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Abstract We give the first practical instance – bison – of the Whitened
Swap-Or-Not construction. After clarifying inherent limitations of the
construction, we point out that this way of building block ciphers allows
easy and very strong arguments against differential attacks.
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1 Introduction

Block ciphers are among the most important cryptographic primitives as they
are at the core responsible for a large fraction of all our data that is encrypted.
Depending on the mode of operation (or used construction), a block cipher can
be turned into an encryption function, a hash-function, a message authentication
code or an authenticated encryption function.

Due to their importance, it is not surprising that block ciphers are also among
the best understood primitives. In particular the Advanced Encryption Stan-
dard (AES) [2] has been scrutinized by cryptanalysts ever since its development
in 1998 [19] without any significant security threat discovered for the full cipher
(see e. g. [27,26,7,6,23,28,29]).

The overall structure of AES, being built on several (round)-permutations
interleaved with a (binary) addition of round keys is often referred to as key-
alternating cipher and is depicted in Fig. 1.

The first cipher following this approach was, to the best of our knowledge,
the cipher MMB [17], while the name key-alternating cipher first appears in [20]
and in the book describing the design of the AES [21]. Nowadays many secure
ciphers follow this construction.

Interestingly, besides its overwhelming use in practice and the intense cryptan-
alytic efforts spent to understand its practical security, the generic (or idealized)
security of key-alternating ciphers has not been investigated until 2012. Here,
generic or idealized security refers to the setting where the round functions Ri
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are modeled as random permutations. An (computational unbounded) attacker
is given access to those round functions via oracle queries and additional oracle
access to either the block cipher or a random permutation. The goal of the
attacker is to tell apart those two cases. As any attack in this setting is obviously
independent of any particular structure of the round function, those attacks are
generic for all key-alternating ciphers. In this setting, the construction behind
key-alternating ciphers is referred to as the iterated Even-Mansour construction.
Indeed, the Even-Mansour cipher [25] can be seen as a one-round version of the
key-alternating cipher where the round function is a random permutation.

The first result on the iterated Even-Mansour construction (basically focusing
on the two-round version) was given in [10]. Since then, quite a lot of follow-
up papers, e. g. [32,3,38,30], managed to improve and generalize this initial
result significantly. In particular, [15] managed to give a tight security bound
for any number of rounds. Informally, for breaking the r-round Even-Mansour
construction, any attacker needs to make roughly 2

r
r+1n oracle queries.

While this bound can be proven tight for the iterated Even-Mansour con-
struction, it is unsatisfactory for two reasons. First, one might hope to get better
security bounds with different constructions and second one might hope to lower
the requirement of relying on r random permutations.

Motivated by this theoretical defect and the importance of encrypting small
domains with full security (see e. g. [42]), researchers started to investigate
alternative ways to construct block ciphers with the highest possible security level
under minimal assumptions in ideal models. The most interesting result along
those lines is the construction by Tessaro [48]. His construction is based on the
Swap-or-Not construction by [31], which was designed for the setting where the
component functions are secret. Instead of being based on random permutations,
this construction requires only a set of random (Boolean) functions. Tessaro’s
construction, coined Whitened Swap-Or-Not (WSN for short), requires only two
public random (Boolean) functions fi with n-bit input, and can be proven to
achieve full security, see Section 2 for more details.

However, and this is the main motivation for our work, no instance of this
construction is known. This situation is in sharp contrast to the case of the
iterated Even-Mansour construction, where many secure instances are known for
a long time already, as discussed above.

Without such a concrete instance, the framework of [48] remains of no avail.
As soon as one wants to use the framework in any way, one fundamentally has to

m R1
. . . Rr c

k0 k1 kr−1 kr

Figure 1: Key-alternating construction for r rounds, using unkeyed round per-
mutations R1 to Rr. In practical instantiations, the round keys ki are typically
derived from a master key by some key schedule.
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instantiate the Boolean functions modeled as ideal functionalities by efficiently
computable functions. Clearly, the above mentioned bound in the ideal model
does not say anything about any concrete instance. Tessaro phrases this situation
as follows:

Heuristically, however, one hopes for even more: Namely, that under a
careful implementation of the underlying component, the construction
retains the promised security level. [48]

There has actually been one instance of the previous construction [31], but this
has been broken almost instantaneously and completely, as parts of the encryption
function were actually linear, see [52]. This failure to securely instantiate the
construction points to an important hurdle. Namely, proving the generic bounds
and analyzing the security of an instance are technically very different tasks. The
security of any block cipher is, with the current state of knowledge, always the
security against known attacks. In particular, when designing any concrete block
cipher, one has to argue why linear and differential attacks do not threaten the
construction.

