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Abstract

The problem of variational data assimilation for a nonlinear evolution model is formulated as

an optimal control problem to find simultaneously unknown parameters and initial state of the

model. A response function is considered as a functional of the optimal solution after assimi-

lation. The sensitivity of the response function to the observation data is studied. The gradient

of the response function with respect to observations is related to the solution of a non-standard

problem involving the coupled system of direct and adjoint equations. Based on the Hessian of

the original cost function, the solvability of the non-standard problem is studied. An algorithm

to compute the gradient of the response function with respect to observation data is formulated

and justified. A numerical example is presented for variational data assimilation problem for the

Baltic Sea thermodynamics model.
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1. Introduction

The methods of variational data assimilation have become a very important tool for state

observation and parameter estimation for geophysical models. The problems of variational data

assimilation can be formulated as optimal control problems (e.g. [1]–[6]) to find unknown model

parameters such as initial and boundary conditions, right-hand sides in the model equations,

distributed coefficients, based on minimization of the cost function related to observations. A

necessary optimality condition reduces an optimal control problem to an optimality system which

involves the model equations, the adjoint problem, and input data functions. The optimal solution

depends on the observation data, which may contain uncertainties, and for the forecasts it is

very important to study the sensitivity of the optimal solution and its functionals with respect to

observation errors [7].

The necessary optimality condition is related to the gradient of the original cost function,

thus to study the sensitivity of the optimal solution, one should differentiate the optimality sys-

tem with respect to observations. In this case, we come to the so-called second-order adjoint
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problem [8]. The first studies of sensitivity of the response functions after assimilation with the

use of second-order adjoint were done by [9] for variational data assimilation problem aimed at

restoration of initial condition, where sensitivity with respect to model parameters was consid-

ered. The equations of the forecast sensitivity to observations in a four-dimensional (4D-Var)

data assimilation were derived by [10]. Based on these results, a practical computational ap-

proach was given by [11] to quantify the effect of observations in 4D-Var data assimilation.

Sensitivity of the optimal solution is related to its statistical properties (see [12]–[16]). Gen-

eral sensitivity analysis in variational data assimilation with respect to observations for a non-

linear dynamic model was given by [17] to control the initial-value function. The paper [18]

presented the sensitivity analysis with respect to observations in variational data assimilation

aimed at restoration of unknown parameters of a dynamic model.

This paper generalizes the results of [17] and [18] and presents the sensitivity analysis with

respect to observations in variational data assimilation aimed at simultaneous restoration of un-

known parameters and initial state of a dynamic model. The problems of parameter estimation

are common inverse problems considered in geophysics and in engineering applications (see

[19]–[28]). Last years an interest is rising to the joint initial state and parameter estimation using

4D-Var ([29] –[31]).

We consider a dynamic formulation of variational data assimilation problem for joint pa-

rameter and initial state estimation in a continuous form, but the presented sensitivity analysis

formulas with respect to observations do not follow from our previous results [17] and [18] and

constitute a novelty of this paper. The main contribution of the paper, as compared to [17] and

[18], is a derivation of new formulas for the gradient of a response function with respect to

observations in variational data assimilation problem aimed at joint parameter and initial state

estimation for a general nonlinear dynamic model.

This paper is organized as follows. In section 2, we give the statement of the variational

data assimilation problem for a nonlinear evolution model to estimate simultaneously the model

parameters and the initial state. In Section 3, sensitivity of the response function after assimila-

tion with respect to observations is studied, and the theorem is proved to relate the gradient to

the solution of a non-standard problem. An algorithm to compute the gradient of the response

function is formulated, based on an operator equation involving the Hessian of the original cost

function, and the the solvability of the non-standard problem is studied. In Section 4, we consider

a simple example with known manufactured exact solution and present some numerical results.

Section 5 presents an application of the theory to the data assimilation problem for the Baltic

Sea thermodynamics model with a numerical example. The main results are discussed in the

Conclusions.

2. Statement of the problem

Consider the mathematical model of a physical process that is described by the nonlinear

evolution problem {
∂ϕ
∂t

= F (ϕ, λ) + f, t ∈ (0, T )

ϕ
∣∣
t=0

= u,
(1)

where the initial state u is supposed to be from a Hilbert spaceX , the unknown functionϕ = ϕ(t)

belongs to Y = L2(0, T ;X) with the norm ‖ϕ‖Y = (ϕ, ϕ)
1/2
Y = (

∫ T

0 ‖ϕ(t)‖2Xdt)
1/2, F is a

nonlinear operator mapping Y × Yp into Y , Yp is a Hilbert space (space of model parameters),
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f ∈ Y . We suppose that for given u ∈ X, f ∈ Y and λ ∈ Yp there exists a unique solution

ϕ ∈ Y to (1) with
∂ϕ
∂t ∈ Y . The function λ is an unknown model parameter, and we suppose

that the initial state u is also unknown.

We introduce the cost function as a functional on X × Yp in the form

J(u, λ) =
1

2
(V1(u−ub), u−ub)X+

1

2
(V2(λ−λb), λ−λb)Yp

+
1

2
(V3(Cϕ−ϕobs), Cϕ−ϕobs)Yobs

,

(2)

where ub ∈ X,λb ∈ Yp are prior (background) functions, ϕobs ∈ Yobs is a prescribed function

(observational data), Yobs is a Hilbert space (observation space), C : Y → Yobs is a linear

bounded operator (observation operator), V1 : X → X,V2 : Yp → Yp and V3 : Yobs → Yobs
are symmetric positive definite bounded operators. Usually, V1, V2, V3 are chosen as inverse

covariance operators of observation and background errors [7, 30].

Let us consider the following data assimilation problem with the aim to find the initial value

u and the parameter λ: for given f ∈ Y, ϕobs ∈ Yobs, ub ∈ X,λb ∈ Yp, find u ∈ X,λ ∈ Yp and

ϕ ∈ Y such that they satisfy (1), and on the set of solutions to (1), the functional J(u, λ) takes

the minimum value, i.e.




