

Situation Awareness & Decision-making for Autonomous Driving

Christian Laugier

► To cite this version:

Christian Laugier. Situation Awareness & Decision-making for Autonomous Driving. IROS 2019 - IEEE/RSJ International Conference on Intelligent Robots and Systems, Nov 2019, Macau, China. pp.1-25. hal-02429023

HAL Id: hal-02429023 https://inria.hal.science/hal-02429023

Submitted on 6 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Situation Awareness & Decision-making for Autonomous Driving

Christian LAUGIER, PhD & Dr Es Science

Research Director at Inria & Scientific Advisor for Probayes and for Baidu China Inria Chroma team & IRT Nanoelec christian.laugier@inria.fr

Contributions from

L. Rummelhard, A. Negre, N. Turro, J.A. David, J. Lussereau, T. Genevois, C. Tay Meng Keat, S. Lefevre, O. Erkent, D. Sierra-Gonzalez

Keynote talk, IROS 2019 Cutting Edge Forum on "Robotics, AI and ITS contributions to Autonomous Driving" IROS 2019, Macau, China, November 5th 2019

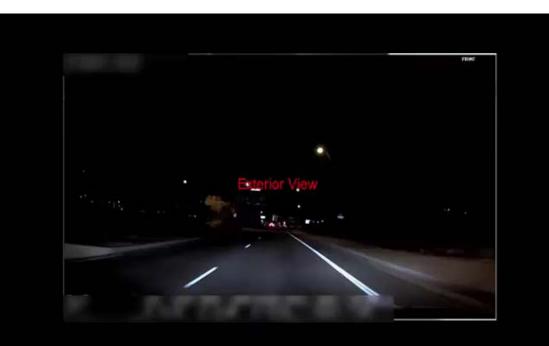
Technology status & Ongoing challenges for AVs

- Strong involvement of Car Industry & GAFA + Large media coverage + Increasing Governments supports
- An expected market of 515 B€at horizon 2035 (~17% world automobile market, Consulting agency AT Keappley, Dec 2017)
- But Legal & Regulation issues are still unclear ... idem for Technologies Validation & Cortification issues !
- => Numerous experiments in real traffic conditions since 2010 (Disengagement reports Whisights on system maturity) => But still insufficient ... Realistic Simulation & Formal methods are also under Sevelopment (e.g. EU Enable-S3)

Fatal accidents involving AVs – Perception failure

- □ Tesla driver killed in a crash with Autopilot "level 2" active (ADAS mode) May 2016
 - The Autopilot <u>failed to detect</u> a white moving truck, with a
 brightly lit sky (Camera Mobileye + Radar)
 - ✓ The human driver was not vigilant & didn't took over

- □ Self-driving Uber L3 vehicle killed a woman
 - => First fatal crash involving a pedestrian Temple, Arizona, March 2018
- Despite the presence of multiple sensors (lidars, cameras ...), the perception system failed to detect the pedestrian & didn't disengaged
 The Safety Driver reacted too lately (1s before the crash)



AVs have to face two main challenges

Challenge 1: The need for Robust, Self-diagnosing & Explainable Embedded Perception

Video source: AutoPilot Review @ youtube.com

Video Scenario:

- The Tesla perception system failed to detect the barriers blocking the left side route.
- The driver has to take over and steer the vehicle away from the blocked route (for avoiding the collision).

AVs have to face two main challenges

Challenge 2: The need for **Understandable Driving Decisions** (share the road with human drivers)

Human drivers actions are determined by a complex set of interdependent factors difficult to model (e.g. intentions, perception, emotions ...)
⇒ Predicting human driver behaviors is inherently <u>uncertain</u>
⇒ AV have to reason about <u>uncertain intentions of</u> the surrounding vehicles

Video source: The Telegraph

Video scenario:

- Scene observed by the dash cam of a **bus** moving behind the Waymo AV
- Waymo AV is blocked by an obstacle and it decides to execute a left lane change
- The **bus driver** misunderstood the Tesla's intention and didn't yield
- The two vehicles collided

Perception & Decision-making requirements for AVs

Dynamic Scene Understanding & Navigation Decisions

Situation Awareness & Decision-making ⇒ Sensing + Prior knowledge + Interpretation ⇒ Selecting appropriate Navigation strategy (planning & control)