Our Contribution

Consequently, in this paper we investigate the important, but so far overlooked,
aspect of instantiating the WSN construction with a practical secure instance.
Practical secure meaning, just like in the case of AES, that the block cipher
resists all known attacks. We denote this instance as bison (for Bent whItened
Swap Or Not). Our insights presented here are twofold.

First, we derive some inherent restrictions on the choice of the round function
fi. In a nutshell, we show that fi has to be rather strong, in the sense that its
output bit has to basically depend on all input bits. Moreover, we show that using
less than n rounds will always result in an insecure construction. Those, from a
cryptanalytic perspective rather obvious, results are presented in Section 3. Again,
but from a different angle, this situation is in sharp contrast to key-alternating
ciphers. In the case of key-alternating ciphers, even with a rather small number
of rounds (e. g. ten in the case of AES-128) and rather weak round functions (in
case of the AES round function any output bit depends on 32 input bits only
and the whole round function decomposes into four parallel functions on 32 bits
each) we get ciphers that provide, to the best of our knowledge today and after
a significant amount of cryptanalysis, full security.

Second, despite those restrictions of the WSN construction, that have signifi-
cant impact on the performance of any instance, there are very positive aspects
of the WSN construction as well. In Section 4, we first define a family of WSN
instances which fulfill our initial restrictions.

As we will show in detail, this allows to argue very convincingly that our
instance is secure against differential attacks. Indeed, under standard assumptions,
we can show that the probability of any (non-trivial) differential is upper bounded
by 2−n+1 where n is the block size, a value that is close to the ideal case. This
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significantly improves upon what is the state of the art for key-alternating ciphers.
Deriving useful bounds on differentials is notoriously hard and normally one
therefore has to restrict to bounding the probability of differential characteristics
only. Our results for differential cryptanalysis can be of independent interest in
the analysis of maximally unbalanced Feistel networks or nonlinear feedback shift
registers.

We specify our concrete instance as a family of block ciphers for varying input
length in Section 5. In our instance, we attach importance to simplicity and
mathematical clarity. It is making use of bent functions, i. e. maximally non-linear
Boolean functions, for instantiating f and linear feedback shift registers (lfsrs)
for generating the round keys. Another advantage of bison is that it defines a
whole family of block ciphers, one for any odd block size. In particular it allows
the straightforward definition of small scale variants to be used for experiments.

Finally we discuss various other attacks and argue why they do not pose a
threat for bison in Section 6. Particularly the discussion on algebraic attacks
might be of independent interest. For this we analyse the growth of the algebraic
degree over the rounds. In contrast to what we intuitively expect – an exponential
growth (until a certain threshold) as in the case for SPNs [11] – the degree of
the WSN construction grows linearly in the degree of the round function fi.
This result can also be applied in the analysis of maximally unbalanced Feistel
networks or nonlinear feedback shift registers.

Related Work

The first cipher, a Feistel structure, that allowed similarly strong arguments
against differential attacks was presented by Nyberg and Knudsen [45], see
also [44] for a nice survey on the topic. This cipher was named CRADIC, as
Cipher Resistant Against DIfferential Cryptanalysis but is often simply referenced
as the KN cipher. However, the cipher has been broken quickly afterwards, with
the invention of interpolation attacks [34]. Another, technically very different
approach to get strong results on resistance against attacks we would like to
mention is the decorrelation theory [51]. Interestingly, both previous approaches
rely rather on one strong component, i. e. round function, to ensure security,
while the WSN approach, and in particular bison, gains its resistance against
differential attacks step by step.

Regarding the analysis of differentials, extensive efforts have been expended
to evaluate the MEDP/MELP of SPN ciphers, and in particular of the AES.
Some remarkable results were published by [46] and then subsequently improved
by [35] with a sophisticated pruning algorithm. Interestingly, further work by [22]
and later by [13] revealed that such bounds are not invariant under affine trans-
formations – an equivalence notion often exploited for classification of S-boxes
when studying their strength against differential cryptanalysis. All these works
stress out how difficult it is to evaluate the MEDP/MELP of SPNs, even for a
small number of rounds. On the contrary, and as we are going to elaborate in the
remaining of this paper, computing the MEDP of bison is rather straightforward
and independent of the exact details of the components. This can be compared to
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Figure 2: Schematic view of the WSN construction.

the wide trail strategy that, making use of the branch number and the superbox
argument, allows bounding the probability of any differential characteristic for a
large class of SPNs. Our arguments allow to bound the differential probability
for a large class of WSN instances.

