Its aim
is to find a monotonic function £ : D → L called relabeling function, which
determines a new label for each observation, according to its attribute values.
A relabeling function is said to be optimal w.r.t. a given loss function ` if its
empirical error on D w.r.t. ` is minimal.

Figure 4: Example of non monotonic data. The two first schemas depict λ−D and λ+D. In
the third schema, we have: λ−D(x) = λ+D(x) = 0 in the white zone, λ−D(x) = λ+D(x) = 1
in the gray zone, λ−D(x) < λ+D(x) in the gray-shaded zone, and λ+D(x) < λ−D(x) in the
red-shaded zone.

An optimal relabeling function for any convex loss function (such as `1,
whose associated empirical error is the mean absolute one (MAE)), can be

21

obtained using an algorithm with complexity in O(m3|L|) that can be found
in [30]. This algorithm will be used in the next sections. Note, however,
that numerous relabeling methods exist. An optimal relabeling function in
O(m3|L|3), for any V-shaped loss is proposed in [49]. Not necessarily optimal
re-labelings can be found more efficiently by means of the methods presented
in [24, 47].

Several studies [23, 24, 31, 43], relying on empirical or noisy artificial data,
show that in certain cases, relabeling the data improves model accuracy. In
our case, relabeling D allows to subsequently perform interpolation, in the
sense of [18].

5.3. The rule-set learning algorithm
Relying on the notions and algorithms presented in the previous subsec-

tions, we define the rule-set learning algorithm SRL as follows.The first step
is a relabeling step that produces a monotonic datasetM. Note that, since
we obtainM via an optimal relabeling of D, the interpolation ofM that is
returned by the algorithm is also optimally fit to D (w.r.t. the MAE).

SRL(D). Let D be a dataset.

1. Relabel D optimally w.r.t. MAE. We denote byM the relabeled dataset.

2. Express λ−M by a rule-set R−:

R− ←
{
x→ y

∣∣ (x, y) ∈M}∗.
3. Simplify the rules of R−:

R← SIMPLIFICATION(M, R−).

The result is the rule-set R.

Example 4. We now illustrate Steps 2 and 3 of SRL. Let L = {0, 1} and
X1 = X2 = {0, a, b, 1} such that 0 < a < b < 1, and let

M =
{(

(0, 1), 0
)
,
(
(a, b), 0

)
,
(
(a, a), 0

)
,
(
(1, b), 1

)
,
(
(a, 1), 1

)}
After Step 2, we get the rule-set R− = {r1, r2} with

r1 = (1, b)→ 1 and r2 = (a, 1)→ 1.

Note that observations whose class is 0 only produce rules whose right-hand
side is y ≥ 0; those rules do not carry any information.

22

We now apply Algorithm 1. We compute the discrimination power ui
for observations whose class is 1. For ((1, b), 1) we have u1(1, 1) = 4 and
u2(b, 1) = 3 and for ((a, 1), 1) we have u1(a, 1) = 3 and u2(1, 1) = 3.

We start with the rule (1, b) → 1: since u1(1, 1) > u2(b, 1), we first con-
sider the 2nd threshold. This threshold can be decreased to 0, because the rule
(1, 0)→ 1 is compatible with all observations inM. Then, the first threshold
cannot be decreased to 0, because the rule (0, 0)→ 1 is incompatible with ev-
ery observation of class 0. We then consider the rule (a, 1)→ 1. No threshold
can be decreased to 0, because (0, 1)→ 1 is incompatible with ((0, 1), 0), and
because (a, 0)→ 1 is incompatible with ((a, b), 0) and ((a, a), 0). The function
SIMPLIFICATION therefore returns R = {r′1, r2} with

r′1 =
[
(1, 0)→ 1

]
and r2 =

[
(a, 1)→ 1

]
.

0

a

b

1

0 a b 1

10

0

0

1

r2

r1

Figure 5: M and rules of R−.

0

a

b

1

0 a b 1

10

0

0

1

r2

r′1

Figure 6: M and rules returned by
SIMPLIFICATION(M, R−).

5.4. Practical evaluation of SRL
We evaluate the predictive accuracy of SRL and SRL−1 on the datasets

listed in Table 2.

23

ID Name # obs. # att. # class Description, source
1 breast-c 286 8 2 Breast-cancer Ljubljana, UCI
2 breast-w 699 9 2 Breast-cancer Wisconsin, UCI
3 car 1296 6 4 Car evaluations
4 CPU 209 6 4 CPU performance evaluation
5 bank-g 1411 16 2 Greek banks evaluation
6 fame 1328 10 5 Firm financial evaluation
7 denbosch 119 8 2 House pricing [22]
8 ERA 1000 4 9 Employees rejection/acceptance [5]1
9 ESL 488 4 9 Employees selection [5]1
10 LEV 1000 4 5 Lectures evaluations [5]1
11 SWD 1000 10 4 Social workers decisions [5]1
12 windsor 546 10 4 House pricing [2]
13 haberman 306 3 2 Patient survival, UCI
14 balance 325 4 3 Balance state (left, center, right), UCI
15 pima 768 8 2 Pima indians diabetes
16 car 1728 6 4 Car evaluations, UCI
17 auto-MPG 392 7 2 Car fuel consumption, UCI
18 churn 5000 18 2 Client churning prediction
19 german 1000 24 2 German credit data, UCI
20 contraception 1473 9 3 Contraceptive method choice, UCI

Table 2: Description of the datasets.

All datasets that we used are available in https://github.com/QGBrabant/
SUF4OC/. The first twelve datasets have already been used in [11].3 Data-sets
13 to 20 are equivalent to those used in [55], with minor modifications: we
removed 6 rows in the auto-MPG dataset because of missing attribute values,
and we removed one categorical attribute from the churn dataset. When it
was not clear whether the class should increase or decrease with a specific
attribute value, we used the Spearman’s rank correlation coefficient.

In what follows, we evaluate the accuracy of a learning algorithm A on
a dataset D via the following test.

Evaluation of a learning algorithm(A ,D). Let D be a dataset and A be
a learning algorithm. The test consists in 10 tenfold cross-validation steps.
For each cross-validation, we measure the average accuracy of the result of
A (MER and MAE) obtained on the 10 bins extracted from D.

The test returns, for MAE and MER, the mean and standard deviation
of the results of the 10 tenfold cross-validation steps.

We apply this test to the following 4 algorithms (on each dataset of the
table):

1https://www.cs.waikato.ac.nz/ml/weka/data-sets.html
3We acknowledge Roman Slowinski for providing them.

24

https://github.com/QGBrabant/SUF4OC/
https://github.com/QGBrabant/SUF4OC/
https://www.cs.waikato.ac.nz/ml/weka/data-sets.html

• SRL,

• SRL−1,

• a learning method consisting of the two first steps of SRL (which returns
λ−M),

• a learning method consisting of the two first steps of SRL−1 (which
returns λ+M).

We compare the results to two state-of-the art rule-based monotonic algo-
rithms: VC-DomLEM [7] and RULEM [55] (see their brief description in
Appendix 1). Table 3 displays the results obtained by these algorithms and
by VC-DomLEM on the first 12 datasets (whose results are reported from
[11]).

The results show that the simplification step of SRL has a positive effect
on the accuracy. Interestingly, although the error scores of SRL−1 and SRL
are similar on average, they differ strongly on several datasets.

To verify that Step 3 of SRL and SRL−1 improves the accuracy of the
rule-set in most cases, we used the Wilcoxon signed-rank test. We compared
the accuracy of λ−M (resp. λ+M) with that of SRL (resp. SRL−1) on the
13 datasets. When the accuracy measure considered is the misclassification
error rate (MER), the tests yielded respectively the p-values 0.003 and 0.005,
whereas when the mean absolute error (MAE) is considered, they yielded
0.003 and 0.004. Hence the differences are significant in both cases.