∂ϕ
∂t

= F (ϕ, λ) + f, t ∈ (0, T )

ϕ
∣∣
t=0

= u,
J(u, λ) = inf

w∈X,v∈Yp

J(w, v).
(3)

We suppose that the solution of (3) exists. Let us note that the solvability of the parameter

estimation problems (or identifiability) has been addressed, e.g., in [32], [33]. To derive the

optimality system, we assume the solution ϕ and the operator F (ϕ, λ) in (1)–(2) are regular

enough, and for w ∈ X, v ∈ Yp find the gradient of the functional J with respect to u and λ:

J ′

u(u, λ)w = (V1(u− ub), w)X + (C∗V3(Cϕ − ϕobs), φ̃)Y , (4)

J ′

λ(u, λ)v = (V2(λ− λb), v)Yp
+ (C∗V3(Cϕ − ϕobs), φ)Y , (5)

where φ is the solution to the problem:

{
∂φ
∂t

= F ′

ϕ(ϕ, λ)φ + F ′

λ(ϕ, λ)v, t ∈ (0, T ),

φ
∣∣
t=0

= 0,
(6)

and φ̃ is the solution to the problem:

{
∂φ̃
∂t

= F ′

ϕ(ϕ, λ)φ̃, t ∈ (0, T ),

φ
∣∣
t=0

= w.
(7)

Here F ′

ϕ(ϕ, λ) : Y → Y, F ′

λ(ϕ, λ) : Yp → Y are the Fréchet derivatives of F [38] with respect

to ϕ and λ, correspondingly, and C∗ is the adjoint operator to C defined by (Cϕ,ψ)Yobs
=

(ϕ,C∗ψ)Y , ϕ ∈ Y, ψ ∈ Yobs.

Let us introduce the adjoint operator (F ′

ϕ(ϕ, λ))
∗ : Y → Y and consider the adjoint problem:

{
∂ϕ∗

∂t + (F ′

ϕ(ϕ, λ))
∗ϕ∗ = C∗V3(Cϕ − ϕobs), t ∈ (0, T )

ϕ∗
∣∣
t=T

= 0.
(8)
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The problem (8) is adjoint with respect to the linearized (tangent linear) problems (6), (7), there-

fore, it is also linear in ϕ∗, however, it is still nonlinear in ϕ.

In the below consideration, we assume that the direct and adjoint linear problems of the form

{
∂φ
∂t

− F ′

ϕ(ϕ, λ)φ = p, t ∈ (0, T )

φ
∣∣
t=0

= q,

{
−
∂φ∗

∂t
− (F ′

ϕ(ϕ, λ))
∗φ∗ = g, t ∈ (0, T )

φ∗
∣∣
t=T

= 0

with p, g ∈ Y, q ∈ X have the unique solutions φ, φ∗ ∈ Y and
∂φ
∂t
,
∂φ∗

∂t
∈ Y .

From (4)–(8) we get

J ′

u(u, λ)w = (V1(u− ub), w)X − (ϕ∗
∣∣
t=0

, w)X , (9)

J ′

λ(u, λ)v = (V2(λ−λb), v)Yp
−(ϕ∗, F ′

λ(ϕ, λ)v)Y = (V2(λ−λb), v)Yp
−((F ′

λ(ϕ, λ))
∗ϕ∗, v)Yp

,
(10)

where (F ′

λ(ϕ, λ))
∗ : Y → Yp is the operator adjoint to F ′

λ(ϕ, λ). Thus, the gradient of J is

defined by

J ′

u(u, λ) = V1(u− ub)− ϕ∗
∣∣
t=0

, J ′

λ(u, λ) = V2(λ− λb)− (F ′

λ(ϕ, λ))
∗ϕ∗.

The necessary optimality condition [1] is gradJ = 0, therefore, J ′

u(u, λ) = 0, J ′

u(u, λ) = 0.

From (3)–(10) we obtain the optimality system:

{
∂ϕ
∂t

= F (ϕ, λ) + f, t ∈ (0, T ),

ϕ
∣∣
t=0

= u,
(11)

{
∂ϕ∗

∂t
+ (F ′

ϕ(ϕ, λ))
∗ϕ∗ = C∗V3(Cϕ − ϕobs), t ∈ (0, T )

ϕ∗
∣∣
t=T

= 0,
(12)

V1(u − ub)− ϕ∗
∣∣
t=0

= 0, (13)

V2(λ − λb)− (F ′

λ(ϕ, λ))
∗ϕ∗ = 0. (14)

We suppose that the system (11)–(14) has a unique solution ϕ, ϕ∗ ∈ Y, u ∈ X,λ ∈ Yp.

The system (11)–(14) may be considered as a generalized model of the form A(U) = 0 with

the state variable U = (ϕ, ϕ∗, u, λ), and it contains the information on the observation data

ϕobs ∈ Yobs. Below we study the sensitivity of functionals of the optimal solution with respect

to the observation data.

3. Sensitivity of response functions with respect to observations

In many applications the observation data cannot be measured precisely, and therefore, it is

important to be able to estimate the impact of uncertainties in observations on the outputs of the

model after assimilation. Such outputs may be response functions considered as functionals of

the optimal solution.
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We introduce a response functionG(ϕ, u, λ), which is supposed to be a real-valued function

and can be considered as a functional on Z = Y ×X × Yp. We are interested in the sensitivity

of G with respect to ϕobs, with ϕ, u and λ obtained from the optimality system (11)–(14). By

definition, the sensitivity is defined by the gradient of G with respect to ϕobs:

dG

dϕobs
=
∂G

∂ϕ

∂ϕ

∂ϕobs
+
∂G

∂λ

∂λ

∂ϕobs
+
∂G

∂u

∂u

∂ϕobs
, (15)

where ∂G
∂ϕ

: Z → Y, ∂G
∂λ

: Z → Yp,
∂G
∂u

: Z → X , and
∂ϕ
∂ϕobs

, ∂λ
∂ϕobs

, ∂u
∂ϕobs

are the Gâteaux

derivatives of ϕ, λ, u with respect to ϕobs.