Embedded Perception & Decision-making for Safe Intentional Navigation

Dealing with unexpected events

Main features

- ✓ Dynamic & Open Environments => *Real-time processing & Reactivity (several reasoning levels are required)*
- ✓ Incompleteness & Uncertainty => *Appropriate Model & Algorithms (probabilistic approaches)*
- ✓ Sensors limitations (no sensor is perfect) => *Multi-Sensors Fusion*
- ✓ Hardware / Software integration => *Satisfying Embedded constraints*
- ✓ Human in the loop (mixed traffic) => Human Aware Decision-making process (AI based technologies) Taking into account Interactions + Behaviors + Social rules (including traffic rules)

1st Paradigm : Embedded Bayesian Perception

Sensors Fusion

=> Mapping & Detection

Dynamic scene interpretation

Using Context & Semantics

Embedded Multi-Sensors Perception ⇒ Continuous monitoring of the dynamic environment

□ Main challenges

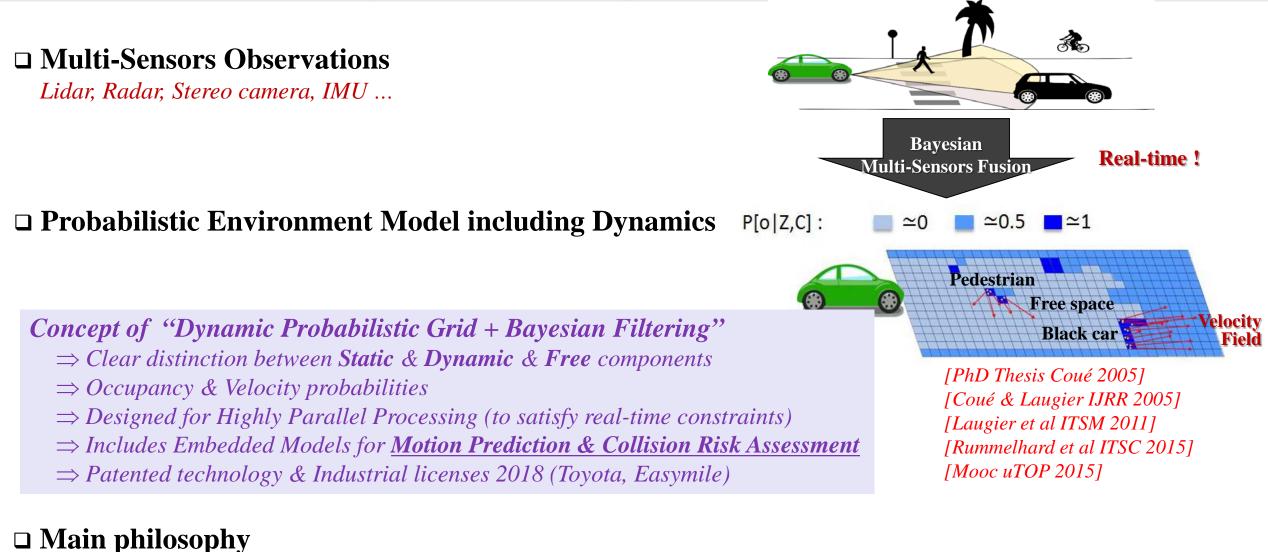
- ✓ Noisy data, Incompleteness, Dynamicity, Discrete measurements
- ✓ Strong Embedded & Real time constraints

Our Approach: Embedded Bayesian Perception

- ✓ Reasoning about Uncertainty & Time window (Past & Future events)
- ✓ Improving robustness using Bayesian Sensors Fusion
- ✓ Interpreting the dynamic scene using Contextual & Semantic information
- ✓ Software & Hardware integration using GPU, Multicore, Microcontrollers...

Characterization of the local Safe Navigable Space & Collision Risk

Bayesian Perception : Basic idea



Reasoning at the grid level as far as possible for both :

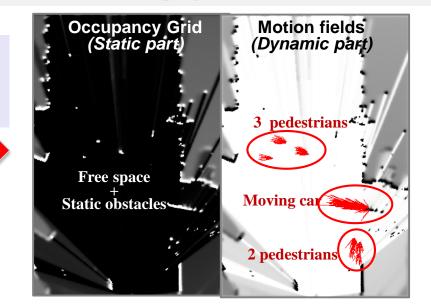
• Improving Efficiency & Reactivity to unexpected events => Highly parallel processing & High frequency !

• Avoiding most of traditional object level processing problems (e.g. detection errors, wrong data association...)