25

λ−M λ+M SRL SRL−1 VC-DomLEM
MER MAE MER MAE MER MAE MER MAE MER MAE

breast-c 0.253
± 0.010

0.253
± 0.010

0.276
± 0.011

0.276
± 0.011

0.256
± 0.011

0.256
± 0.011

0.278
± 0.007

0.278
± 0.007

0.233
± 0.003

0.232
± 0.003

breast-w 0.12
± 0.006

0.12
± 0.006

0.055
± 0.002

0.055
± 0.002

0.042
± 0.003

0.042
± 0.003

0.04
± 0.003

0.04
± 0.003

0.037
± 0.002

0.037
± 0.002

car 0.038
± 0.002

0.045
± 0.002

0.04
± 0.002

0.045
± 0.002

0.023
± 0.001

0.026
± 0.002

0.034
± 0.003

0.038
± 0.003

0.028
± 0.001

0.034
± 0.001

CPU 0.209
± 0.008

0.225
± 0.012

0.22
± 0.004

0.246
± 0.005

0.064
± 0.008

0.067
± 0.008

0.099
± 0.008

0.102
± 0.011

0.083
± 0.014

0.083
± 0.015

bank-g 0.141
± 0.001

0.141
± 0.001

0.311
± 0.006

0.311
± 0.006

0.083
± 0.003

0.083
± 0.003

0.059
± 0.001

0.059
± 0.001

0.046
± 0.001

0.046
± 0.001

fame 0.547
± 0.004

0.682
± 0.004

0.61
± 0.005

0.803
± 0.007

0.344
± 0.004

0.367
± 0.003

0.343
± 0.005

0.367
± 0.005

0.334
± 0.005

0.341
± 0.002

denbosch 0.306
± 0.018

0.306
± 0.018

0.23
± 0.014

0.23
± 0.014

0.168
± 0.013

0.168
± 0.013

0.146
± 0.008

0.146
± 0.008

0.123
± 0.010

0.123
± 0.010

ERA 0.735
± 0.010

1.26
± 0.011

0.766
± 0.007

1.3
± 0.014

0.73
± 0.006

1.251
± 0.011

0.76
± 0.002

1.295
± 0.009

0.731
± 0.004

1.307
± 0.002

ESL 0.326
± 0.012

0.348
± 0.012

0.344
± 0.014

0.388
± 0.014

0.33
± 0.010

0.355
± 0.013

0.34
± 0.006

0.36
± 0.007

0.333
± 0.013

0.37
± 0.014

LEV 0.371
± 0.009

0.402
± 0.007

0.384
± 0.005

0.42
± 0.006

0.364
± 0.004

0.394
± 0.004

0.384
± 0.004

0.418
± 0.004

0.444
± 0.004

0.481
± 0.004

SWD 0.425
± 0.008

0.443
± 0.009

0.419
± 0.005

0.443
± 0.006

0.418
± 0.008

0.435
± 0.009

0.422
± 0.005

0.445
± 0.006

0.436
± 0.005

0.454
± 0.004

windsor 0.513
± 0.011

0.589
± 0.011

0.486
± 0.011

0.587
± 0.013

0.486
± 0.014

0.551
± 0.018

0.472
± 0.009

0.526
± 0.010

0.454
± 0.008

0.502
± 0.006

mean 0.332 0.401 0.345 0.425 0.276 0.333 0.281 0.339 0.274 0.334

Table 3: Comparison of the errors scores of SRL, unsimplified rule-sets, and VC-DomLEM.
On each line, the scores that are at most one standard deviation away from the best score
are in bold font.

For the datasets of Table 2 that have been used in [55], we compare the
results of SRL and SRL−1 to that of three combinations of RULEM with a
non-monotonic classification method: Ripper and RULEM, Antminer+ and
RULEM, and C4.5 and RULEM. The results of RULEM are reported from
[55]. Note that RULEM was evaluated using random split-ups of the data
into 2/3 for training and 1/3 for test data. Therefore, the comparison might
be slightly biased in favor of SRL, since more training data are used in the
tenfold cross-validation.

We used the Wilcoxon signed-rank test corrected with Bonferroni method
to investigate whether significant differences in the overall performances of
those algorithms could be established. We compared the accuracies of SRL,
SRL−1, VC-DomLEM, Ripper+RULEM, Ant+RULEM and C4.5+RULEM
on 8 common datasets. We performed a Wilcoxon test for each pair of those
methods on the 8 datasets. Each test on a pair of methods yielded a p-

26

SRL SRL−1 Ripper+RULEM Ant+RULEM C4.5+RULEM
MER MAE MER MAE MER MAE MER MAE MER MAE

breast-c 0.256 0.256 0.278 0.278 0.289 0.289 0.267 0.267 0.291 0.291
ERA 0.73 1.251 0.76 1.295 0.555 0.78 0.619 0.88 0.553 0.78
ESL 0.33 0.355 0.34 0.36 0.292 0.32 – – 0.3 0.3
LEV 0.364 0.394 0.384 0.418 0.396 0.45 0.544 0.61 0.391 0.44
SWD 0.418 0.435 0.422 0.445 0.438 0.438 0.602 0.602 0.447 0.447

haberman 0.266 0.266 0.288 0.288 0.25 0.25 0.273 0.273 0.273 0.273
balance-scale 0.187 0.205 0.186 0.202 0.187 0.3 0.225 0.37 0.188 0.29

pima 0.255 0.255 0.285 0.285 0.251 0.25 0.293 0.3 0.253 0.25
car 0.023 0.026 0.034 0.038 0.051 0.08 – – 0.03 0.03

auto-mpg 0.08 0.08 0.084 0.084 0.19 0.19 0.165 0.165 0.175 0.175
churn 0.104 0.104 0.292 0.292 0.063 0.063 0.112 0.112 – –
german 0.289 0.289 0.263 0.263 0.283 0.283 0.32 0.32 – –

contraception 0.504 0.668 0.492 0.661 0.48 0.76 0.576 0.91 – –
mean 0.293 0.353 0.316 0.378 0.287 0.343 – – – –

Table 4: Comparison of the errors scores of SRL compared to RULEM. On each line, the
best score is give in bold font.

value, and we applied a Bonferroni correction to the set of obtained p-values.
We did not observe any significant difference (p < 0.05) between methods,
regardless of the measure considered, i.e., misclassification error rate (MER)
or mean absolute error (MAE).

27

Rule sizes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SRL

D
at
as
et

1 9 45 46 1
2 25 65 10 1
3 18 21 24 23 12 3
4 48 44 8
5 6 62 27 5 1
6 3 29 51 13 3 1
7 26 64 10
8 28 67 5
9 13 35 30 22
10 14 40 46 1
11 16 25 37 19 3
12 3 24 44 26 2 1
13 8 16 76
14 7 54 39
15 5 24 39 23 9 1 1
16 18 21 23 23 12 3
17 6 65 23 6
18 1 12 41 26 11 5 2 2 1
19 1 9 38 32 15 5 1 1 1
20 1 4 18 30 28 15 3 1

SRL−1

D
at
as
et

1 4 10 42 43
2 7 43 26 18 5
3 1 23 51 25
4 5 52 32 12
5 8 60 25 6 1 1
6 1 34 42 18 4 1
7 29 36 32 1 1 1
8 32 57 11
9 24 44 24 8
10 13 39 46 2
11 3 34 53 10 1
12 4 8 19 29 22 11 6 1
13 8 46 46
14 7 54 39
15 1 25 36 29 7 2
16 1 23 51 25
17 12 64 24 1
18 1 9 30 33 18 7 2 1 1 1
19 1 8 34 28 15 5 4 2 1 1
20 1 9 31 41 16 2

Table 5: Distributions of the length of rules obtained by SRL and SRL−1. Each line is the
distribution obtained on one dataset (percentage, rounded-up). The number of attributes
in each dataset is indicated by a vertical double line.

28

The average distributions of rule lengths (number of active attributes)
obtained by SRL and SRL−1 are given, respectively, in Table 5. These distri-
butions can be compared to those reported in [7]; the great majority of rules
generated by SRL, SRL−1 and VC-DomLEM are of size from 1 to 6. Such
rule lengths are reasonable. However, certain rule-sets contain many rules,
as shown in Table 6.
dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
obs. 286 683 1728 209 1411 1328 119 1000 488 1000 1000 546 306 325 768 1728 392 5000 1000 1473

R− 14 65 38 41 173 623 23 36 45 39 72 114 13 93 126 38 28 573 430 210
R+ 14 26 39 45 389 691 16 38 48 40 62 104 19 93 192 39 32 2871 206 225

SRL 12 24 33 19 119 449 11 23 39 25 37 87 12 89 104 33 18 393 297 178
SRL−1 13 14 38 23 94 476 7 25 41 25 38 73 15 89 129 38 21 2163 180 188

Table 6: Average number of rules.

Interestingly, it seems that when SRL produces fewer rules than SRL−1,
it has a better accuracy, and vice-versa. However, we see that, for several
dataset, the obtained rule-sets are very large, and therefore not readable.

6. An algorithm for minimizing SUF-covers

We now want to know the number of SUFs that are necessary to express
a rule-set that has been learned from empirical data. We define the following
problem.

Minimal SUF-cover problem. Let R be a rule-set. Find a SUF-cover of
R of minimal size.

Indeed, the size of the smallest SUF-cover of a rule-set R is the minimal
size of any SUF-set S verifying ∨

S = fR.

In order to see the difficulty of this problem, consider the following example.

Example 5. Let n = 4, L = X1 = X2 = X3 = X4 = {0, a, b, 1} be a rule-set
R = {r1, r2, r3, r4} whose domain is L4 and whose codomain is L, with

r1 = (a, a, 0, 0) → b,

r2 = (a, 0, a, 0) → b,

r3 = (a, 0, 0, a) → b,

r4 = (0, b, b, b) → 1.