Let δϕobs be a perturbation on ϕobs, then we obtain from the optimality system (11)–(14):

{
∂δϕ
∂t

= F ′

ϕ(ϕ, λ)δϕ + F ′

λ(ϕ, λ)δλ, t ∈ (0, T )

δϕ
∣∣
t=0

= δu,
(16)





−
∂δϕ∗

∂t − (F ′

ϕ(ϕ, λ))
∗δϕ∗ − (F ′′

ϕϕ(ϕ, λ)δϕ)
∗ϕ∗ = (F ′′

ϕλ(ϕ, λ)δλ)
∗ϕ∗

−C∗V3(Cδϕ− δϕobs),
δϕ∗

∣∣
t=T

= 0,

(17)

V1δu− δϕ∗
∣∣
t=0

= 0, (18)

V2δλ− (F ′′

λϕ(ϕ, λ)δϕ)
∗ϕ∗ − (F ′′

λλ(ϕ, λ)δλ)
∗ϕ∗ − (F ′

λ(ϕ, λ))
∗δϕ∗ = 0, (19)

and (
dG

dϕobs
, δϕobs

)

Yobs

=

(
∂G

∂ϕ
, δϕ

)

Y

+

(
∂G

∂λ
, δλ

)

Yp

+

(
∂G

∂u
, δu

)

X

, (20)

where δϕ, δϕ∗, δλ, δu are the solutions of (16)–(19).

The following statement is valid.

Theorem 1. Let P1, P2 ∈ Y, P3 ∈ Yp, P4 ∈ X be the solutions of the following system of

equations

{
−∂P1
∂t

− (F ′

ϕ(ϕ, λ))
∗P1 − (F ′′

ϕϕ(ϕ, λ)P2)
∗ϕ∗ = (F ′′

λϕ(ϕ, λ)P3)
∗ϕ∗ − C∗V3CP2 +

∂G
∂ϕ

,

P1

∣∣
t=T

= 0,
(21){

∂P2
∂t

− F ′

ϕ(ϕ, λ)P2 − F ′

λ(ϕ, λ)P3 = 0, t ∈ (0, T )

P2

∣∣
t=0

−P4 = 0,
(22)

V1P4 − P1

∣∣
t=0

=
∂G

∂u
, (23)

V2P3 − (F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗ − (F ′′

λλ(ϕ, λ)P3)
∗ϕ∗ − (F ′

λ(ϕ, λ))
∗P1 =

∂G

∂λ
, (24)

where ϕ, ϕ∗ ∈ Y, u ∈ X,λ ∈ Yp are the solution of the optimality system (11)–(14). Then the

gradient of G with respect to ϕobs is given by

dG

dϕobs
= V3CP2. (25)
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Proof of this Theorem is presented in the Appendix.

We obtain a coupled system of two differential equations (21) and (22) of the first order

with respect to time, with additional conditions (23)–(24). To study this non-standard problem

(21)–(24) with mutually dependent initial conditions for P1, P2, we reduce it to a single operator

equation involving the Hessian of the original cost function.

Let us introduce the auxiliary variables v = P3 ∈ Yp, w = P4 ∈ X and rewrite the non-

standard problem (21)–(24) in an equivalent form:

{
∂P2
∂t

− F ′

ϕ(ϕ, λ)P2 = F ′

λ(ϕ, λ)v, t ∈ (0, T )

P2

∣∣
t=0

= w,
(26)

{
−∂P1
∂t

− (F ′

ϕ(ϕ, λ))
∗P1 − (F ′′

ϕϕ(ϕ, λ)P2)
∗ϕ∗ = (F ′′

λϕ(ϕ, λ)v)
∗ϕ∗ − C∗V3CP2 +

∂G
∂ϕ

,

P1

∣∣
t=T

= 0,
(27)

V1w − P1

∣∣
t=0

=
∂G

∂u
, (28)

V2v − (F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗ − (F ′′

λλ(ϕ, λ)v)
∗ϕ∗ − (F ′

λ(ϕ, λ))
∗P1 =

∂G

∂λ
(29)

with the four unknowns: w ∈ X, v ∈ Yp, P1, P2 ∈ Y . Let us write (26)–(29) in the form of an

operator equation for U = (w, v)T . We define the operator H : X × Yp → X × Yp, which acts

on U belonging to X × Yp, by the successive solution of the following problems:

{
∂φ
∂t

− F ′

ϕ(ϕ, λ)φ = F ′

λ(ϕ, λ)v, t ∈ (0, T )

φ
∣∣
t=0

= w,
(30)

{
−
∂φ∗

∂t − (F ′

ϕ(ϕ, λ))
∗φ∗ − (F ′′

ϕϕ(ϕ, λ)φ)
∗ϕ∗ = (F ′′

λϕ(ϕ, λ)w)
∗ϕ∗ − C∗V3Cφ,

φ∗
∣∣
t=T

= 0,
(31)

HU =

(
V1w−φ

∗
∣∣
t=0

, V2v−(F ′′

ϕλ(ϕ, λ)φ)
∗ϕ∗−(F ′′

λλ(ϕ, λ)w)
∗ϕ∗−(F ′

λ(ϕ, λ))
∗φ∗
)T

, (32)

where λ, u, ϕ and ϕ∗ are the solutions of the optimality system (11)–(14). It is easily seen that

(26)–(29) is equivalent to the following equation in X × Yp:

HU = F (33)

with F ∈ X × Yp defined by

F =

(
∂G

∂u
+ φ̃∗

∣∣
t=0

,
∂G

∂λ
+ (F ′

λ(ϕ, λ))
∗φ̃∗
)T

, (34)

where φ̃∗ ∈ Y is the solution to the adjoint problem:





−
∂φ̃∗

∂t
− (F ′

ϕ(ϕ, λ))
∗φ̃∗ = ∂G

∂ϕ
, t ∈ (0, T )

φ̃∗
∣∣
t=T

= 0.
(35)
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It is easy to make sure that the operator H defined by (30)–(32) is the Hessian of the original

functional J considered on the optimal solution u, λ of the problem (11)–(14): J ′′(u, λ) = H.