Dynamic Probabilistic Grid & Bayesian Filtering – Main Features => Exploiting the <u>dynamic information</u> for a better understanding of the scene

Sensors data fusion + Bayesian Filtering + Extracted Motion Fields

1st Embedded & Optimized version (HSBOF, patent 2014)

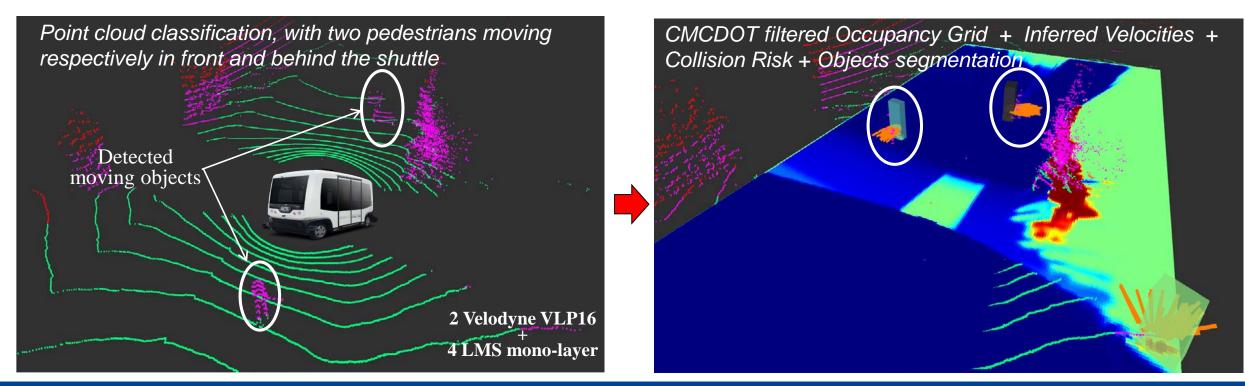


10

System Integration on a commercial vehicle

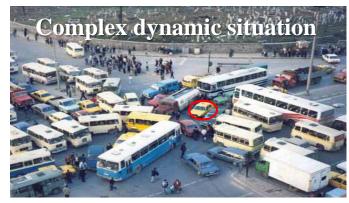
 POC 2019: Complete system implemented on Nvidia TX1, and easily connected to the shuttle system network in a few days (using ROS)

- Shuttle sensors data has been fused and processed in real-time, with a successful Detection & Characterization of the Moving & Static Obstacles
 - Full integration on a commercial product under development with an industrial company (confidential)

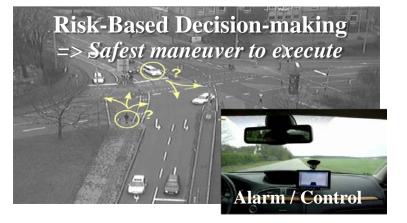


11

2nd Paradigm: Collision Risk Assessment & Decision-making => Decision-making for avoiding Pending & Future Collisions



Main challenges



Uncertainty, Partial Knowledge, World changes, Real time Human in the loop + Unexpected events + Navigation Decision based on Perception & Prior Knowledge

□ Approach: Prediction + Risk Assessment + Bayesian Decision-making

- ✓ Reason about Uncertainty & Contextual Knowledge (using History & Prediction)
- ✓ Estimate **Probabilistic Collision Risk** at a given **time horizon** $t+\delta$ ($\delta = a$ few seconds ahead)
- ✓ Make <u>Driving Decisions</u> by taking into account the Predicted behavior of <u>all the observed surrounding traffic</u> participants (cars, cycles, pedestrians ...) & Social / Traffic rules

Decision-making: Two types of "collision risk" have to be considered

✓ Short-term collision risk => Imminent collisions with "<u>something</u>" (unclassified), time horizon <3s, conservative hypotheses

Concept 1: Short-term collision risk (Basic idea)

=> How to deal with <u>unexpected & unclassified</u> events (i.e. "something" is moving ahead) ? => Exploit previous observations for anticipating <u>future objects motions</u> & related <u>potential future collision</u>

Parked Vehicle (occultation)

Pioneer Results (2005)

[PhD Thesis C. Coué 2004] [Coué & Laugier & al IJRR 05]

Thanks to the prediction capability of the BOF technology, the Autonomous Vehicle "anticipates" the pedestrian motion and brakes (even if the pedestrian is temporarily hidden by the parked vehicle)