We can check that any subset of R of size 3 is SUF-representable. However,
R is not SUF-representable. To see this, we compute ϕ1, ϕ2, ϕ3, ϕ4 and µ
such that Sµ,ϕ = SUF(R). We obtain the following local QNFs:

29

x 0 a b 1
ϕ1(x) 0 b b 1
ϕ2(x) 0 b b 1
ϕ3(x) 0 b b 1
ϕ4(x) 0 b b 1

and also the function µ, whose focal sets are {1, 2}, {1, 3}, {1, 4}, {2, 3, 4}
with

µ({1, 2}) = µ({1, 3}) = µ({1, 4}) = b µ({2, 3, 4}) = 1.

If we translate Sµ,ϕ into a rule-set we get R′ = {r1, r2, r3, r4, r5} where

r5 = (0, a, a, a)→ b.

We have SUF(R) > fR. The rule r5 in R′ comes from the fact that µ({2, 3, 4}) =
1 and ϕ2(a) = ϕ3(a) = ϕ4(a) = b.

This example illustrates the fact that there exist rule-sets R for which
every subset of size n − 1 is SUF-representable, while SUF(R) > fR. This
fact does not prove that the minimal SUF-cover problem is NP-hard, but we
do not know any algorithm for solving it in polynomial time in terms of n
and the size of the considered rule-set. We therefore propose an approximate
method.

The procedure SUF-INTERPOLATION (Algorithm 2) is a greedy ap-
proach that treats a more general problem than the minimal SUF-cover of a
rule-set. In what follows, this procedure will be abbreviated by the function
S-I. For a given rule-set R−, represented by a list of rules lR− , and a function
λ+ such that fR− ≤ λ+, S-I(lR− , λ+) returns a partition P of R− such that

fR− ≤
∨{

SUF(P)
∣∣ P ∈ P} ≤ λ+,

by iteratively building a partition P of R−, that verifies the constraint∨{
SUF(P)

∣∣ P ∈ P} ≤ λ+,

or equivalently, for all P ∈ P, SUF(P) ≤ λ+. The algorithm aims at min-
imizing the size of P. When λ+ = fR− , SUF-INTERPOLATION returns a
SUF-cover of R−.

The basic idea of the algorithm is based on the following principle: the
list lP contains disjoints subsets of R− and is initialized only with the empty
set. Then we iterate over the set of rules R (for each loop): each rule r is
added to the largest set P ∈ lP such that SUF(P) ≤ λ+. If no such set
exists, then {r} is appended to lP .

30

Algorithm 2: Greedy search of a minimal partition P of R− such
that

∨{
SUF(P)

∣∣ P ∈ P} ≤ λ+.
input : A list lR− containing the rules of the rule-set R− and a

function λ+ such that fR− ≤ λ+.
output: A list lP which represents a partition of R−.

1 function SUF-INTERPOLATION(lR− , λ+)
2 lP ← empty list
3 for each r in lR− do
4 i← 1
5 alone← true
6 while alone and i ≤ size(lP) do
7 if SUF(lP [i] ∪ {r}) ≤ λ+ then
8 lP [i]← lP [i] ∪ {r}
9 sort lP in decreasing order of cardinality

10 alone← false

11 i← i+ 1

12 if alone then
13 add {r} to lP

14 return lP

We denote the dual counterpart of S-I by S-I−1. The function S-I−1 takes
as input a set R+ of rules of the dual form. Moreover, S-I−1 applied to R+

and λ− returns a SUF-cover of R+.

Proposition 6. Let R− be a rule-set and λ+ be a function such that fR− ≤
λ+. There necessarily exists a rule-set R such that

fR− ≤ fR ≤ λ+

and a list lR containing all elements of R such that the SUF-set S defined
by

S =
{
SUF(P) | P ∈ S-I(lR, λ+)

}
is one of the smallest SUF-sets verifying

fR− ≤
∨

S ≤ λ+. (4)

Sketch of proof. We consider one of the smallest SUF-set S verifying (4).
This SUF-set can be translated into an equivalent rule-set R. The intuition

31

behind the proof is that, provided the elements of R are in the right order,
the function S-I returns a SUF-cover that corresponds to S. In fact, we prove
the following weaker statement: it is possible to order the elements of R in
such a way that the returned partition yields a SUF set that verifies (4) and
that is of the same size as S. The complete proof is given in the Appendix.

Such a rule-set R is called an optimal argument of the function S-I. The
proof of Proposition 6 is given in the Appendix. When fR− = λ+, the optimal
argument is necessarily R−. We therefore have the following corollaries.

Corollary 7. Let R be a rule-set. There necessarily exists a list lR contain-
ing all elements of R, such that

∨
{SUF(P) | P ∈ S-I(lR, fR)} is a minimal

SUF-cover of R.

However, if fR− 6= λ+, the rule-set R− is not necessarily an optimal
argument of S-I. This comes from the fact that, for two rule-sets R and R′
such that fR < fR′ , it is possible that SUF(R′) < SUF(R).

We now rely on S-I to estimate the number of SUFs that are necessary to
express rule-sets of various sizes. To this end, we learn rule-sets from the 12
datasets of Table 2, via SRL. Then, for each obtained rule-set, we perform
the following test.

SUF-cover test(R). For a given rule-set R, we repeat 1000 times the fol-
lowing steps:

1. Shuffle lR.

2. Compute S-I(lR, fR) (see Algorithm 2).

The result of this test is composed of the mean, the minimum and the standard
deviation of |S-I(lR, fR)|, obtained during these 1000 loops.

dataset 1 2 3 4 5 6 7 8 9 10 11 12
Number of observations 286 683 1728 209 1411 1328 119 1000 488 1000 1000 546

Size of R− 13 38 36 23 178 557 14 25 36 26 38 101
Avg. nb. of SUFs 6 11 10 6 126 214 8 8 11 9 7 36

std. 0 0.78 0.75 0.59 0 2.92 0.45 0.73 0.81 0.81 0.85 1.07
min. 6 9 9 6 126 205 8 7 10 8 6 34

Size of R+ 13 23 38 33 297 618 6 28 46 23 48 83
Avg. nb. of SUFs 5 12 16 14 149 206 4 9 11 7 11 34

std. 0.5 0.72 0.97 0.95 0.16 2.83 0 0.76 0.92 0.69 0.82 1.2
min. 5 11 15 12 149 198 4 8 9 6 10 31

Table 7: Results of the SUF-cover test, for the original and reversed order.

Since our algorithm is not optimal, we cannot guarantee that the sizes of
SUF-sets reported in Table 7 are representative of the sizes of the optimal

32

solutions. However, it is reasonable to assume that they are good approx-
imations, relying on Corollary 7, and on the fact that obtained standard
deviations are small.

7. Rules vs. sets of SUFs

In this section we try to compare the extraction of rule sets from mono-
tonic data, and the extraction of sets of SUFS, considering synergies between
both, using algorithms SRL and S-I.

7.1. Interpolation of a dataset by a SUF-set
In practice, it is not very interesting to translate a rule-set into a SUF-set.

Indeed, the rule-set is not a perfect model of the data; therefore, it is useless
to require that the SUF-set is perfectly equivalent to a given rule-set. In this
subsection, we take a different approach: we define a method for interpolating
a (monotonic) dataset by a SUF-set. This method takes a greedy approach
to minimize the number of SUFs in the interpolating SUF-set.

A SUF interpolation of a datasetM is a SUF-set S verifying

λ−M ≤
∨

S ≤ λ+M.

In order to estimate the number of SUFs needed to interpolate a relabeled
dataset, we start with the following problems.

Minimal SUF interpolation. LetM be a monotonic dataset. Return one
of the smallest SUF interpolation ofM.

Again, we rely on function S-I. Let R− be a rule-set such that fR− = λ−M.
Then S-I(lR− , λ+M) gives a (non-necessarily optimal) solution to the minimal
SUF-interpolation problem.

7.2. Experiment 1
We designed a first experiment, based on the datasets of the previous

section. This time, for each dataset, we ran the following test.

SUF interpolation test(D).

1. Relabel D optimally w.r.t. MAE. We denote by M the monotonic re-
labeled dataset.

2. Create a list lR− representing the rule-set R− such that fR− = λ−M.

3. Repeat 1000 times:

33

(a) Shuffle lR−.

(b) Compute S-I(lR− , λ+M) (see Algorithm 2).

The result of this test is composed of the size of lR−, and of the mean, min-
imum and std of |S-I(lR− , λ+M)|, over the 1000 loops.

dataset 1 2 3 4 5 6 7 8 9 10 11 12
Number of observations 286 683 1728 209 1411 1328 119 1000 488 1000 1000 546

Size of R− 17 71 36 50 456 811 35 37 46 49 74 128
Avg. nb. of SUFs 7 9 8 6 19 46 8 3 9 6 5 18

std. 0.42 1.09 0.64 0.71 1.39 1.73 0.67 0.53 0.69 0.59 0.63 1.03
min. 7 7 8 5 15 42 8 3 8 5 4 15

Size of R+ 16 54 40 56 610 818 35 41 54 38 61 149
Avg. nb. of SUFs 6 5 16 3 17 50 4 5 11 8 5 20

std 0.31 0.61 0.82 0.54 1.24 2.02 0.5 0.59 0.85 0.68 0.83 1.32
min. 6 4 15 3 14 44 4 4 9 7 4 16

Table 8: Results of the first SUF-interpolation test for each dataset, for original and
reversed order.