Lemma 1. Under the assumption that H is positive definite, the operator equation (33) is

well posed: for every F ∈ X × Yp there exists a unique solution U ∈ X × Yp and the estimate

is valid:

‖U‖X×Yp
≤ c‖F‖X×Yp

, c = const > 0. (36)

Proof. If the operator H is positive definite, then for any U ∈ X × Yp

(HU,U)X×Yp
≥ γ(U,U)X×Yp

, γ = const > 0.

Hence,

‖HU‖X×Yp
≥ γ‖U‖X×Yp

, (37)

and it means that equation (33) is uniquely and correctly solvable in X × Yp [34].

By definition, H is self-adjoint, i.e. H∗ = H. Then, the adjoint equation is also correctly

solvable, which implies that equation (33) is everywhere solvable [34], i.e. for every F ∈ X×Yp
there exists a unique solution U ∈ X × Yp.

Let U ∈ X × Yp be the solution of (33) with the right-hand side F , then (37) gives (36) with

c = 1/γ. The lemma is proved.

Therefore, under the assumption that J ′′(u, λ) is positive definite on the optimal solution, the

non-standard problem (21)–(24) has a unique solution P1, P2 ∈ Y, P3 ∈ Yp, P4 ∈ X .

From the above consideration, we come to the following algorithm to compute the gradient

of the response functionG:

1) For ∂G
∂λ

∈ Yp,
∂G
∂ϕ

∈ Y, ∂G
∂u

∈ X solve the adjoint problem





−
∂φ̃∗

∂t
− (F ′

ϕ(ϕ, λ))
∗φ̃∗ = ∂G

∂ϕ
, t ∈ (0, T )

φ̃∗
∣∣
t=T

= 0
(38)

and put

F =

(
∂G

∂u
+ φ̃∗

∣∣
t=0

,
∂G

∂λ
+ (F ′

λ(ϕ, λ))
∗φ̃∗
)T

.

2) Find U = (w, v)T by solving

HU = F

with the Hessian of the original functional J defined by (30)–(32).

3) Solve the direct problem
{

∂P2
∂t

− F ′

ϕ(ϕ, λ)P2 = F ′

λ(ϕ, λ)v, t ∈ (0, T )

P2

∣∣
t=0

= w.
(39)

4) Compute the gradient of the response function as

dG

dϕobs
= V3CP2. (40)

The last formula allows us to estimate the sensitivity of the response functions related to the

optimal solution after assimilation, with respect to observation data.
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4. Simple example

Let us consider a simple evolution problem for the ordinary differential equation





dϕ

dt
+ aϕ = λg, t ∈ (0, T )

ϕ
∣∣
t=0

= u,

(41)

where u ∈ R; a, λ ∈ R, g = g(t) ≥ 0. Here, in the notations of section 2, we have X = R,

Y = L2(0, T ), Yp = R, F (ϕ, λ) = −aϕ + λg, f = 0. Let us formulate the data assimilation

problem to find the initial state u and the parameter λ if we have observation data for ϕ at the

end of the time interval t = T . We will minimize the cost function

J(u, λ) = inf
w,v∈R

J(w, v), (42)

where J(u, λ) =
α

2

∣∣u− ub
∣∣2+1

2

∣∣ϕ|t=T − ϕobs

∣∣2, α > 0, and ϕ is the solution to (41).

Thus, here we have V1 = α, V2 = 0, V3 = 1, Cϕ = ϕ|t=T .

In this case F ′

ϕ(ϕ, λ) = a, F ′

λ(ϕ, λ) = g, and the optimality system (11)–(14) has the form:





dϕ

dt
+ aϕ = λg, t ∈ (0, T )

ϕ
∣∣
t=0

= u,

(43)





dϕ∗

dt
− aϕ∗ = 0, t ∈ (0, T )

ϕ∗
∣∣
t=T

= ϕobs − ϕ
∣∣
t=T

,

(44)

α(u − ub)− ϕ∗
∣∣
t=0

= 0, (45)

(g, ϕ∗) =

∫ T

0

g(t)ϕ∗(t)dt = 0. (46)

It is easy to see that the problem of data assimilation (41)–(42) has a unique solution

λ = λopt =
ϕobs − ϕ0ub

ϕ1
, u = uopt = ub, (47)

where ϕ0 = e−aT , ϕ1 =
T∫
0

e−a(T−t′)g(t′)dt′.

Indeed, if u, λ have the form (47), the solution of problem (41) satisfies ϕ|t=T = ϕobs,

and the functional J from (42) attains its minimal value J = 0. In this case ϕ∗ = 0, and the

optimality system (43)–(46) is satisfied. Also, we will see below that the Hessian of J is positive

definite, and it means the uniqueness of the solution u, λ.

Let us consider the response function in the form

G(ϕ, λ, u) =

T∫

0

ϕ(t)dt. (48)
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Let a 6= 0. After assimilation, taking into account the solution of problem (41), we have

G(ϕ, λ, u) =
uopt
a

(1− e−aT ) +
λopt
a




T∫

0

g(t)dt− ϕ1


 , (49)

where uopt, λopt are given by (47). Then, by direct differentiation of G with respect to ϕobs we

have the gradient

dG

dϕobs
=

1

aϕ1




T∫

0

g(t)dt− ϕ1


 . (50)

Let us now apply the algorithm (38)–(40) to compute the gradient of the function G. Since
∂G

∂ϕ
= 1, (F ′

ϕ(ϕ, λ))
∗ = −a, then on the first step of the algorithm, we solve the problem (38)

and get the solution

φ̃∗(t) =
1

a
(1 − e−a(T−t)). (51)

Taking into account that ∂G/∂λ = ∂G/∂u = 0 and (F ′

λ(ϕ, λ))
∗φ̃∗ = (g, φ̃∗), we get F =(

φ̃∗(0), (g, φ̃∗)
)T

, i.e., F = (f̃0, f̃)
T , where

f̃0 = φ̃∗
∣∣∣∣
t=0

, f̃ =

T∫

0

gφ̃∗dt =
1

a




T∫

0

g(t)dt− ϕ1


 . (52)

On the second step of the algorithm, one need to solve the equation HU = F with the

Hessian H defined by the formulas (30)–(32). Since all the second order derivatives of F (ϕ, λ)
equal zero, then it is easily seen that H in this case is defined by

HU =

(
αw − φ∗

∣∣
t=0

,−

∫ T

0

g(t)φ∗(t)dt

)T

, U = (w, v)T ,

where φ∗ is the solution of the adjoint problem





dφ∗

dt
− aφ∗ = 0, t ∈ (0, T )

φ∗
∣∣
t=T

= −φ
∣∣
t=T

,

(53)

and φ is the solution of the forward problem





dφ

dt
+ aφ = vg, t ∈ (0, T )

φ
∣∣
t=0

= w.