Short-term collision risk – Main Features & Results

=> Grid level & Conservative motion hypotheses (proximity perception)

Main Features

- Detect "Upcoming potential Collisions" a few seconds ahead (3-5s) in the Dynamic Grid
- o Risky situations are both localized in Space & Time (under conservative motion hypotheses)
- o Resulting information is used for choosing the most appropriate Collision Avoidance Maneuvers

Experimental results

Concept 2: Long-term Collision Risk (Object level)

=> Increasing time horizon & complexity using Context & Semantics => Key concepts: <u>Behaviors</u> Modeling & Prediction + Traffic Participants <u>Interactions</u>

Decision-making in complex traffic situations

✓ <u>Understand</u> the current traffic situation & its <u>likely evolution</u>

 \checkmark Evaluate the <u>Risk of future collision</u> by reasoning on traffic participants <u>Behaviors</u>

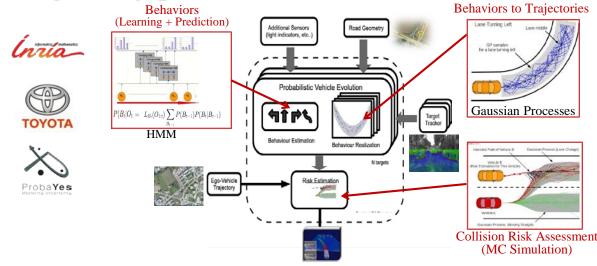
✓ Takes into account <u>Context & Semantics</u>

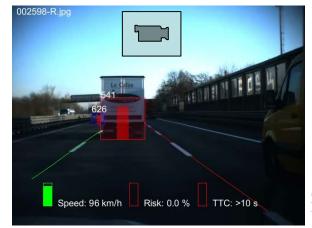
Highly structured environment & Traffic rules make Prediction more easy Context & Semantics History + Space geometry + Traffic rules + Behavior Prediction & Interactions For all surrounding traffic participants (using learned models) +

Probabilistic Risk Assessment

Behavior-based Collision risk – *Main approaches & Results* => Increased time horizon & complexity + Reasoning on <u>Behaviors & Interactions</u>

□ Trajectory prediction & Collision Risk => Patent 2010 (Inria, Toyota, Probayes)





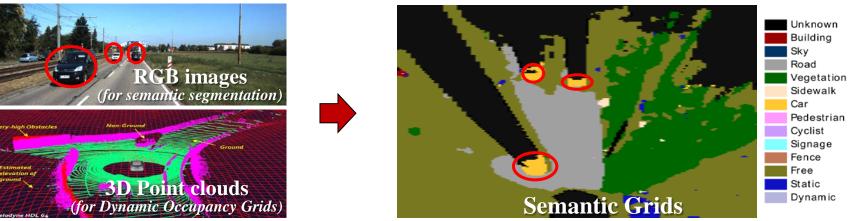
Cooperation still on-going (R&D contracts + PhD)

Courtesy Probayes

□ Intention & Expectation (Mixed Traffic & Interactions) => Patents 2012 (Inria - Renault) & 2013 (Inria - Berkeley)

3rd Paradigm: Models improvements using Machine Learning

Perception level: Construct "Semantic Grids" using Bayesian Perception & DL



Decision-making level: *Learn driving skills for Autonomous Driving*

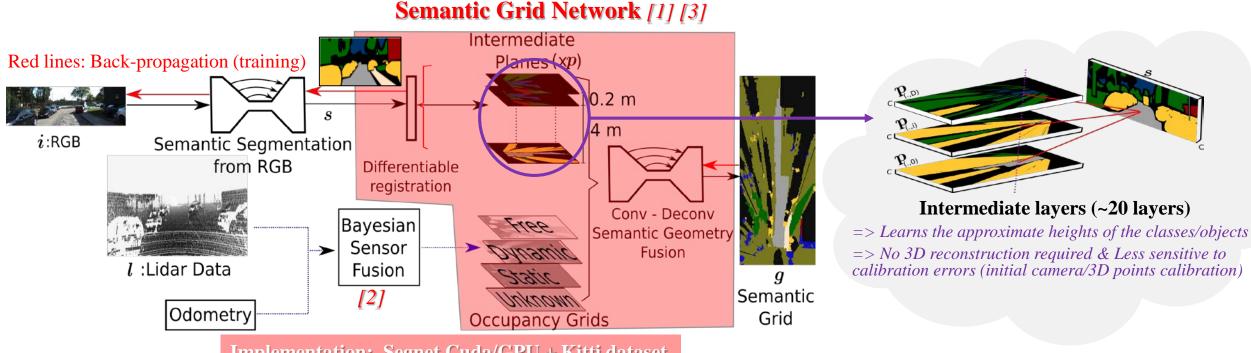
ist Step: Modeling Driver Behavior using Inverse Reinforcement Learning (IRL) 2nd Step: Predict motions of surrounding vehicles & Make Driving Decisions for Ego Vehicle