In the previous section, we relied on the corollary of Proposition 6 to
state that the results of the SUF-cover test is a reasonable approximation of
the number of SUFs required to translate the rule-sets that were learned via
SRL. We can not make such a statement in the case of SUF-interpolation,
which is a more general problem, unless R− is an optimal argument of S-I.

Consequently, the average number of SUFs in Table 8 should be thought
of as upper bounds on the number of SUFs required for SUF-interpolation.

7.2.1. Experiment 2
We do not know any algorithm that returns an optimal argument of

function S-I in reasonable time. However, note that most rules in R− have
a lot of active attributes. Thus, it follows from the definition of SUF that
most focal sets of S-I(lR− , λ+M) have a great cardinality. Thus, using rules
with fewer active attributes could be a way to decrease the number of SUFs
used for interpolation.

We ran a test that is similar to the previous one, but where R− is replaced
by the result of SRL.

2nd SUF-interpolation test(D).

1. Relabel D optimally w.r.t. MAE. We denote by M the monotonic re-
labeled dataset.

2. R← SRL(M); create a list lR that contains all elements of R.

3. Repeat 1000 times:

34

(a) Shuffle lR and lR−1.

(b) Compute S-I(lR, λ+M) (see Algorithm 2).

The result of the test consists in the sizes of R, and of the mean minimum
and std of |S-I(lR, λ+M)|, over 1000 loops.

dataset 1 2 3 4 5 6 7 8 9 10 11 12
Size of D 286 683 1728 209 1411 1328 119 1000 488 1000 1000 546

Size of SRL(M) 13 26 36 21 134 493 15 26 44 25 36 96
Avg. nb. of SUFs 3 4 10 4 16 60 6 5 11 5 4 17

std 0.51 0.35 0.55 0.6 0.88 1.98 0 0.57 0.58 0.52 0.48 0.95
min. 3 4 10 4 13 54 6 5 11 4 4 14

Size of SRL−1(M) 14 15 38 25 104 532 8 25 47 27 42 69
Avg. nb. of SUFs 4 4 15 8 16 70 4 4 10 6 4 17

std 0 0.6 0.56 0.48 0.99 2.13 0 0.55 0.8 0.56 0.53 0.9
min. 4 4 15 8 15 64 4 4 9 6 3 16

Table 9: Results of the second test of SUF-interpolation for each dataset, with original
and reversed order.

We see that there is no overall improvement compared to the previous
test. However, using rule-sets obtained via SRL had a clear influence (positive
or negative, depending on the dataset) on the sizes of SUF-sets. Therefore,
it is probable that knowing the optimal arguments of S-I would enable a
significant decrease in the number of SUFs used for interpolation.

Improvements towards more compact representations seem feasible, even
if the minimal SUF-interpolation problem is NP-hard [18]:

• It could be useful to heuristically search for optimal arguments of the
SUF-INTERPOLATION procedure.

• A minimally interpolating SUF-set could also be searched via a meta-
heuristic method. This solution has already been proposed for learning
Sugeno integrals (using genetic algorithms [57] and particle swarms
[56]).

7.3. SUF-sets for monotonic classification
In the previous section we computed the SUF-interpolations of relabeled

datasets. We will now evaluate the predictive accuracy of the obtained clas-
sifiers. We propose the following learning algorithm.

RL-SUF(D). Let D be a given dataset.

1. Relabel D optimally w.r.t. MAE. We denote by M the monotonic re-
labeled dataset.

35

2. R← SRL(M).

3. Return S-I(lR, λ+M).

This algorithm searches for a SUF-set S such that

λ−M ≤
∨

S ≤ λ+M.

and whose cardinality is as small as possible.
We compare the accuracy of RL-SUF and of its dual counterpart RL-

SUF−1 to that of SRL and SRL−1. We evaluate each method according to
the test procedure defined in Subsection 5.4, on each dataset of Table 2.
Table 10 displays the result of this test for each algorithm and each dataset.

36

SRL SRL−1 RL-SUF RL-SUF−1

MER MAE MER MAE MER MAE MER MAE

breast-c 0.256
± 0.011

0.256
± 0.011

0.278
± 0.007

0.278
± 0.007

0.257
± 0.014

0.257
± 0.014

0.276
± 0.013

0.276
± 0.013

breast-w 0.042
± 0.003

0.042
± 0.003

0.04
± 0.003

0.04
± 0.003

0.039
± 0.003

0.039
± 0.003

0.04
± 0.002

0.04
± 0.002

car 0.023
± 0.001

0.026
± 0.002

0.034
± 0.003

0.038
± 0.003

0.022
± 0.002

0.026
± 0.002

0.024
± 0.002

0.028
± 0.002

CPU 0.064
± 0.008

0.067
± 0.008

0.099
± 0.008

0.102
± 0.011

0.069
± 0.009

0.074
± 0.009

0.1
± 0.009

0.106
± 0.010

bank-g 0.083
± 0.003

0.083
± 0.003

0.059
± 0.001

0.059
± 0.001

0.076
± 0.003

0.076
± 0.003

0.056
± 0.003

0.056
± 0.003

fame 0.344
± 0.004

0.367
± 0.003

0.343
± 0.005

0.367
± 0.005

0.328
± 0.005

0.354
± 0.004

0.333
± 0.006

0.362
± 0.006

denbosch 0.168
± 0.013

0.168
± 0.013

0.146
± 0.008

0.146
± 0.008

0.163
± 0.014

0.163
± 0.014

0.146
± 0.012

0.146
± 0.012

ERA 0.73
± 0.006

1.251
± 0.011

0.76
± 0.002

1.295
± 0.009

0.732
± 0.006

1.253
± 0.011

0.759
± 0.009

1.295
± 0.015

ESL 0.33
± 0.010

0.355
± 0.013

0.34
± 0.006

0.36
± 0.007

0.324
± 0.012

0.35
± 0.012

0.34
± 0.009

0.361
± 0.009

LEV 0.364
± 0.004

0.394
± 0.004

0.384
± 0.004

0.418
± 0.004

0.366
± 0.005

0.398
± 0.006

0.384
± 0.007

0.419
± 0.008

SWD 0.418
± 0.008

0.435
± 0.009

0.422
± 0.005

0.445
± 0.006

0.427
± 0.009

0.445
± 0.010

0.417
± 0.007

0.441
± 0.008

windsor 0.486
± 0.014

0.551
± 0.018

0.472
± 0.009

0.526
± 0.010

0.472
± 0.006

0.534
± 0.009

0.47
± 0.012

0.519
± 0.010

haberman 0.266
± 0.074

0.266
± 0.074

0.278
± 0.007

0.278
± 0.007

0.263
± 0.070

0.263
± 0.070

0.288
± 0.076

0.288
± 0.076

balance-scale 0.187
± 0.006

0.205
± 0.006

0.04
± 0.003

0.04
± 0.003

0.206
± 0.010

0.227
± 0.010

0.211
± 0.012

0.233
± 0.012

pima 0.255
± 0.054

0.255
± 0.060

0.034
± 0.003

0.038
± 0.003

0.26
± 0.046

0.26
± 0.055

0.279
± 0.043

0.279
± 0.049

car 0.023
± 0.002

0.026
± 0.004

0.099
± 0.008

0.102
± 0.011

0.023
± 0.005

0.026
± 0.006

0.025
± 0.008

0.029
± 0.013

auto-mpg 0.08
± 0.047

0.08
± 0.047

0.059
± 0.001

0.059
± 0.001

0.075
± 0.048

0.075
± 0.048

0.078
± 0.044

0.078
± 0.044

churn 0.104
± 0.004

0.104
± 0.004

0.343
± 0.005

0.367
± 0.005

0.108
± 0.006

0.108
± 0.006

0.235
± 0.007

0.235
± 0.007

german 0.289
± 0.011

0.289
± 0.013

0.146
± 0.008

0.146
± 0.008

0.285
± 0.010

0.285
± 0.013

0.264
± 0.011

0.264
± 0.013

contraception 0.504
± 0.001

0.668
± 0.002

0.76
± 0.002

1.295
± 0.009

0.511
± 0.001

0.67
± 0.001

0.49
± 0.002

0.652
± 0.003

mean 0.251 0.294 0.257 0.32 0.25 0.294 0.261 0.305

Table 10: Comparison of errors obtained by SRL and RL-SUF.