(54)

Since φ
∣∣
t=T

= wϕ0 + vϕ1 and

∫ T

0

g(t)φ∗(t)dt = −φ
∣∣
t=T

T∫

0

e−a(T−t)g(t)dt = −φ
∣∣
t=T

ϕ1,
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φ∗
∣∣
t=0

= −φ
∣∣
t=T

e−aT = −φ
∣∣
t=T

ϕ0,

we get

HU =
(
αw + ϕ2

0w + ϕ0ϕ1v, ϕ0ϕ1w + ϕ2
1v
)T
,

hence H is the 2× 2 matrix

H =

(
α+ ϕ2

0 ϕ0ϕ1

ϕ0ϕ1 ϕ2
1

)
. (55)

For α > 0, ϕ0, ϕ1 6= 0 the matrix H is positive definite, which confirms the existence and

uniqueness of the solution to problem (42).

The solution of the system HU = F has the explicit form

w = −
ϕ0f̃

αϕ1
+
f̃0
α
, v =

(α + ϕ2
0)

αϕ2
1

f̃ −
ϕ0

αϕ1
f̃0. (56)

On the third step of the algorithm, we need to solve problem (39). Since F ′

λ(ϕ, λ) = g, the

solution of this problem for t = T has the form

P2

∣∣
t=T

= wϕ0 + vϕ1 = −
ϕ2
0f̃

αϕ1
+

(α+ ϕ2
0)f̃

αϕ1
=

f̃

ϕ1
.

Finally, using (40), we get the gradient of G with respect to ϕobs:

dG

dϕobs
= CP2 = P2|t=T =

f̃

ϕ1
. (57)

From (57) and (52) we have

dG

dϕobs
=

1

aϕ1




T∫

0

g(t)dt− ϕ1


 . (58)

Thus, the gradient obtained by the algorithm (38)–(40) exactly coincides with the value of

the gradient obtained in (50) by direct differentiation, which is the expected result.

For a numerical example, we consider the problem (41)–(42) and the response functionG in

the form (48) for a = 1, g(t) = 1, α = 10−5. The exact value of the gradient dG
dϕobs

is defined by

the formula (50). Easy to see that for a = 1, g(t) = 1 it has the explicit form:

dG

dϕobs
=

T

1− e−T
− 1,

and it does not require a numerical integration. Approximate values of the gradient were ob-

tained numerically with the help of the algorithm (38)–(40), where the problems (38), (39) were

solved using the simplest explicit scheme in time. Table 1 presents for comparison the exact and

approximate values of the gradient for different lengths T of the assimilation window and for

different time steps τ . One can see from the table that for each case the gradient values obtained

by the considered algorithm coincide with the exact values of the gradient with the accuracy

10



O(τ). Besides, the gradient dG
dϕobs

rises with the increase of T , therefore, the sensitivity of the

response function with respect to observation errors is increasing, which is natural for a larger

assimilation window T .

Assimilation

window T = 1 T = 2 T = 5 T = 10 T = 100

Exact gradient 0.5819 1.313 4.034 9 99

Approximate

gradient, τ = 0.1 0.5193 1.246 3.978 8.95 98.949

Approximate

gradient, τ = 0.01 0.5815 1.302 4.027 8.995 98.997

Table 1. The experiment with different assimilation windows, α = 10−5

Parameter α α = 10−5 α = 10−2 α = 1

Exact gradient 9 9 9

Approximate

gradient 8.995 8.995 8.995

Table 2. The experiment with different parameters α, T = 10, τ = 0.01

Note that in this example, the exact gradient defined by the formula (50) does not depend on

α, however, the algorithm (38)–(40) involve α as a parameter. Table 2 shows that the resulting

approximate values of the gradient obtained by the algorithm also do not change with α.

5. Application: data assimilation problem for a sea thermodynamics model

We consider the sea thermodynamics problem in the form [35]:

Tt + (Ū ,Grad)T −Div(âT ·Grad T ) = fT in D × (t0, t1),

T = T0 for t = t0 in D,

−νT
∂T

∂z
= Q on ΓS × (t0, t1),

∂T

∂n
= 0 on Γw,c × (t0, t1),

Ū (−)
n T +

∂T

∂n
= QT on Γw,op × (t0, t1),

∂T

∂n
= 0 on ΓH × (t0, t1), (59)

where T = T (x, y, z, t) is an unknown temperature function, t ∈ (t0, t1), (x, y, z) ∈ D =
Ω × (0, H), Ω ⊂ R2, H = H(x, y) is the function of the bottom releif, Q = Q(x, y, t) is

the total heat flux, Ū = (u, v, w), âT = diag((aT )ii), (aT )11 = (aT )22 = µT , (aT )33 = νT ,

fT = fT (x, y, z, t) are given functions. The boundary of the domain Γ ≡ ∂D is represented as

11



a union of four disjoint parts ΓS , Γw,op, Γw,c, ΓH , where ΓS = Ω (the unperturbed sea surface),

Γw,op is the liquid (open) part of vertical lateral boundary, Γw,c is the solid part of the vertical

lateral boundary,ΓH is the sea bottom, Ū
(−)
n = (|Ūn|−Ūn)/2, and Ūn is the normal component

of Ū . The other notations and a detailed description of the problem statement can be found in

[36].