2 Preliminaries

We briefly recall the Whitened Swap-or-Not construction, recapitulate properties
of Boolean functions and shortly cover differential and linear cryptanalysis. We
denote by F2 the finite field with two elements and by Fn2 the n-dimensional
vector space over F2, i. e. the set of all n-bit vectors with a bitwise xor as the
addition.

2.1 Whitened Swap-or-Not

The WSN is defined as follows. Given two round keys ki, wi, the ith round Rki,wi
computes

Rki,wi : Fn2 → Fn2
Rki,wi(x) := x+ fb(i)(wi +max {x, x+ ki}) · ki

where f0,1 : Fn2 → F2 are modeled as two ideal random functions, the max
function returns the lexicographic biggest value in the input set, and + denotes
the addition in F2 (the bitwise xor). The index b(i) equals zero for the first half
of the rounds and one for the second half (see Fig. 2 for a graphical overview of
the encryption process).

In the remainder of the paper, we denote by Erk,w(x) the application of r
rounds of the construction to the input x with round keys ki and wi derived from
the master key (k,w). Every round is involutory, thus for decryption one only
has to reverse the order of the round keys.

Note that the usage of the maximum function is not decisive but that it can
be replaced by any function Φk that returns a unique representative of the set
{x, x+ k}, see [48]. In other words it can be replaced by any function such that
Φk(x) = Φk(y) if and only if y ∈ {x, x+ k}.

The main result given by Tessaro on the security of the WSN is the following:
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Proposition 1 (Security of the WSN (Informal) [48]). The WSN con-
struction is (2n−O(logn), 2n−O(1))-secure for O(n) rounds.

Thus, any adversary trying to distinguish the WSN construction from a
random permutation and making at most 2n−O(logn) queries to the block cipher
and 2n−O(1) queries to the underlying function has negligible advantage. Here,
the round keys are modeled as independent and uniformly distributed random
variables.

2.2 Boolean Functions

A Boolean function is defined as a function f mapping n bits to one bit. Any
Boolean function

f : Fn2 → F2

can be uniquely expressed by its algebraic normal form (ANF), i.e. as a (reduced)
multivariate polynomial with n variables x0, . . . , xn−1. For u ∈ Fn2 we denote

xu =

n−1∏
i=0

xuii .

The ANF of f can be expressed as

f(x) =
∑
u∈Fn2

λux
u

for suitable choices of λu ∈ F2. The degree of f , denoted by deg(f) is defined as
the maximal weight of a monomial present in the ANF of f . That is

deg(f) = max{wt(u) | u ∈ Fn2 such that λu 6= 0}.

In the context of symmetric cryptography, the differential and linear behavior
of a Boolean function play an important role.

The derivative of a function f in direction α is defined as ∆α(f)(x) :=
f(x) + f(x + α). Informally, studying the behavior of this derivative is at the
core of differential cryptanalysis. If we generalize to the derivative of a vectorial
Boolean function F : Fn2 → Fn2 , we can additionally specify an output difference β.
The differential distribution table (ddt) captures the distribution of all possible
derivatives; its entries are

ddtF [α, β] := |{x ∈ Fn2 | ∆α(F )(x) = β}|,

where we leave out the subscript, if it is clear from the context. Note that α is
usually referred to as the input difference and β as the output difference.

In a similar way, we can approach the linear behavior of a Boolean function,
that is its similarity to any linear function. The Fourier coefficient of a function
f : Fn2 → F2, which is defined as

f̂(α) :=
∑
x∈Fn2

(−1)〈α,x〉+f(x),
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is a very useful way to measure this similarity. Here, the notation 〈a, b〉 denotes
the inner product, defined as 〈a, b〉 :=∑n

i=1 aibi. Recall that any affine Boolean
function can be written as x 7→ 〈α, x〉+ c for some fixed α ∈ Fn2 and a constant
c ∈ F2. In particular, it follows that any such affine function has one Fourier
coefficient equal to ±2n. More generally, the nonlinearity of f , defined as NL(f) :=
2n −maxα |f̂(α)|, measures the minimal Hamming-distance of f to the set of all
affine functions.

