A. Martinelli, Closed-form solution of visual-inertial structure from motion, International Journal of Computer Vision (IJCV), vol.106, issue.2, pp.138-152, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00905881

A. Martinelli, A. Oliva, and B. Mourain, Cooperative Visual-Inertial Sensor Fusion: the Analytic Solution, IEEE Robotics and Automation Letters, issue.4, pp.453-460, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01966542

A. Mourikis and S. Roumeliotis, A multi-state constraint kalman filter for vision-aided inertial navigation, IEEE International Conference on Robotics and Automation, 2007.

A. Mourikis and S. Roumeliotis, A dual-layer estimator architecture for long-term localization, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2008.

G. Huang, A. Mourikis, and S. Roumeliotis, An observability-constrained sliding window filter for slam, 2011.

T. Lupton and S. Sukkarieh, Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions, IEEE Transactions on Robotics, vol.28, pp.61-76, 2012.

V. Indelman, S. Williams, M. Kaess, and F. Dellaert, Information fusion in navigation systems via factor graph based incremental smoothing, Robotics and Autonomous Systems, pp.721-738, 2013.

S. Leutenegger, P. Furgale, V. Rabaud, M. Chli, K. Konolige et al., Keyframe-based visual-inertial odometry using nonlinear optimization, The International Journal of Robotics Research, vol.34, pp.314-334, 2015.

C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, Imu preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation, Robotics: Science and Systems, 2015.

C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, On-manifold preintegration for real-time visual-inertial odometry, IEEE Trans. Robot, vol.33, issue.1, pp.1-21, 2017.

J. Kaiser, A. Martinelli, F. Fontana, and D. Scaramuzza, Simultaneous State Initialization and Gyroscope Bias Calibration in Visual Inertial Aided Navigation, IEEE Robotics and Automation Letters, vol.2, pp.18-25, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01423557

H. and C. Longuet-higgins, A computer algorithm for reconstructing a scene from two projections, Nature, vol.293, pp.133-135, 1981.

R. I. Hartley, In Defense of the Eight-Point Algorithm, IEEE Transaction on Pattern Recognition and Machine Intelligence, vol.19, issue.6, pp.580-593, 1997.

D. Nistér, An efficient solution to the five-point relative pose problem, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol.26, pp.756-770, 2004.

C. X. Guo, K. Sartipi, R. C. Dutoit, G. A. Georgiou, R. Li et al., Large-Scale Cooperative 3D Visual-Inertial Mapping in a Manhattan World, IEEE International Conference on Robotics and Automation, 2016.

A. Martinelli, A. Renzaglia, and A. Oliva, Cooperative Visual-Inertial Sensor Fusion: Fundamental Equations and State determination in Closed Form, Autonomous Robots, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02013869

S. Telen, B. Mourrain, and M. V. Barel, Solving Polynomial Systems via a Stabilized Representation of Quotient Algebras, SIAM Journal on Matrix Analysis and Applications
URL : https://hal.archives-ouvertes.fr/hal-01630425

G. L. Mariottini, S. Martini, and M. Egerstedt, A Switching Active Sensing Strategy to Maintain Observability for Vision-Based Formation Control, IEEE International Conference on Robotics and Automation, 2009.