Problem (59) can be written in the form of an operator equation:

Tt + LT = F +BQ, t ∈ (t0, t1),

T = T0, t = t0,
(60)

where the equality is understood in the weak sense, namely,

(Tt, T̂ ) + (LT, T̂ ) = F(T̂ ) + (BQ, T̂ ) ∀T̂ ∈ W 1
2 (D), (61)

in this case L, F , B are defined by the following relations:

(LT, T̂ ) ≡

∫

D

(−TDiv(Ū T̂ ))dD +

∫

Γw,op

Ū (+)
n T T̂dΓ +

∫

D

âTGrad(T ) ·Grad(T̂ )dD,

F(T̂ ) =

∫

Γw,op

QT T̂ dΓ +

∫

D

fT T̂ dD, (Tt, T̂ ) =

∫

D

TtT̂ dD, (BQ, T̂ ) =

∫

Ω

QT̂
∣∣
z=0

dΩ,

and the functions âT , QT , fT , Q are such that equality (61) makes sense. The properties of the

operator L were studied by [36].

Due to (61), the equation (60) is considered in Y = L2(t0, t1; (W
1
2 (D))∗), and the operator

B : L2(Ω × (t0, t1)) → Y maps the function Q ∈ L2(Ω × (t0, t1)) into the function BQ ∈ Y

such that (BQ, T̂ ) =
∫
Ω

QT̂
∣∣
z=0

dΩ, ∀T̂ ∈ W 1
2 (D). Problem (59) is linear in T,Q, however,

written in the form (60), it is a particular case of the original problem (1), and all the reasoning

and the methodology presented in Sections 2-3 are easily transferred to the case of problem (60),

understood in a weak sense.

We consider the data assimilation problem for the sea surface temperature (see [36]). Suppose

that the functionsQ ∈ L2(Ω× (t0, t1)) and T0 ∈ L2(D) are unknown in problem (59). Let also

Tobs(x, y, t) ∈ L2(Ω × (t0, t1)) be the function on Ω obtained for t ∈ (t0, t1) by processing

the observation data, and this function in its physical sense is an approximation to the surface

temperature function on Ω, i.e. to T
∣∣
z=0

. We admit the case when Tobs is defined only on some

subset of Ω × (t0, t1) and denote the indicator (characteristic) function of this set by m0. For

definiteness sake, we assume that Tobs is zero outside this subset.

Consider the data assimilation problem for the surface temperature in the following form:

find T0 and Q such that





Tt + LT = F +BQ in D × (t0, t1),

T = T0, t = t0

J(T0, Q) = inf
w,v

J(w, v),

(62)
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where

J(T0, Q) =
α

2

t1∫

t0

∫

Ω

|Q−Q(0)|2dΩdt+
β

2

∫

D

|T0−T
(0)|2dD+

1

2

t1∫

t0

∫

Ω

m0|T
∣∣
z=0

−Tobs|
2dΩdt,

(63)

and Q(0) = Q(0)(x, y, t), T (0) = T (0)(x, y, z) are given functions, α, β = const > 0.

Lemma 2. For α, β > 0 the variational data assimilation problem (62) has a unique solution.

Proof. Let T n
0 , Q

n be a sequence minimizing J(T0, Q), i.e. J(T n
0 , Q

n) → inf
T0,Q

J(T0, Q),

n→ ∞. Since

J(T0, Q) ≥
α

2

t1∫

t0

∫

Ω

|Q−Q(0)|2dΩdt+
β

2

∫

D

|T0−T
(0)|2dD, ∀T0 ∈ L2(D), Q ∈ L2(Ω×(t0, t1)),

then, for α, β > 0, the sequence T n
0 , Q

n is bounded: ‖T n
0 ‖L2(D) ≤ const, ‖Qn‖L2(Ω×(t0,t1)) ≤

const. Hence, there exists a weakly convergent subsequence (we denote it also by T n
0 , Q

n).

The Hilbert spaces L2(D) and L2(Ω × (t0, t1)) are weakly closed, therefore, there exist ele-

ments T0 ∈ L2(D), Q ∈ L2(Ω × (t0, t1)) such that T n
0 → T0 weakly in L2(D), and Qn →

Q weakly in L2(Ω × (t0, t1)), i.e. (T n
0 , p)L2(D) → (T0, p)L2(D), (Qn, q)L2(Ω×(t0,t1)) →

(Q, q)L2(Ω×(t0,t1))∀p ∈ L2(D), q ∈ L2(Ω× (t0, t1)). Let T n and T be the solutions of problem

(60) for T n
0 , Q

n and T0, Q, respectively. Then, for the difference we have

(T n − T )t + L(T n − T ) = B(Qn −Q), t ∈ (t0, t1),

T n − T = T n
0 − T0, t = t0.

(64)

The solution to problem (64) continuously depends on the initial value T n
0 − T0 and the flux

Qn − Q (a priori estimates are valid in the corresponding functional spaces) [1], therefore,

T n → T weakly in Y , and T n|z=0 → T |z=0 weakly in L2(Ω× (t0, t1)). The functional S(·) =
‖ · ‖2 is known [1] to be lower semi-continuous in the weak topology, then lim inf J(T n

0 , Q
n) ≥

J(T0, Q), and, therefore, inf
w,v

J(w, v) ≥ J(T0, Q).Hence, inf
w,v

J(w, v) = J(T0, Q), that is, T0, Q

gets the minimum to the functional J . This proves the lemma.