Analogously to the ddt, for a vectorial Boolean function F : Fn2 → Fn2 , we
define

F̂ (α, β) =
∑
x∈Fn2

(−1)〈α,x〉+〈β,F (x)〉
,

and the linear approximation table (lat) contains the Fourier coefficients

latF [α, β] := F̂ (α, β).

Again we leave out the subscript, if it is clear from the context. Here α is usually
referred to as the input mask and β as the output mask. Another representation
that is sometimes preferred is the correlation matrix that in a similar way
contains the correlation values for all possible linear approximations, see [18].
The correlation values are simply scaled versions of the Fourier coefficients, i. e.

Pr [〈α, x〉+ 〈β, F (x)〉 = 0] =
1

2
+

corF (α, β)

2
=

1

2
+
F̂ (α, β)

2n+1
.

The advantage of the correlation matrix notation is that the correlation matrix
of a composition of functions is nothing but the product of the corresponding
matrices. For the linear approximation table, additional scaling is required.

Bent Functions. As they will play an important role in our design of bison,
we recall the basic facts of bent functions. Boolean functions on an even number
n of input bits that achieve the highest possible nonlinearity of 2n − 2

n
2 are

called bent. Bent functions have been introduced by Rothaus [47] and studied
ever since, see also [14, Section 8.6]. Even so bent functions achieve the highest
possible nonlinearity, their direct use in symmetric cryptography is so far very
limited. This is mainly due to the fact that bent functions are not balanced, i. e.
the distribution of zeros and ones is (slightly) biased.

Using Parseval’s equality, it is easy to see that a function is bent if and only
if all its Fourier coefficients are ±2n2 . Moreover, an alternative classification that
will be of importance for bison, is that a function is bent if and only if all
(non-trivial) derivatives ∆α(f) are balanced Boolean functions [41].

While there are many different primary and secondary constructions3 of bent
functions known, for simplicity and for the sake of ease of implementation, we
decided to focus on the simplest known bent functions which we recall next, see
also [14, Section 6.2].
3 Primary constructions give bent functions from scratch, while secondary constructions
build new bent functions from previously defined ones.
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Lemma 1 ([24]). Let n = 2m be an even integer. The function

f : Fm2 × Fm2 → F2

f(x, y) := 〈x, y〉

is a quadratic bent function. Moreover, any quadratic bent function is affine
equivalent to f .

2.3 Differential and Linear Cryptanalysis

The two most important attacks on symmetric primitives are differential and
linear cryptanalysis, respectively developed by Biham and Shamir [5] and by
Matsui [40] for the analysis of the Data Encryption Standard. The general idea
for both is to find a non-random characteristic in the differential, resp. linear,
behavior of the scheme under inspection. Such a property can then be used as a
distinguisher between the cipher and a random permutation and in many cases
leads to key-recovery attacks.

It is inherently hard to compute these properties for the whole function, thus
one typically exploits the special structure of the cipher. For round-based block
ciphers one usually makes use of linear and differential characteristics that specify
not only the input and output masks (resp. differences) but also all intermediate
masks after the single rounds.

In the case of differential cryptanalysis, an r-round characteristic δ is defined
by (r + 1) differences

δ = (δ0, . . . , δr) ∈ F(r+1)n
2 .

For so-called Markov ciphers and assuming the independence of round keys,
we can compute the probability of a characteristic averaged over all round-key
sequences:

EP(δ) =

r−1∏
i=0

Pr [F (x) + F (x+ δi) = δi+1] =

r−1∏
i=0

ddtF [δi, δi+1]

2n
,

where the encryption iterates the round function F for r rounds. Moreover
we usually assume the hypothesis of stochastic equivalence introduced by Lai
et al. [37], stating that the actual probability for any fixed round key equals the
average.

In contrast to the normal characteristic that defines the exact differences
before and after each round, a differential takes every possible intermediate
differences into account and fixes only the overall input and output differences
(which are the two values an attacker can typically control).