37

Rule length
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

RL-SUF

D
at
as
et

1 9 46 44 1
2 28 62 10 1
3 17 20 23 24 13 3
4 41 46 8 6
5 7 59 29 5 1
6 2 27 48 15 3 1 4
7 25 65 10
8 21 61 4 13
9 9 33 24 34
10 11 33 37 19
11 14 22 36 22 3 2
12 2 20 45 27 2 1 2
13 11 19 70
14 6 52 42
15 5 22 40 24 9 1
16 17 20 23 24 13 3
17 7 62 24 6
18 1 11 40 27 12 5 2 2 1
19 1 9 37 32 15 5 1 1 1
20 1 4 15 28 25 14 3 1 10

RL-SUF−1

D
at
as
et

1 5 11 42 42 1
2 7 44 27 17 5
3 1 18 41 40
4 4 45 33 11 7
5 9 56 26 7 1 1
6 1 30 43 17 5 1 4
7 29 36 33 1 1 1
8 26 50 10 13
9 17 41 21 22
10 11 32 41 16
11 2 28 50 9 1 9
12 3 7 18 26 20 12 5 1 8
13 11 50 39
14 6 52 41
15 1 22 34 32 9 3
16 1 18 41 40
17 14 63 23 1
18 1 8 29 34 20 7 2 1 1 1
19 1 8 34 28 15 5 4 2 2 1
20 8 29 39 16 2 6

Table 11: Length distributions of the rules obtained by the translation of the result of
RL-SUF and RL-SUF−1.

38

We see that the scores of RL-SUF are similar to those of SRL, and that
the scores of RL-SUF−1 are similar to those of SRL−1. Using once again the
Wilcoxon test to compare the accuracy scores of SRL (resp. SRL1) to that
of RL-SUF (resp. RL-SUF−1), we observed no significant difference, as the
test yielded the p-value 0.75 (resp. 0.75) for MER and 0.71 (resp. 0.88) for
MAE. In other words, the step of learning the SUF-set from the rule-set does
not affect the accuracy much; accuracy is mainly determined by the rule-set
learning step.

The SUF-sets resulting from RL-SUF and RL-SUF−1 can be translated
into rules via the function S-SET. The average rule-size distributions of the
rule-sets obtained in this way are given in Tables 11.

Those distributions are similar to those obtained by SRL and SRL−1,
respectively. However, both variants of RL-SUF produce rules of maximal
size on datasets 6, 11 and 12. The presence of those rules is due to the fact
that any capacity µ : 2[n] → L verifies µ([n]) = 1.

7.4. SUF-sets pruning
We now want to see if the SUF-sets resulting from RL-SUF can be reduced

while keeping a similar accuracy. Let S be a SUF-set resulting of RL-SUF,
andM be the monotonic relabeled dataset from which S has been learned.
The function

∨
S is an interpolation of M. Thus, removing SUFs from S

increases the empirical error of S onM. This increase of error will be used
to regulate the pruning of S. We define the accuracy of S onM as the ratio
of observations that are correctly classified:

accuracy(
∨

S,M) = 1−MER(
∨

S,M),

where MER stands for Misclassification Error Rate. We consider ρ ∈ [0, 1],
which is the minimal accuracy ratio that has to be preserved while removing
a SUF. The function PRUNING (see Algorithm 3) prunes the SUF-set S
with a greedy approach, according to the parameter ρ.

The higher the value of ρ, the more the accuracy on training data is favored
over pruning. When ρ > 1, the SUF-set is left unchanged. By varying
the value of ρ, we obtain various trade-offs between the cardinality of the
resulting SUF-set and its accuracy on the training data.

39

Algorithm 3: Pruning of a SUF-set resulting of RL-SUF.
input : A SUF-set S, a datasetM, the ratio ρ ∈ [0, 1].
output: A subset of S.

1 function PRUNING(S,M, ρ)
2 stop← false
3 while stop = false do
4 stop← true
5 for S ∈ S do
6 if accuracy(

∨
(S\S),M) ≥ ρ ∗ accuracy(

∨
S,M) then

7 S← S\S
8 stop← false

9 return S

For each dataset of the table, we ran the following test procedure.

Test: pruning of SUF-set obtained via RL-SUF(D). Let D be a given
dataset. The test consists in 10 tenfold cross-validation steps (a total of 100
times).

1. For each step,

(a) divide D in Dapp and Deval,

(b) S← RL-SUF(Dapp),

(c) for each value of ρ in {0.95, 0.96, . . . , 1}
i. S’← PRUNING(S,M, ρ),

ii. measure the MER of S’ on Deval.

The result of the test is, for each value of ρ, the average number of SUFs in
the SUF-set and the average MER, on the 100 cross-validation steps.

Figures 7 and 8 display the results of the pruning test. The number of
SUFs that are required for reaching the best accuracy varies greatly over
datasets. Sometimes, pruning allows to reduce the cardinality of the SUF-
set without affecting accuracy (this is the case, e.g., for breast-c, breast-w,
ESL and windsor); however, in many datasets, the number of SUFs that are
required for approaching the good accuracy is clearly too large to achieve
readability.

40

2 4 6 8 10

0.1

0.2

Number of SUFs

E
rr
or

(M
E
R
) (1) breast-c

(2) breast-w
(3) car
(4) CPU

(7) denbosch

0 10 20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

0.6

Number of SUFs

E
rr
or

(M
E
R
)

(5) bank-g
(6) fame

2 4 6 8 10 12 14 16 18 20
0.3

0.4

0.5

Number of SUFs

E
rr
or

(M
E
R
)

(9) ESL
(10) LEV
(11) SWD

(12) windsor

4 5
0.73

0.74

Number of SUFs

E
rr
or

(M
E
R
)

(8) ERA

Figure 7: Averaged Error (MER) and number of SUFs obtained by pruned results of
RL-SUF. Each curve corresponds to a dataset.

41

2 4 6 8 10

0.1

0.2

Number of SUFs

E
rr
or

(M
E
R
) (1) breast-c

(2) breast-w
(3) car
(4) CPU

(7) denbosch

0 10 20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

0.6

Number of SUFs

E
rr
or

(M
E
R
)

(5) bank-g
(6) fame

2 4 6 8 10 12 14 16 18 20
0.3

0.4

0.5

Number of SUFs

E
rr
or

(M
E
R
)

(9) ESL
(10) LEV
(11) SWD

(12) windsor

4 5

0.73

0.74

Number of SUFs

E
rr
or

(M
E
R
)

(8) ERA

Figure 8: Averaged Error (MER) and number of SUFs obtained by pruned results of
RL-SUF−1. Each curve corresponds to a dataset.

42

The pruning methods show that on some datasets, it is possible to reduce
the number of SUFs of the SUF-set without impacting greatly the accuracy
on test data.

8. Conclusion

In this paper, we considered the problem of monotonic classification from
the standpoint of extracting rules and finding an optimal classification func-
tion in terms of generalized Sugeno integrals (SUFs). We studied the equiva-
lence between the two representations from a theoretical point of view. SUF
sets can be seen as an alternative expression of rule-sets. Any SUF can
be translated into a rule set, but a rule set generally corresponds to sev-
eral SUFS. SUF sets might provide advantages in terms of conciseness, by
expressing a great number of rules in a few SUFs.

Moreover, we proposed a non-parametric rule set learning algorithm (SRL),
and a non-parametric SUF set learning algorithm (RL-SUF). We finally stud-
ied whether rule sets can be expressed in a more compact and readable form
using SUFs. Our non-parametric rule-set learning algorithm is competitive
with VC-DomLEM in terms of errors and rule sizes. We then used SRL
for studying the number of SUFs required for the following tasks. We gave
an empirical estimation of the number of SUFs required to express rule-
sets learned from empirical data (via SRL). The results suggest that such a
translation does not significantly improve conciseness. We also gave an upper
bound on the number of SUFs needed, for each dataset considered. Finally,
the accuracy of the learned SUF-sets does not vary significantly under our
methods.

The results thus obtained are competitive with those obtained by efficient
algorithms such as VC-DomLEM. As we have shown in our experiments,
neither RULEM, VC-DomLEM nor SRL does better than the two other
methods on all datasets. An advantage of RULEM is that it produces rule-
sets that are clearly smaller than those of SRL (the sizes of the rule-sets of
VC-DomLEM are unknown). The sizes of the SUF-sets obtained by RL-SUF
are sometimes too large to favor interpretability.

In the case of qualitative data it seems that the capabilities of learning
compact representations of large datasets are more limited than in the nu-
merical setting. For instance, in some cases, sets of SUFs are not always
more interpretable than rule sets, since many SUFs are needed to attain an
accuracy comparable to that of the corresponding rule-set. As future work,
we will explore a hybrid approaches that combines SUFs through decision
trees. In particular, we believe that this hybrid methodology will provide
more concise and interpretable representations. However, SUFs can stand as

43

the bridge between rule-based representations and numerical models based
on weighted average and generalizations thereof. Indeed, Sugeno integral
can be seen as a qualitative rendering of Choquet integral [27] as well as a
closed form representation of rule sets. In practice, looking for a cognitively
palatable counterpart of a dataset in terms of rules makes sense only if the
underlying function is simple enough. It is in such situations that SUFs can
be interpreted in terms of simple rules. If one is only interested in the classi-
fication task, without concern about interpretability, the SUF format may be
of interest, since it is slightly more compact than a rule set, and this format
makes predictions easier to compute than using the whole rule set.