Perception Level: Semantic Grids (Bayesian Perception + DL)

Objective: Add **Semantic information** (cars, pedestrians, roads, buildings...) in each cell of the Dynamic Occupancy Grid model, by exploiting additional RGB inputs

Approach: A new "Hybrid Sensor Fusion approach" combining **Bayesian Perception & Deep Learning**

[1] [2] + Patent 2019 (Inria, Toyota)

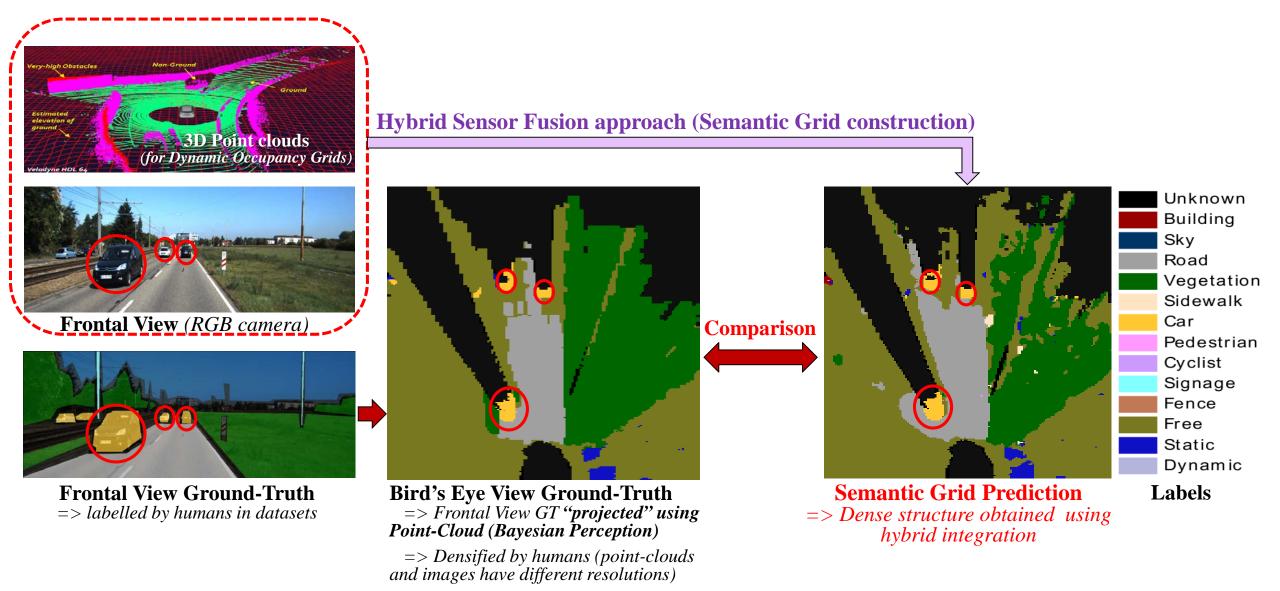


Implementation: Segnet Cuda/GPU + Kitti dataset

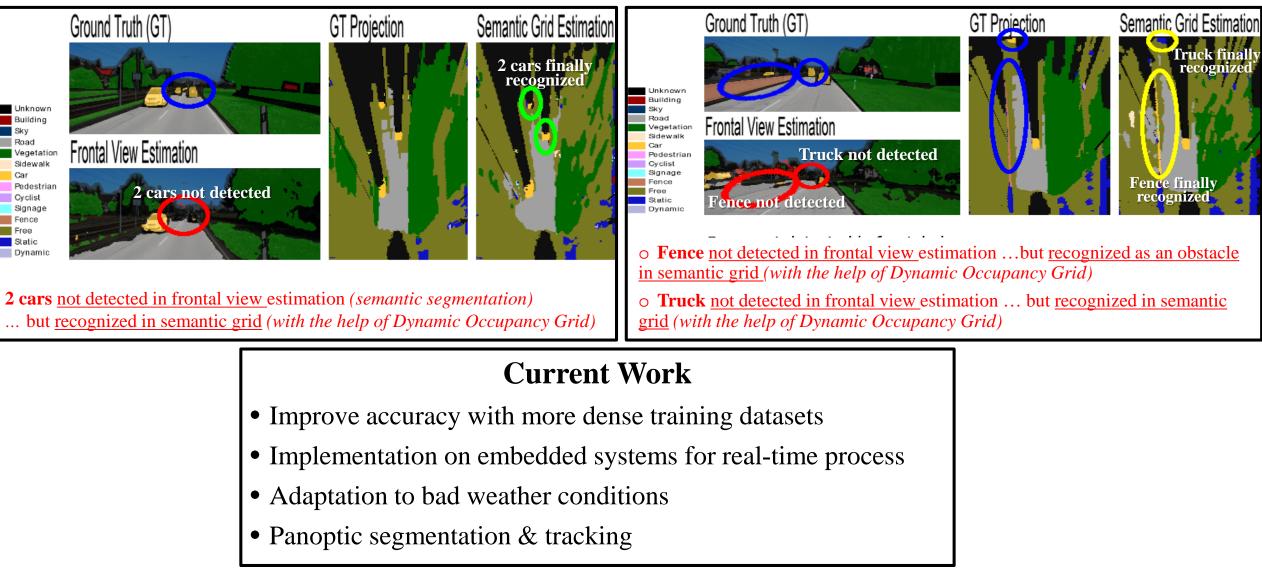
[2] Conditional Monte Carlo Dense Occupancy Tracker, Rummelhard et al., ITSC 2015

[1] Semantic grid estimation with a Hybrid Bayesian and Deep Neural Network approach, 0. Erkent et al., IEEE IROS 2018 [3] Segnet: A deep convolutional encoder-decoder architecture for image segmentation, Badrinarayanan et al., IEEE PAMI 39(12) 2017