However, while bounding the average probability of a differential characteristic
is easily possible for many ciphers (using in particular the wide-trail strategy
introduced in [16]), bounding the average probability of a differential, which is
denoted as the expected differential probability (EDP), is not. Nevertheless, some
effort was spent to prove bounds on the maximum EDP (MEDP) for two rounds
of some key-alternating ciphers [21,33,46,13].
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Similarly, for linear cryptanalysis, an r-round characteristic (also called trail
or path) for a round function F is defined by (r + 1) masks

θ = (θ0, . . . , θr) ∈ F(r+1)n
2

and its correlation is defined as

corF (θ) :=

r−1∏
i=0

corF (θi, θi+1) =

r−1∏
i=0

F̂ (θi, θi+1)

2n

and it can be shown that the correlation of a composition can be computed as
the sum over the trail correlations. More precisely,

corErk(α, β) =
∑
θ

θ0=α,θr=β

corF (θ), (1)

where the encryption Erk iterates the round function F for r rounds.
This is referred to as the linear hull (see [43]). While not visible in order

to simplify notation, the terms in Eq. (1) are actually key dependent and thus
for some keys they either could cancel out or amplify the overall correlation.
For more background, we refer to e. g. [9] and [36]. For a key-alternating cipher
with independent round keys, the average over all round-key sequences of the
correlation corErk(α, β) is zero for any pair of nonzero masks (α, β) (see e.g. [21,
Section 7.9]). Then, the most relevant parameter of the distribution is its variance,
which corresponds to the average square correlation, and is called the expected
linear potential. Again, bounding the ELP is out of reach for virtually any practical
cipher, while for bounding the correlation of a single trail, one can again use the
wide-trail strategy mentioned above. Upper bounds for the MELP of two rounds
of AES are also given in [33,46,13].

Finally we would like to note that the round keys in an actual block cipher
instance are basically never independent and identically distributed over the
full key space, but instead derived from a key schedule, rendering the above
assumption plain wrong. While the influence of key schedules is a crucially
understudied topic and for specific instances strange effects can occur, see [1,36],
the above assumption are seen as valid heuristics for most block ciphers.

3 Inherent Restrictions

In this section we point out two inherent restrictions on any practical secure
instance, i. e. generic for the WSN construction. Those restrictions result in
general conditions on both the minimal number of rounds to be used and general
properties of the round functions fb(i). In particular, those insights are taken into
account for bison. While these restrictions are rather obvious from a cryptanalytic
point of view, they have a severe impact on the performance of any concrete
instance. We discuss performance in more detail in the full version [12, Section 7].
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3.1 Number of Rounds

As in every round of the cipher, we simply add (or not) the current round key
ki, the ciphertext can always be expressed as the addition of the plaintext and
a (message dependent) linear combination of all round keys ki. The simple but
important observation to be made here is that, as long as the round keys do not
span the full space, the block cipher is easily attackable.

Phrased in terms of linear cryptanalysis we start with the following lemma.

Lemma 2. For any number of rounds r < n there exists an element u ∈ Fn2 \{0}
such that

Êrk,w(u, u) = 2n,

that is the equation
〈u, x〉 =

〈
u,Erk,w(x)

〉
holds for all x ∈ Fn2 .

Proof. Let k1, . . . , kr be the round keys derived from k and denote by

U = span {k1, . . . , kr}⊥

the dual space of the space spanned by the round keys, i. e.

∀u ∈ U,∀1 6 i 6 r it holds that 〈u, ki〉 = 0.

As r < n by assumption, the dimension of span {k1, . . . , kr} is smaller than n
and thus U 6= {0}. Therefore, U contains a non-zero element

u ∈ span {k1, . . . , kr}⊥

and it holds that〈
u,Erk,w(x)

〉
= 〈u, x+

r∑
i=1

λiki〉 = 〈u, x〉+ 〈u,
r∑
i=1

λiki〉 = 〈u, x〉. (2)

Even more importantly, this observation leads directly to a known plaintext
attack with very low data-complexity. Given a set of t plaintext/ciphertext (pi, ci)
pairs, an attacker simply computes

V = span {pi + ci | 1 6 i 6 t} ⊆ span {kj | 1 6 j 6 r}.

Given t > r slightly more pairs than rounds, and assuming that pi+ci is uniformly
distributed in span {kj} (otherwise the attack only gets even stronger)4 implies
that

V = span {kj}
4 E. g. if, with high probability, the pi + ci do not depend on one or more kj ’s, the
described attack can be extended to one or more rounds with high probability.
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with high probability and V can be efficiently computed. Furthermore, as above
dim(span {kj}) is at most r, we have V ⊥ 6= {0}. Given any u 6= 0 in V ⊥ allows
to compute one bit of information on the plaintext given only the ciphertext
and particularly distinguish the cipher from a random permutation in a chosen-
plaintext setting efficiently.