Acknowledgements. This work is supported by ANR-11-LABX-0040-
CIMI (Centre International de Mathématiques et d’Informatique) within the
program ANR-11-IDEX-0002-02, project ISIPA.

Appendix

1. Overview of monotonic classification methods
In this paper, we defined monotonic classification as the task of learning

a monotonic classifier; however, this term sometimes refers to a less con-
strained task, where the monotonicity of the classifier is seen as a measure
to optimize rather than a hard constraint. Moreover, some monotonic clas-
sification methods allow to learn classifiers that are monotonic on a subset
of attributes and unconstrained on the others. For a broader overview of
monotonic classification methods, see, e.g. [12].

Several monotonic classification approaches have been designed by adapt-
ing classical approaches, such as k-nearest neighbors [29], Bayesian networks
[1, 32, 40], or neural networks [50, 58].

Other approaches use models that rely on the notion of monotonicity.
This is the case of isotonic separation [14], which relies on a notion of distance
to predict the classes of observations, and of the probabilistic approaches
OSDL [45] and MOCA [4, 3]. Ordinal logistic regression [46] is a mono-
tonic classification method that generalizes the binary classification method
of logistic regression. It relies on the idea that the classes can be viewed
as intervals on the domain of an unobserved variable, which is can be ap-
proximated as a linear combination of the attributes. Then, the ordinal
Choquistic regression [53] is a monotonic classification method that general-
izes the ordinal logistic regression by relying on a Choquet integral instead
of a linear function. Choquet integrals are aggregation functions on the in-
terval [0, 1], and are popular in the domain of preference modelling because
they generalize the idea of weighted mean, by associating a weight to each

44

subset of attributes, and thus allow to model synergy or redundancy between
attributes.

Several approaches for learning monotonic binary decision trees have also
been proposed. The method of [48] requires D to be monotonic and returns a
function from [λ−D, λ

+
D]. The algorithm REMT [41] relies on a generalization

of Shannon’s entropy that takes into account the monotonicity hypothesis,
which is called rank entropy. When D is monotonic, the binary tree learned
by REMT is also monotonic. Finally, the ICT [54] algorithm makes use
of a variant of CART [9], followed by a step of pruning that guaranties
the monotonicity of the tree. Decision trees constitute locally interpretable
models; the global interpretability of a tree depends on the number of nodes
it contains. However, note that small change in the data can have a strong
impact on the resulting tree. Thus, a global interpretation of the tree is
potentially misleading (see [39], Section 9.2).

The first rule-set learning algorithm was OLM [6]. Since then, several
other approaches were proposed, such as RULEM [55], which consists in
post-processing the results of nonmonotonic rule-set learning algorithms in
order to obtain monotonic rule-sets, or the ant-based method of [10]. A
noteworthy method is VC-DomLEM [7, 11], which is based on the DRSA [37].
This algorithm aims at fitting the learning data while favoring short rules.
It depends on several hyperparameters. The authors show, via a comparison
with other methods over 12 datasets, that VC-DomLEM is competitive with
several state of the art approaches. This is why we use VC-DomLEM as a
reference for evaluating our own learning algorithms.

Finally, note that some methods like MORE [25] or LPRules [42] consist
in learning a linear combination of simple functions specified by selection or
rejection rules. The class predictions of these methods tend to be more accu-
rate than those of the “classical” rule-sets presented in the previous section.
However, although the rules that are used in these methods are of the same
form as those of classical rule-sets, they are combined in such a way that it
is impossible to justify each class prediction by a single rule.

2. Proof of Proposition 1
Proposition 1. For any rule-set R, R∗ is the smallest element of Eq(R).

Proof. Let R be a rule-set. The implication relation on rules can be seen as
a partial order. We have fr ≤ fs if and only if s⇒ r. The set R∗ contains all
maximal elements of R (w.r.t. the order ⇒). Consequently, for any r ∈ R
there is s ∈ R∗ such that fr ≤ fs, and therefore we have

fR∗ =
∨
r∈R∗

fr =
∨
r∈R

fr = fR.

45

We now show, by contradiction, that R∗ is included in any R′ ∈ Eq(R).
Assume that there is R′ ∈ Eq(R) such that R∗ 6⊆ R′. Then there exists
α1 → δ belonging to R∗ and not to R′. By definition, R∗ contains no rule
α1 → δ′, such that δ′ > δ. Thus we have

fR∗(α
1) = fα1→δ(α

1) = δ.

Since R∗ and R′ belongs to Eq(R), fR∗ = fR′ , and thus

fR′(α
1) = δ.

Consequently, R′ contains a rule α2 → δ such that α2 ≤ α1. If α2 = α1, the
assumption that (α1 → δ) 6∈ R′ is contradicted. Therefore, we should have
α2 < α1. Since fR′ is non-decreasing, we have fR′(α2) ≤ fR′(α

1) = δ, and
since R′ contains α2 → δ, we have fR′(α2) ≥ δ. Therefore

fR∗(α
2) = fR′(α

2) = δ,

and this means that R∗ contains a rule α3 → δ, with α3 ≤ α2 < α1. This
contradicts the definition of R∗, because [α3 → δ]⇒ [α1 → δ].

3. Proof of Proposition 3 and Corollary 4
Proposition 3. For any SUF S we have

S = fS-SET(S) = SUF(S-SET(S)).

Proof. Let Sµ,ϕ be a SUF. We will show that the following assertions always
hold.

A. Sµ,ϕ ≤ SUF(S-SET(Sµ,ϕ)) and Sµ,ϕ ≤ fS-SET(Sµ,ϕ)

B. Sµ,ϕ ≥ fS-SET(Sµ,ϕ)

C. Sµ,ϕ ≥ SUF(S-SET(Sµ,ϕ)).

Proof of A. Let x ∈ X and y ∈ L such that Sµ,ϕ(x) = y. There necessarily
is a focal set F ∈ F(µ) such that

µ(F) ∧
∧
i∈F

ϕi(xi) = y.

Consequently,
µ(F) ≥ y and ∀i ∈ F, ϕi(xi) ≥ y.

46

Let r be the rule such that

Ar = F, δr = y and ∀i ∈ Ar, αri =
∧
{ai ∈ Xi | ϕi(ai) ≥ y}.

Note that for all i ∈ Ar we have αri ≤ xi because ϕi(xi) ≥ y. Therefore
fr(x) ≥ y. From the definition of S-SET, it follows that there exists s ∈
S-SET(Sµ,ϕ) such that s⇒ r. Thus, we have fS-SET(Sµ,ϕ)(x) ≥ y.

Let Sµ′,ϕ′ be the SUF given by Sµ′,ϕ′ = SUF(S-SET(Sµ,ϕ)). From the
definition of SUF, it follows that

µ′(As) ≥ y and ∀i ∈ As, ϕ′i(xi) ≥ y,

and thus SUF(S-SET(Sµ,ϕ)) ≥ y.

Proof of B. Let x ∈ X and y ∈ L be such that fS-SET(Sµ,ϕ)(x) = y. There
exists a rule r ∈ S-SET(Sµ,ϕ) such that

∀i ∈ Ar, xi ≥ αri and δr = y.

From the definition of S-SET it follows that µ(Ar) ≥ δr. Moreover, for all
i ∈ Ar,

αri =
∧
{ai ∈ Xi | ϕi(ai) ≥ δr},

and thus ϕi(xi) ≥ ϕi(α
r
i) ≥ δr. Therefore, we have

µ(Ar) ∧
∧
i∈Ar

ϕi(xi) ≥ δr ≥ y,

and thus Sµ,ϕ(x) ≥ y.

Proof of C. Let Sµ′,ϕ′ be the SUF given by SUF(S-SET(Sµ,ϕ)). Let x ∈ X
and y ∈ L be such that Sµ′,ϕ′(x) = y. If y = 0 then Sµ,ϕ(x) ≥ y. Therefore
we assume that y > 0.

There necessarily exists F ∈ F(µ′) such that

µ′(F) ∧
∧
i∈F

ϕ′i(xi) = y > 0 (5)

Consequently, µ′(F) ≥ y and ϕ′i(xi) ≥ y for all i ∈ F . Since y > 0, we have
µ′(F) > 0 and thus F 6= ∅. We start by showing that µ(F) ≥ y.

• If F = [n], then µ(F) = 1 ≥ y.

47

• If F 6= [n], then from the definition of SUF we have

µ′(F) =
∨
{δr | r ∈ S-SET(Sµ,ϕ), Ar ⊆ F},

and thus µ′(F) ≥ y implies that there exists a rule r ∈ S-SET(Sµ,ϕ)
such that Ar ⊆ F and δr ≥ y. Consequently µ(Ar) ≥ δr ≥ y.

For each i ∈ F , we show that ϕi(xi) > y. We have ϕ′i(xi) > 0 (see (5)) and
thus xi > 0.

• If xi = 1, then ϕi(xi) = 1 ≥ y.