The optimality system determining the solution of the formulated variational data assimila-

tion problem according to the necessary condition gradJ = 0 has the form:

Tt + LT = F +BQ in D × (t0, t1),

T = T0, t = t0,
(65)

−(T ∗)t + L∗T ∗ = Bm0(Tobs − T ) in D × (t0, t1),

T ∗ = 0, t = t1,
(66)

α(Q −Q(0))− T ∗ = 0 on Ω× (t0, t1), (67)

β(T0 − T (0))− T ∗
∣∣
t=0

= 0 in D, (68)

where L∗ is the operator adjoint to L.
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Here the boundary-value function Q plays the role of λ from Section 2, ϕ = T , the operator

F has the form F (T,Q) = −LT +BQ, and F ′

T = −L, F ′

Q = B. Since the operator F (T,Q) is

linear in this case and F ′′

TT = F ′′

QQ = F ′′

QT = 0, the Hessian H acting on some U = (w,ψ)T ,

w ∈ L2(D), ψ ∈ L2(Ω×(t0, t1)) is defined by the successive solution of the following problems:

{
∂φ
∂t

+ Lφ = Bψ, t ∈ (t0, t1)

φ
∣∣
t=t0

= w,
(69)

{
−
∂φ∗

∂t
+ L∗φ∗ = −Bm0φ, t ∈ (t0, t1)

φ∗
∣∣
t=t1

= 0,
(70)

HU = (βw − φ∗
∣∣
t=0

, αψ −B∗φ∗)T . (71)

To illustrate the above-presented theory, we consider the problem of sensitivity of functionals

of the optimal solution Q to the observations Tobs. Let us introduce the following response

function:

G(T ) =

t1∫

t0

dt

∫

Ω

k(x, y, t)T (x, y, 0, t)dΩ, (72)

where k(x, y, t) is a weight function related to the temperature field on the sea surface z = 0.

For example, if we are interested in the mean temperature of a specific region of the sea ω for

z = 0 in the interval t̄− τ ≤ t ≤ t̄, then as k we take the function

k(x, y, t) =

{
1
/
(τmes ω) if (x, y) ∈ ω, t̄− τ ≤ t ≤ t̄

0 else,
(73)

where mes ω denotes the area of the region ω. Thus, the functional (72) is written in the form:

G(T ) =
1

τ

t̄∫

t̄−τ

dt

(
1

mes ω

∫

ω

T (x, y, 0, t)dΩ

)
. (74)

Formula (74) represents the mean temperature averaged over the time interval t̄− τ ≤ t ≤ t̄ for

a given region ω. The response functions of this type are of most interest in the theory of climate

change ([37], [38]).

In our notations the functional (72) may be written as

G(T ) =

t1∫

t0

(Bk, T )dt = (Bk, T )Y , Y = L2(D × (t0, t1)).

We are interested in the sensitivity of the response function G(T ), obtained for T after data

assimilation, with respect to the observation function Tobs.

By definition, the sensitivity is given by the gradient of G with respect to Tobs:

dG

dTobs
=
∂G

∂T

∂T

∂Tobs
. (75)
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Since ∂G
∂T

= Bk, then according to the theory presented in Section 5, to compute the gradient

(75) we need to perform the following steps:

1) For k defined by (73) solve the adjoint problem





−
∂φ̃∗

∂t
+ L∗φ̃∗ = Bk, t ∈ (t0, t1)

φ̃∗
∣∣
t=t1

= 0
(76)

and put Φ = (φ̃∗
∣∣
t=0

, B∗φ̃∗)T .

2) Find U = (w, v)T by solving HU = Φ with the Hessian defined by (69)–(71).

3) Solve the direct problem

{
∂P2
∂t

+ LP2 = Bv, t ∈ (t0, t1)

P2

∣∣
t=t0

= w.
(77)

4) Compute the gradient of the response function as

dG

dTobs
= m0P2

∣∣
z=0

. (78)

The last formula allows us to estimate the sensitivity of the functionals related to the mean

temperature after data assimilation, with respect to the observations on the sea surface.

For numerical experiments have used the three-dimensional numerical model of the Baltic

Sea hydrothermodynamics developed at the INM RAS on the base of the splitting method [39]

and supplied with the assimilation procedure [36] for the surface temperature Tobs with the aim

to reconstruct the heat fluxes Q and the initial state T0.

The parameters of the considered domain of the Baltic Sea and its geographic coordinates can

be described as follows: σ-grid is 336×394×25 (the latitude, longitude, and depth, respectively).

The first point of the ”grid C” [39] has the coordinates 9.406◦ E and 53.64◦ N. The mesh sizes in

x and y are constant and equal to 0.0625 and 0.03125 degrees. The time step is ∆t = 5 minutes.

The assimilation procedure worked only during some time windows. To start the assimilation

procedure, the function T (0) was taken as a model forecast for the previous time interval.

The Baltic Sea daily-averaged nighttime surface temperature data were used for Tobs. These

are the data of the Danish Meteorological Institute based on measurements of radiometers (AVHRR,

AATSR and AMSRE) and spectroradiometers (SEVIRI and MODIS) [40]. Data interpolation al-

gorithms were used [41] to convert observations on computational grid of the numerical model

of the Baltic Sea thermodynamics. The mean climatic flux obtained from the NCEP (National

Center for Environmental Prediction) reanalysis was taken for Q(0).
Using the hydrothermodynamics model mentioned above, which is supplied with the assim-

ilation procedure for the surface temperature Tobs, we have performed calculations for the Baltic

Sea area where the assimilation algorithm worked only at certain time moments t0; in this case

t1 = t0+∆t. The aim of the experiment was the numerical study of the sensitivity of functionals

of the optimal solution Q, T0 to observation errors in the interval (t0, t1).
We use the discretize-then-optimize approach, and for numerical experiments all the pre-

sented equations are understood in a discrete form, as finite-dimensional analogues of the corre-

sponding problems, obtained after approximation. This allows us to consider model equations as

a perfect model, with no approximation errors.

Let us present some results of numerical experiments.
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The calculation results for t0 = 41 hours 40 minutes (500 time steps for the model) are pre-

sented in Fig.1 showing the gradient of the response functionG(T ) defined by (74) and related to

the mean temperature after data assimilation, with respect to the observations on the sea surface,

according to (76)– (78). Here ω = Ω, τ = ∆t, t̄ = t1, α = β = 10−5.

Figure 1: The gradient of the response function G(T )

We can see the sub-areas (in red) in which the response function G(T ) is most sensitive to

errors in the observations during assimilation. The largest values of the gradient of G(T ) corre-

spond to the points x, y lying near the boundary of the domain. This result is confirmed by the

direct computation of the response function G(T ) according to (74) obtained after assimilation,

by introducing perturbations into the observation data Tobs.

The above studies allow to determine the sea sub-areas in which the response function related

to the optimal solution is most sensitive to errors in the observations during variational data

assimilation.