A similar argument shows the following:

Lemma 3. For any number of rounds r smaller than 2n− 3 there exist nonzero
α and β, such that

Êrk,w(α, β) = 0

Proof. We restrict to the case r > n as otherwise the statement follows directly
from the lemma above. Indeed, from Parseval equality, the fact that Êrk,w(α, α) =

2n implies that Êrk,w(α, β) = 0 for all β 6= α. Let k1, . . . , kr be the round keys
derived from k and choose non-zero elements α 6= β such that

α ∈ span {k1, . . . , kn−2}⊥ and β ∈ span {kn−1, . . . , kr}⊥.

Note that, as r ≤ 2n − 3 by assumption such elements always exist. Next, we
split the encryption function in two parts, the first n − 2 rounds E1 and the
remaining r − (n− 2) < n rounds E2, i.e.

Erk,w = E2 ◦ E1.

We can compute the Fourier coefficient of Erk,w as

Êrk,w(α, β) =
∑
γ∈Fn2

Ê1(α, γ)

2n
· Ê2(γ, β)

2n
.

Now, the above lemma and the choices of α and β imply that Ê1(α, γ) = 0

for γ 6= α and Ê2(γ, β) = 0 for γ 6= β. Recalling that α 6= β by construction
concludes the proof.

However, as the masks α and β depend on the key, and unlike above there
does not seem to be an efficient way to compute those, we do not see a direct
way to use this observation for an attack.

Summarizing the observations above, we get the following conclusion:

Rationale 1. Any practical instance must iterate at least n rounds. Furthermore,
it is beneficial if any set of n consecutive round keys are linearly independent.5

After having derived basic bounds on the number of rounds for any secure
instance, we move on to criteria on the round function itself.

5 If (some) round keys are linearly dependent, Lemma 3 can easily be extended to
more rounds.
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3.2 Round Function

Here, we investigate a very basic criterion on the round function, namely de-
pendency on all input bits. Given the Boolean functions fb(i) : Fn2 → F2 used in
the round function of Erk,w, an important question is, if it is necessary that the
output bit of fb(i) has to depend on all input bits. It turns out that this is indeed
strictly necessary for any secure instance, as summarized in the next rational.

Rationale 2. For a practical instance, the functions fb(i) has to depend on all
bits. Even more, for any δ ∈ Fn2 the probability of

fb(i)(x) = fb(i)(x+ δ)

should be close to 1
2 .

Due to page constraints, we refer to [12, Lemma 4] for more details. It is
worth noticing that the analysis leading to Rationale 2 applies to the original
round function. However, as pointed out in [49, Section 3.1], in the definition of
the round function, we can replace the function

x 7→ max {x, x+ k}

by any function Φk such that Φk(x) = Φk(x+ k) for all x. While the following
sections will focus on the case when Φk is linear, we will prove that Rationale 2
is also valid in this other setting.

Again, this should be compared to key-alternating ciphers, where usually
not all output bits of a single round function depend on all input bits. For
example for AES any output bit after one round depends only on 32 input bits
and for Present any output bit only depends on 4 input bits. However, while
for key-alternating ciphers this does not seem to be problematic, and indeed
allows rather weak round functions to result in a secure scheme, for the WSN
construction the situation is very different.

Before specifying our exact instance, we want to discuss differential crypt-
analysis of a broader family of instances.

4 Differential Cryptanalysis of bison-like Instances

We coin an instance of the WSN construction “bison-like”, if it iterates at least
n rounds with linearly independent round keys k1, . . . , kn and applies Boolean
functions fb(i). As explained in [49, Section 3.1], in order to enable decryption it
is required that the Boolean functions fb(i) return the same result for both x and
x+ k. In the original proposition by Tessaro, this is achieved by using the max
function in the definition of the round function. Using this technique reduces the
number of possible inputs for the fb(i) to 2n−1. To simplify the analysis and to
ease notation, we replace the max function with a linear function Φk : Fn2 → Fn−12

with ker(Φk) = {0, k}. From now on, we assume that any bison-like instance
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uses such a Φk instead of the max function. The corresponding round function
has then the following form

Rki,wi(x) := x+ fb(i)(wi + Φki(x))ki. (3)

With the above conditions, any bison-like instance of the WSN construction
is resistant to differential cryptanalysis, as we show in the remainder of this
section.