Semantic Grids – Experimental Evaluation Approach



Semantic Grids – Experimental Results & Current work





Decision-making level: Learning Driving Skills for AD 1st Step: Driver behavior modeling

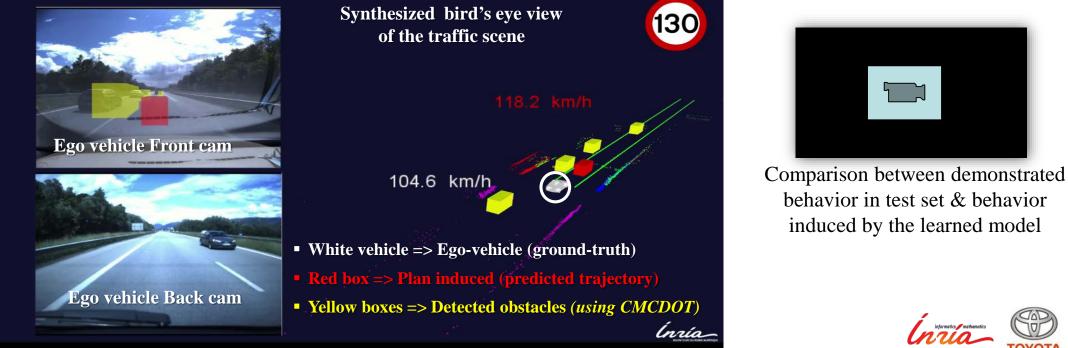
[Sierra Gonzalez et al, ICRA 2018]

• Learn Model parameters from real driving demonstrations using Inverse Reinforcement Learning (IRL)

• Driver behaviors are modelled using a Cost function $C(s) = \sum_{i=1}^{K} w_i \cdot f_i(s)$ which is assumed linear on a set of K hand-crafted features (e.g. Lane index preferences, Deviation from desired velocity, Time-to-collision to frontal targets, Time-gap to rear targets ...)