• If xi < 1, then it follows from the definition of SUF that

ϕ′i(xi) =
∨
{δr | r ∈ S-SET(Sµ,ϕ), 0 < αri ≤ xi}

consequently ϕ′(xi) ≥ y implies that there is a rule r ∈ S-SET(Sµ,ϕ)
such that δr = y and 0 < αri ≤ xi. Due to the definition of S-SET, it
holds:

αri =
∧
{ai ∈ Xi | ϕi(ai) ≥ δr}.

Consequently ϕi(xi) ≥ ϕi(α
r
i) ≥ δr = y.

Finally we have
µ(Ar) ∧

∧
i∈Ar

ϕi(xi) ≥ y,

and thus Sµ,ϕ(x) ≥ y.

The proof of the corresponding result for rejection rules can be obtained
in an analogous manner.

Corollary 4. A set of selection (resp. rejection) rules R is SUF-representable
if and only if SUF(R∗) = fR (resp. SUF(R∗) = fR).

Proof. Let R be a rule-set. If R is not SUF-representable, then SUF(R∗) 6=
fR. If R is SUF-representable, we call S the SUF such that S = fR. From
Proposition 3 it follows that

fS-SET(S) = SUF(S-SET(S)).

And since S = fR we have

R∗ = S-SET(S)∗ = S-SET(S),

and thus
fR = fR∗ = SUF(R

∗).

In the case where R is a reject-set, the equality SUF(R∗) = fR can be proven
in an analogous manner.

48

4. Proof of Proposition 6
Proposition 6. Let R− be a rule-set and λ+ be a function, such that fR− ≤
λ+. There necessarily exists a rule-set R such that

fR− ≤ fR ≤ λ+

and a list lR containing the elements of R such that the set of SUFs S defined
by

S =
{
SUF(P) | P ∈ S-I(lR, λ+)

}
is one of the smallest SUF-sets verifying fR− ≤

∨
S ≤ λ+.

Proof. During this proof, lists will be denoted as tuples.
Let S = {S1, . . . , Sd} be a SUF-set of minimal size verifying fR− ≤

∨
S ≤

λ+. The size of S is denoted by d. We will show that there exists a rule-set
R such that S-I(lR, λ+) returns a SUF-set of size d and

fR− ≤
∨{

SUF(P) | P ∈ S-I(lR, λ+)
}
≤ λ+.

Assume that there is a list lP = (P1, . . . , Pd) such that

d⋃
i=1

Pi =
d⋃
i=1

S-SET(Si), (6)

∀i ∈ [d], SUF(Pi) ≤ λ+, (7)

|P1| ≥ · · · ≥ |Pd|, (8)

∀i, j ∈ [d] such that |Pi| ≥ |Pj|, ∀r ∈ Pj : SUF(Pi ∪ {r}) 6≤ λ+. (9)

It follows from (6) and (7) that

fR− ≤ S ≤
∨{

SUF(Pi)
∣∣ Pi ∈ lP

}
≤ λ+.

By relying on (8) and (9), we can define a list lR such that S-I(lR, λ+) = lP.
For this, it is sufficient that:

• lR contains every element of
⋃d
i=1 Pi,

• lR is sorted in such a way that, for each i ∈ {2, . . . , d}, all rules of Pi−1
appear before the rules of Pi.

49

We still have to show that there indeed exists a list verifying (6), (7), (8)
and (9). Let lQ be the list defined by

lQ = (S-SET(S1), . . . ,S-SET(Sd)).

This list necessarily verifies (6) and (7). We define the function g on lists of
rule-sets of length d by

g(R1, . . . , Rd) =

{
(R1, . . . , Rd) if (R1, . . . , Rd) verifies (9),
(R′1, . . . , R

′
d) otherwise,

where R′1, . . . , R′d are defined in the following manner. Firstly, let Ri and Rj

be the smallest rule-sets of (R1, . . . , Rd) such that |Ri| ≥ |Rj| and such that
∃r ∈ Rj, SUF(Ri ∪ {r}) ≤ λ+. Secondly,

∀k ∈ [d], R′k =


Rk ∪ {r} if k = i,

Rk\{r} if k = j,

Rk otherwise.

We will now use gk to denote k successive applications of g. Formally: let
g1 = g and, for any integer k > 1, let gk = g ◦ gk−1, where ◦ denote the
function composition. It is quite easy to see that:

• If (R1, . . . , Rd) verifies (6) and (7), then g(R1, . . . , Rd) verifies (6) and
(7).

• For any list of rule-sets (R1, . . . , Rd) there exists a positive integer k
such that gk(R1, . . . , Rd) verifies (9).

Consequently, there is a positive integer k such that gk(lQ) verifies (6), (7),
and (9). Sorting gk(lQ) yields a list that also verifies (8).

References

[1] E.E. Altendorf, A.C. Restificar, and T.G. Dietterich. Learning from
Sparse Data by Exploiting Monotonicity Constraints. In Proc. 21st
Conf. on Uncertainty in Artificial Intelligence, UAI’05, pages 18–26,
Arlington, Virginia, 2005. AUAI Press.

[2] P.M. Anglin and R. Gençay. Semiparametric estimation of a hedonic
price function. J. Applied Econometrics, 11(6):633–648, 1996.

50

[3] N. Barile. Studies in Learning Monotonic Models from Data. PhD
Thesis, Dutch Research School for Information and Knowledge Systems,
2014.

[4] N. Barile and A.J. Feelders. Nonparametric Monotone Classification
with MOCA. In Proc. 8th IEEE Int. Conf. on Data Mining, pages
731–736, 2008.

[5] A. Ben-David. Monotonicity Maintenance in Information-Theoretic Ma-
chine Learning Algorithms. Machine Learning, 19(1):29–43, 1995.

[6] A. Ben-David, L. Sterling, and Y-H. Pao. Learning and classification
of monotonic ordinal concepts. Computational Intelligence, 5(1):45–49,
1989.

[7] J. Blaszczyński, R. Slowiński, and M. Szelag. VC-DomLEM: Rule induc-
tion algorithm for variable consistency rough set approaches. Technical
Report RA-07/09, Poznań University of Technology, 2009.

[8] Q. Brabant, M. Couceiro, D. Dubois, H. Prade, and A. Rico. Extract-
ing decision rules from qualitative data via sugeno utility functionals. In
J. Medina et al., editor, Information Processing and Management of Un-
certainty in Knowledge-Based Systems. Theory and Foundations (Proc.
17th IPMU Conf.), Part I, volume 853 of Communications in Computer
and Information Science, pages 253–265. Springer, 2018.

[9] L. Breiman. Classification and Regression Trees. Routledge, 2017.

[10] J. Brookhouse and F.E.B. Otero. Monotonicity in Ant Colony Clas-
sification Algorithms. In M. et al Dorigo, editor, Swarm Intelligence,
LNCS, pages 137–148. Springer, 2016.

[11] J. Błaszczyński, R. Słowiński, and M. Szeląg. Sequential covering rule
induction algorithm for variable consistency rough set approaches. In-
formation Sciences, 181(5):987–1002, 2011.

[12] J-R Cano, P.A. Gutiérrez, B. Krawczyk, M. Woźniak, and S. García.
Monotonic classification: an overview on algorithms, performance mea-
sures and data sets. arXiv:1811.07155 [cs], 2018.

[13] J.R. Cano, P.A. Gutiérrez, B. Krawczyk, M. Wozniak, and S. García.
Monotonic classification: An overview on algorithms, performance mea-
sures and data sets. Neurocomputing, 341:168–182, 2019.

51

[14] R. Chandrasekaran, Y.U. Ryu, V.S. Jacob, and S. Hong. Isotonic Sep-
aration. INFORMS Journal on Computing, 17(4):462–474, 2005.

[15] M. Couceiro, J. Devillet, and J.-L. Marichal. Characterizations of idem-
potent discrete uninorms. Fuzzy Sets and Systems, 334:60 – 72, 2018.

[16] M. Couceiro, D. Dubois, H. Prade, and A. Rico. Enhancing the Ex-
pressive Power of Sugeno Integrals for Qualitative Data Analysis. In
Advances in Fuzzy Logic and Technology (Proc. EUSFLAT 2017), Ad-
vances in Intelligent Systems and Computing, pages 534–547. Springer,
Cham, 2017.

[17] M. Couceiro, D. Dubois, H. Prade, and T. Waldhauser. Decision-Making
with Sugeno integrals - bridging the gap between multicriteria evaluation
and decision under uncertainty. Order, 33:517–535, 2016.

[18] M. Couceiro, M. Maróti, T. Waldhauser, and L. Zádori. Computing
version spaces in the qualitative approach to multicriteria decision aid.
Int. J. Found. Comput. Sci., 30(2):333–353, 2019.

[19] M. Couceiro and T. Waldhauser. Sugeno Utility Functions I: Axiomati-
zations. In V. Torra, Y. Narukawa, and M. Daumas, editors, Modeling
Decisions for Artificial Intelligence, LNCS, pages 79–90. Springer Berlin
Heidelberg, 2010.