For our analysis, we make two standard assumptions in symmetric cryptanal-
ysis as mentioned above: the independence of whitening round keys wi and the
hypothesis of stochastic equivalence with respect to these round keys. That is, we
assume round keys wi to be independently uniformly drawn and the resulting
EDP to equal the differential probabilities averaged over all w. Thus, the keys
wi act very much like the round key for a key-alternating cipher with respect to
the probabilities of characteristics. We further back up this intuition by practical
experiments (see Section 6.3 and [12, Appendix B]). For the round keys ki we do
not have to make such assumptions.

We first discuss the simple case of differential behaviour for one round only
and then move up to an arbitrary number of rounds and devise the number of
possible output differences and their probabilities.

4.1 From One-Round Differential Characteristics

Looking only at one round, we can compute the ddt explicitly:

Proposition 2. Let Rki,wi : Fn2 → Fn2 be the WSN round function as in Eq. (3).
Then its ddt consists of the entries

ddtR[α, β] =


2n−1 + ̂∆Φk(α)(f)(0) if β = α

2n−1 − ̂∆Φk(α)(f)(0) if β = α+ k

0 otherwise.

. (4)

Most notably, if f is bent, we have

ddtR[α, β] =


2n if α = β = k or α = β = 0

2n−1 if β ∈ {α, α+ k} and α 6∈ {0, k}
0 otherwise.

.

Proof. We have to count the number of solutions of R(x) +R(x+ α) = β:

ddtR[α, β] = |{x ∈ Fn2 | R(x) +R(x+ α) = β}|
= |{x ∈ Fn2 | α+ [f(w + Φk(x)) + f(w + Φk(x+ α))] · k = β}|

13



Since f takes its values in F2, the only output differences β such that ddtR[α, β]
may differ from 0 are β = α and β = α+ k. When β = α, we have

ddtR[α, α] = |{x ∈ Fn2 | f(w + Φk(x)) + f(w + Φk(x+ α)) = 0}|
= |{x ∈ Fn2 | f(w + Φk(x)) + f(w + Φk(x) + Φk(α)) = 0}|
= 2 ·

∣∣{x′ ∈ Fn−12

∣∣ f(x′) + f(x′ + Φk(α)) = 0
}∣∣

= 2

(
2n−2 +

1

2
̂∆Φk(α)(f)(0)

)
.

Similarly,

ddtR[α, α+ k] = |{x ∈ Fn2 | f(w + Φk(x)) + f(w + Φk(x+ α)) = 1}|

= 2

(
2n−2 − 1

2
̂∆Φk(α)(f)(0)

)
.

Most notably, when α ∈ {0, k}, ̂∆Φk(α)(f)(0) = 2n−1. Moreover, when f is bent,
̂∆Φk(α)(f)(0) = 2n−2 for all other values of α.

4.2 To Differentials over more Rounds

As previously explained, it is possible to estimate the probability of a differential
characteristic over several rounds, averaged over the round keys, when the cipher
is a Markov cipher. We now show that this assumption holds for any bison-like
instance of the WSN construction.

Lemma 4. Let Rk,w : Fn2 → Fn2 be the WSN round function as in Eq. (3). For
any fixed k ∈ Fn2 and any differential (α, β) ∈ Fn2 × Fn2 , we have that

Prw [Rk,w(x+ α) +Rk,w(x) = β]

is independent of x. More precisely

Prw [Rk,w(x+ α) +Rk,w(x) = β] = Prx [Rk,w(x+ α) +Rk,w(x) = β] .

Proof. We have{
w ∈ Fn−12

∣∣ ∆α(Rk,w)(x) = β
}

=
{
w ∈ Fn−12

∣∣ (∆Φk(α)(f)(w + Φk(x))
)
· k = α+ β

}
=


∅ if β 6∈ {α, α+ k}
Φk(x) + Supp

(
∆Φk(α)(f)

)
if β = α+ k

Φk(x) +
(
Fn−12 \ Supp

(
∆Φk(α)(f)

))
if β = α,

where Supp(g) denotes the support of a Boolean function g, i. e., the values x
for which g(x) = 1. Clearly, the cardinality of this set does not depend on x.
Moreover, this cardinality, divided by 2n−1, corresponds to the value of

Prx [Rk,w(x+ α) +Rk,w(x) = β]

computed in the previous proposition.
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By induction on the number of rounds, we then directly deduce that any
bison-like instance of the WSN construction is a Markov cipher in the sense of
the following corollary.