• A training set containing *"interesting highway <u>vehicle interactions</u>"* was constructed out of 20 minutes of highway driving data & used to automatically learn the balance between features. *We are extending the approach using larger datasets and various traffic conditions.*

=> Obtained models can be leverage to **Predict human driver behaviors & Generate human-like plans for the ego vehicle** (mandatory in mixed traffic)



Decision-making level: Learning Driving Skills for AD 2nd Step: Motion Prediction & Driving Decisions

• A realistic Human-like Driver Model can be exploited to Predict the long-term evolution (10s and beyond) of traffic scenes [Sierra Gonzalez et al., ITSC 2016]

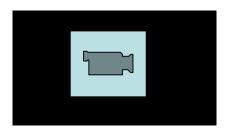
• For the **short/mid-term**, both the **Driver model** and the **Dynamics of the target** provide useful information to **determine future driving behaviors**

=> Our **probabilistic model fuses** *Model-based Predictions & Dynamic evidence* to produce robust lane change intention estimations in highway scenes [Sierra Gonzalez et al., ICRA 2017]

Synthesized bird's eye view of the traffic scene & Over vehicles expected intentions

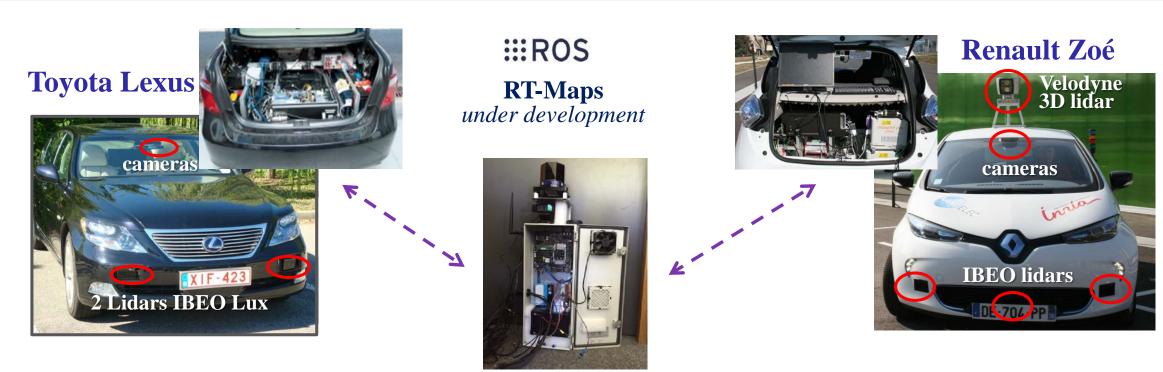
• **Orange bar** => *Probability that the target executes a <u>lane</u> <u>change according to the model</u> (given the traffic situation)*

Red bar => Final lane change intention probability (fusing model-based prediction & dynamic evidence)



Comparison between demonstrated behaviors in test set & behaviors induced by the learned model & dynamics evidence

Experimental Vehicles & Connected Perception Units



Connected Perception Unit (V2X communication)

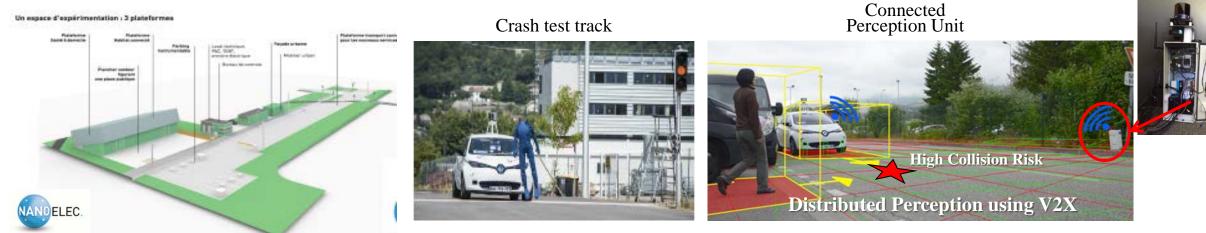
Same embedded perception systems than in vehicles => Exchanging only relevant information (e.g. Risk parameters)

C. LAUGIER – Situation Awareness & Decision-making for Autonomous Driving IROS 2019 Cutting Edge Forum on "Contributions of Robotics, AI and ITS to Autonomous Driving", Macau, China, Nov 5th 2019

25

Experimental Areas

□ **Protected experimental area** => *Testing Autonomous Driving L3 & L4*



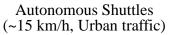
□ Open real traffic (Urban & Highway) => *Testing Autonomous Driving L2 (ADAS)*

C. LAUGIER – Situation Awareness & Decision-making for Autonomous Driving IROS 2019 Cutting Edge Forum on "Contributions of Robotics, AI and ITS to Autonomous Driving", Macau, China, Nov 5th 2019