[20] M. Couceiro and T. Waldhauser. Sugeno Utility Functions II: Factor-
izations. In V. Torra, Y. Narukawa, and M. Daumas, editors, Model-
ing Decisions for Artificial Intelligence, LNCS, pages 91–103. Springer
Berlin Heidelberg, 2010.

[21] M. Couceiro and T. Waldhauser. Pseudo-polynomial functions over fi-
nite distributive lattices. Fuzzy Sets and Systems, 239:21–34, 2014.

[22] H. Daniels and B. Kamp. Application of MLP Networks to Bond Rating
and House Pricing. Neural Computing & Applications, 8(3):226–234,
1999.

[23] H. Daniels and M.V. Velikova. Derivation of monotone decision models
from non-monotone data. Technical Report 2003-30, Tilburg School of
Economics and Management, 2003.

[24] H. Daniels and M.V. Velikova. Derivation of monotone decision models
from noisy data. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 36(5):705–710, 2006.

52

[25] K. Dembczyński, W. Kotłowski., and R. Słowiński. Learning Rule En-
sembles for Ordinal Classification with Monotonicity Constraints. Fun-
damenta Informaticae, 94(2):163–178, 2009.

[26] D. Dubois, C. Durrieu, H. Prade, A. Rico, and Y. Ferro. Extracting
Decision Rules from Qualitative Data Using Sugeno Integral: A Case-
Study. In Symbolic and Quantitative Approaches to Reasoning with Un-
certainty, volume 9161 of LNCS, pages 14–24. Springer, 2015.

[27] D. Dubois and H. Fargier. Making Discrete Sugeno Integrals More Dis-
criminant. International Journal of Approximate Reasoning, 50(6):880–
898, June 2009.

[28] D. Dubois, J-L. Marichal, H. Prade, M. Roubens, and R. Sabbadin.
The use of the discrete sugeno integral in decision-making: a survery.
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 9(5):539–561, 2001.

[29] W. Duivesteijn and A.J. Feelders. Nearest Neighbour Classification with
Monotonicity Constraints. In Machine Learning and Knowledge Discov-
ery in Databases, volume 5211 of LNCS, pages 301–316. Springer, Berlin,
Heidelberg, 2008.

[30] A.J. Feelders. Monotone relabeling in ordinal classification. In Proc.
IEEE Int. Conf. on Data Mining, pages 803–808, 2010.

[31] A.J. Feelders and T. Kolkman. Exploiting monotonicity constraints to
reduce label noise: An experimental evaluation. In Proc. Int. Joint Conf.
on Neural Networks (IJCNN), pages 2148–2155, 2016.

[32] A.J. Feelders and L.C. Van der Gaag. Learning Bayesian network param-
eters under order constraints. Int. J. Approximate Reasoning, 42(1):37–
53, 2006.

[33] J. C. Fodor. Smooth associative operations on finite ordinal scales. IEEE
Trans. Fuzzy Systems, 8(6):791–795, 2000.

[34] M. Grabisch. The application of fuzzy integrals in multicriteria decision
making. Eur. J. of Operational Research, 89(3):445–456, 1996.

[35] M. Grabisch and C. Labreuche. A decade of application of the Choquet
and Sugeno integrals in multi-criteria decision aid. Annals of Operations
Research, 175(1):247–286, 2010.

53

[36] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap. Aggregation Func-
tions, volume 127 of Encyclopedia of Mathematics and Its Applications.
Cambridge University Press, New York, NY, 2009.

[37] S. Greco, B. Matarazzo, and R. Slowinski. Rough sets theory for mul-
ticriteria decision analysis. European Journal of Operational Research,
129(1):1–47, February 2001.

[38] S. Greco, B. Matarazzo, and R. Słowiński. Axiomatic characterization
of a general utility function and its particular cases in terms of con-
joint measurement and rough-set decision rules. Eur. J. of Operational
Research, 158(2):271–292, 2004.

[39] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Series in
Statistics. Springer-Verlag, New York, 2 edition, 2009.

[40] E.M. Helsper, L.C. Van Der Gaag, A.J. Feelders, W.L.A. Loeffen, P.L.
Geenen, and A.R.W. Elbers. Bringing order into Bayesian-network con-
struction. In Proc. 3rd Int. Conf. on Knowledge Capture (K-CAP ’05),
pages 121–128, New York, NY, 2005. ACM.

[41] Q. Hu, X. Che, L. Zhang, D. Zhang, M. Guo, and D. Yu. Rank entropy-
based decision trees for monotonic classification. IEEE Trans. on Knowl-
edge and Data Engineering, 24(11):2052–2064, 2012.

[42] W. Kotlowski. Statistical Approach to Ordinal Classification with Mono-
tonicity Constraints. PhD thesis, Poznań University of Technology, 2008.

[43] W. Kotlowski and R. Slowinski. On Nonparametric Ordinal Classifica-
tion with Monotonicity Constraints. IEEE Transactions on Knowledge
and Data Engineering, 25(11):2576–2589, 2013.

[44] L. Li and H-T. Lin. Ordinal Regression by Extended Binary Classifica-
tion. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors, Advances in
Neural Information Processing Systems 19, pages 865–872. MIT Press,
2007.

[45] S. Lievens, B. De Baets, and K. Cao-Van. A probabilistic framework for
the design of instance-based supervised ranking algorithms in an ordinal
setting. Annals of Operations Research, 163(1):115–142, 2008.

[46] P. McCullagh. Regression Models for Ordinal Data. J. of the Royal
Statistical Society. Series B (Methodological), 42(2):109–142, 1980.

54

[47] W. Pijls and R. Potharst. Repairing non-monotone ordinal data sets by
changing class labels. Technical report, Econometric Institute, Erasmus
University Rotterdam, 2014.

[48] R. Potharst and J.C. Bioch. Decision trees for ordinal classification.
Intelligent Data Analysis, 4(2):97–111, 2000.

[49] M. Rademaker, B. De Baets, and H. De Meyer. Loss optimal mono-
tone relabeling of noisy multi-criteria data sets. Information Sciences,
179(24):4089–4096, 2009.

[50] J. Sill. Monotonic networks. In M. I. Jordan et al., editor, Advances in
Neural Information Processing Systems (Proc. 1997 NIPS Conference),
pages 661–667. The MIT Press, 1998.

[51] R. Slowinski, S. Greco, and B. Matarazzo. Axiomatization of utility,
outranking, and decision rule preference models for multiple criteria
classification problems under partial inconsistency with the dominance
principle. Control and Cybernetics, 31(4):1000–1035, 2002.

[52] M. Sugeno. Theory of fuzzy integrals and its applications. Tokyo Insti-
tute of Technology, 1974.

[53] A.F. Tehrani and E. Hüllermeier. Ordinal Choquistic regression. In
J. Montero, G. Pasi, and D. Ciucci, editors, Proc. 8th Conf. European
Society for Fuzzy Logic and Technology (EUSFLAT-13), Milano, pages
802–809. Atlantis Press, 2013.

[54] R. Van De Kamp, A.J. Feelders, and N. Barile. Isotonic Classification
Trees. In Advances in Intelligent Data Analysis VIII, volume 5772 of
LNCS, pages 405–416. Springer, Berlin, Heidelberg, 2009.

[55] W. Verbeke, D. Martens, and B. Baesens. RULEM: A novel heuris-
tic rule learning approach for ordinal classification with monotonicity
constraints. Applied Soft Computing, 60:858–873, 2017.

[56] X-Z. Wang, Y-L. He, L-C. Dong, and H-Y. Zhao. Particle swarm op-
timization for determining fuzzy measures from data. Information Sci-
ences, 181(19):4230–4252, 2011.

[57] Z. Wang, K-S. Leung, and J. Wang. Determining nonnegative mono-
tone set functions based on Sugeno’s integral: an application of genetic
algorithms. Fuzzy Sets and Systems, 112(1):155–164, 2000.

55

[58] H. Zhu, E.C.C. Tsang, X.Z. Wang, and R. Aamir Raza Ashfaq. Mono-
tonic classification extreme learning machine. Neurocomputing, 225:205–
213, 2017.

56

	Introduction
	Rules for monotonic classification
	Monotonic classification
	Sets of selection rules

	Qualitative aggregation operators for monotonic classification
	The Sugeno integral
	Sugeno Utility Functionals
	The expressiveness of SUFs

	From SUFs to rule-sets and back
	Translating a Sugeno integral into a rule-set
	Translating a SUF into a rule-set
	Translating a rule-set into a SUF
	Translating monotonic rule-sets into SUF-sets

	A rule set learning algorithm
	Interpolation of a monotonic dataset by short rules
	Handling non-monotonic datasets
	The rule-set learning algorithm
	Practical evaluation of SRL

	An algorithm for minimizing SUF-covers
	Rules vs. sets of SUFs
	Interpolation of a dataset by a SUF-set
	Experiment 1
	Experiment 2

	SUF-sets for monotonic classification
	SUF-sets pruning

	Conclusion