6. Conclusions

Numerical algorithms are considered to study the sensitivity of functionals of the optimal

solution of variational data assimilation problem aimed at the reconstruction of unknown param-

eters and initial state of the model. The optimal solution obtained as a result of assimilation

depends on the observations that may contain uncertainties. Computing the gradient of the func-

tionals with respect to observations reduces to the solution of a non-standard problem which

is a coupled system involving direct and adjoint equations with mutually dependent variables.

Solvability of the non-standard problem is related to the properties of the Hessian of the original

cost function. An algorithm to compute the gradient of the response function is developed. Nu-

merical example for variational data assimilation problem related to sea surface temperature for

the Baltic Sea thermodynamics model demonstrates the result of the gradient computation of the

response function associated with the mean surface temperature. The presented algorithm may

be used to determine the sea sub-areas in which the response functions of the optimal solution

are most sensitive to errors in the observations during variational data assimilation.
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Appendix: Proof of Theorem 1

Consider the system of perturbations (16)–(19). We have here 4 problems and 4 unknowns

δu, δλ, δϕ, δϕ∗. The function δϕobs is included in the right-hand side of (17), therefore, all

the unknowns δu, δλ, δϕ, δϕ∗ will depend on δϕobs. The expression (20) involves δϕobs in the

left-hand side, and we would like to represent the right-hand side of (20) through δϕobs also, to

obtain the explicit formula for the gradient dG
dϕobs

. Let us introduce four adjoint variablesP1 ∈ Y ,

P2 ∈ Y , P3 ∈ Yp and P4 ∈ X . By taking the inner product of (16) by P1, (17) by P2, (19) by

P3 and of (18) by P4 and adding them, we get:

(
∂δϕ

∂t
−F ′

ϕ(ϕ, λ)δϕ−F
′

λ(ϕ, λ)δλ, P1

)

Y

+

(
−
∂δϕ∗

∂t
−(F ′

ϕ(ϕ, λ))
∗δϕ∗−(F ′′

ϕϕ(ϕ, λ)δϕ)
∗ϕ∗−

−(F ′′

ϕλ(ϕ, λ)δλ)
∗ϕ∗ + C∗V3(Cδϕ− δϕobs), P2

)

Y

+

(
V2δλ− (F ′′

λϕ(ϕ, λ)δϕ)
∗ϕ∗−

−(F ′′

λλ(ϕ, λ)δλ)
∗ϕ∗ − (F ′

λ(ϕ, λ))
∗δϕ∗, P3

)

Yp

+

(
V1δu− δϕ∗

∣∣
t=0

, P4

)

X

= 0.

Using integration by parts and adjoint operators, we obtain

(
δϕ,−

∂P1

∂t
− (F ′

ϕ(ϕ, λ))
∗P1 − (F ′′

ϕϕ(ϕ, λ)P2)
∗ϕ∗ − (F ′′

λϕ(ϕ, λ)P3)
∗ϕ∗ + C∗V3CP2

)

Y

+

+

(
δϕ
∣∣
t=T

, P1

∣∣
t=T

)

X

−

(
δu, P1

∣∣
t=0

)

X

+

(
δϕ∗,

∂P2

∂t
− F ′

ϕ(ϕ, λ)P2 − F ′

λ(ϕ, λ)P3

)

Y

+

+

(
δϕ∗

∣∣
t=0

, P2

∣∣
t=0

)

X

+

(
δλ, V2P3−(F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗−(F ′′

λλ(ϕ, λ)P3)
∗ϕ∗−(F ′

λ(ϕ, λ))
∗P1

)

Yp

−

(
δϕobs, V3CP2

)

Yobs

+

(
δu, V1P4

)

X

−

(
δϕ∗

∣∣
t=0

, P4

)

X

= 0. (79)

Hence,

(
−
∂P1

∂t
− (F ′

ϕ(ϕ, λ))
∗P1 − (F ′′

ϕϕ(ϕ, λ)P2)
∗ϕ∗ − (F ′′

λϕ(ϕ, λ)P3)
∗ϕ∗ + C∗V3CP2, δϕ

)

Y

+

+

(
V2P3 − (F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗ − (F ′′

λλ(ϕ, λ)P3)
∗ϕ∗ − (F ′

λ(ϕ, λ))
∗P1, δλ

)

Yp

+

+

(
V1P4−P1|t=0, δu

)

X

+

(
P1

∣∣
t=T

, δϕ
∣∣
t=T

)

X

+

(
∂P2

∂t
−F ′

ϕ(ϕ, λ)P2−F
′

λ(ϕ, λ)P3, δϕ
∗

)

Y

+
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+

(
P2

∣∣
t=0

−P4, δϕ
∗
∣∣
t=0

)

X

=

(
V3CP2, δϕobs

)

Yobs

. (80)

We would like the first three summands in the left-hand side of (80) be equal to the rihgt-hand

side of (20), keeping the others summands to be zero, therefore, we put

−
∂P1

∂t
− (F ′

ϕ(ϕ, λ))
∗P1 − (F ′′

ϕϕ(ϕ, λ)P2)
∗ϕ∗ − (F ′′

λϕ(ϕ, λ)P3)
∗ϕ∗ + C∗V3CP2 =

∂G

∂ϕ
,

V1P4 − P1

∣∣
t=0

=
∂G

∂u
,

and

V2P3 − (F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗ − (F ′′

λλ(ϕ, λ)P3)
∗ϕ∗ − (F ′

λ(ϕ, λ))
∗P1 =

∂G

∂λ
, P1

∣∣
t=T

= 0,

∂P2

∂t
− F ′

ϕ(ϕ, λ)P2 − F ′

λ(ϕ, λ)P3 = 0, P2

∣∣
t=0

−P4 = 0.

Thus, if P1, P2, P3, P4 are the solutions of (21)–(24), we get from from (80):

(
∂G

∂ϕ
, δϕ

)

Y

+

(
∂G

∂λ
, δλ

)

Yp

+

(
∂G

∂u
, δu

)

X

=

(
V3CP2, δϕobs

)

Yobs

,

and due to (20) the gradient of G is given by (25). The theorem is proved.
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