26

Summary & On going work

Autonomous Driving in various Traffic & Context situations (cooperation with industry)

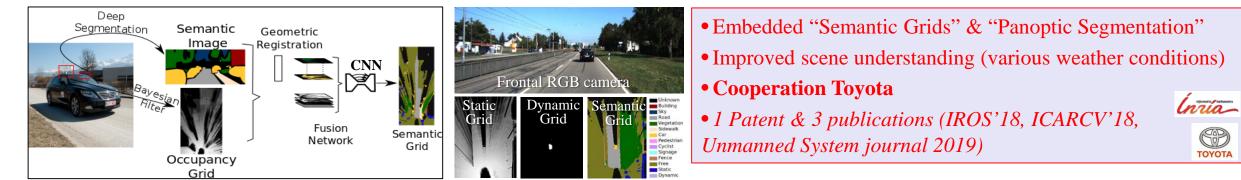


Autonomous Bus (Iveco) (up to 70 km/h, Urban traffic)

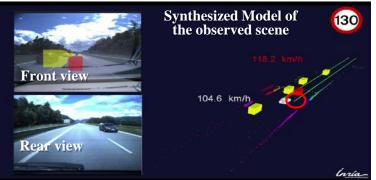
Autonomous Renault Zoe (up to 70 km/h, Urban traffic)

- Various Dynamics & Motion constraints & Contexts
- Adapted "Collision Risk" & "Collision avoidance maneuvers" (Risk & Maneuver characterization)
- Cooperation IRT Nanoelec, Renault, Iveco ...

Embedded & Extended "Semantic Grids"

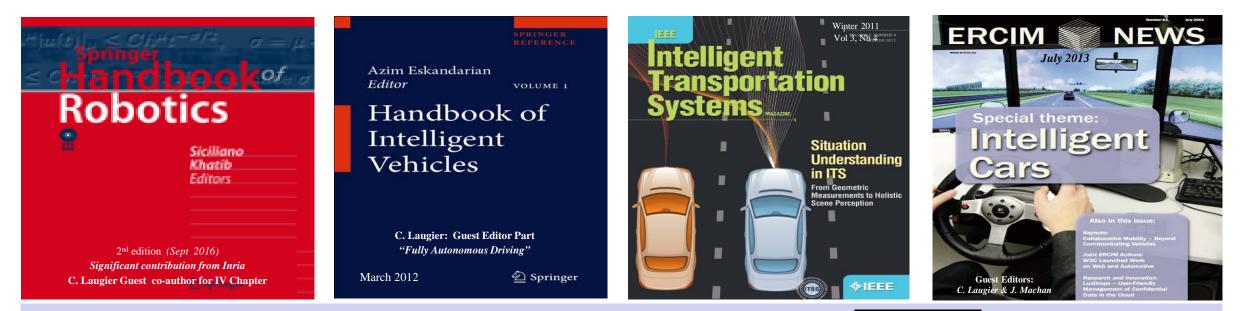


□ Autonomous Driving in mixed traffic (Prediction & Planning) using learned models

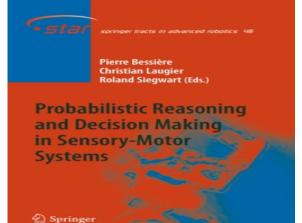


- Driver Behavior modeling using Driving dataset & Inverse Reinforcement Learning => Human-like Driver Model (for mixed traffic)
- Motion Prediction & Driving Decision-making for AD performed by combining "learned Driver models" & "Dynamic evidences"
- Cooperation Toyota
- 2 Patents & 3 publications (ITSC 2016, ICRA 2017, ICRA 2018) & PhD Thesis 2019

nría



Thank You



Springer, 2008

EEE RAS Technical Committee on "AGV & ITS"

Numerous Workshops & Special issues since 2002 => Membership open !!

Chapman & Hall/CRC Machine Learning & Pattern Recog

PIERRE BESSIÈRE EMMANUEL MAZER JUAN-MANUEL AHUACTZIN KAMEL MEKHNACHA

Chapman & , Hall / CRC, Dec. 2013

28

C. LAUGIER – Situation Awareness & Decision-making for Autonomous Driving IROS 2019 Cutting Edge Forum on "Contributions of Robotics, AI and ITS to Autonomous Driving", Macau, China, Nov 5th 2019

Robotics & Automation