Corollary 1. Let Eik,w denote i rounds of a bison-like instance of the WSN
construction with round function Rki,wi . For any number of rounds r and any
round keys (k1, . . . , kr), the probability of an r-round characteristic δ satisfies

Prw
[
Eik,w(x) + Eik,w(x+ δ0) = δi,∀1 6 i 6 r

]
=

r∏
i=1

Prx [Rki,wi(x) +Rki,wi(x+ δi−1) = δi].

For many ciphers several differential characteristics can cluster in a differential
over more rounds. This is the main reason why bounding the probability of
differentials is usually very difficult if possible at all. For bison-like instances the
situation is much nicer; we can actually compute the EDP, i. e., the probabilities
of the differentials averaged over all whitening key sequences (w1, . . . , wr). This
comes from the fact that any differential for less than n rounds contains at
most one differential characteristic with non-zero probability. To understand
this behavior, let us start by analyzing the EDP (averaged over the wi) and by
determining the number of possible output differences.

In the following, we assume that the input difference α is fixed, and we
calculate the number of possible output differences. We show that this quantity
depends on the relation between α and the ki.

Lemma 5. Let us consider r rounds of a bison-like instance of the WSN con-
struction with round function involving Boolean functions fb(i) having no (non-
trivial) constant derivative. Assume that the first n round keys k1, . . . , kn are
linearly independent, and that kn+1 = k1 +

∑n
i=2 γiki for γi ∈ F2. For any

non-zero input difference α, the number of possible output differences β such that

Prw,x
[
Erk,w(x+ α) + Erk,w(x) = β

]
6= 0

is 
2r if α /∈ span {ki} and r < n,

2r − 2r−` if α = k` +
∑`−1
i=1 λ

α
i ki and r 6 n,

2n − 1 if r > n.

Proof. By combining Corollary 1 and Proposition 2, we obtain that the average
probability of a characteristic (δ0, δ1, . . . , δr−1, δr) can be non-zero only if δi ∈
{δi−1, δi−1 + ki} for all 1 6 i 6 r. Therefore, the output difference δr must be of
the form δr = δ0 +

∑r
i=1 λiki with λi ∈ F2. Moreover, for those characteristics,

the average probability is non-zero unless there exists 1 6 i < r such that
| ̂∆Φki (δi)

(fb(i))(0)| = 2n−1, i. e. ∆Φki (δi)
(fb(i)) is constant. By hypothesis, this

only occurs when δi ∈ {0, ki}, and the impossible characteristics correspond to
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the case when either δi = 0 or δi+1 = 0. It follows that the valid characteristics
are exactly the characteristics of the form

δi = δ0 +

i∑
j=1

λjkj

where none of the δi vanishes.

– When the input difference α 6∈ span {ki}, for any given output difference
β = α+

∑r
i=1 λiki, the r-round characteristic

(α, α+ λ1k1, α+ λ1k1 + λ2k2, . . . , α+

r∑
i=1

λiki)

is valid since none of the intermediate differences vanishes.
– When r 6 n and α = k` +

∑`−1
i=1 λ

α
i ki, the only possible characteristic from

α to β = α+
∑r
i=1 λiki satisfies

δj =

{∑j
i=1(λi + λαi )ki +

∑`
i=j+1 λ

α
i ki if j 6 `∑`

i=1(λi + λαi )ki +
∑j
i=`+1 λiki if j > ` .

Since the involved round keys are linearly independent, we deduce that δj = 0
only when j = ` and λi = λαi for all 1 6 i 6 `. It then follows that there
exists a valid characteristic from α to β unless λi = λαi for all 1 6 i 6 `. The
number of possible outputs β is then

(2` − 1)2r−` = 2r − 2r−`.

– If we increase the number of rounds to more than n, we have α = k` +∑`−1
i=1 λ

α
i ki for some ` 6 n. If β = α+

∑n
i=1 λiki with

∑`
i=1 λiki 6= α, then

we can obviously extend the previous n-round characteristic to

(α, α+ λ1k1, . . . , α+

n−1∑
i=1

λiki, β, β, . . . , β).

If
∑`
i=1 λiki = α, β cannot be the output difference of an n-round charac-

teristic. However, the following (n + 1)-round characteristic starting from
δ0 = α is valid:

δj =


k1 +

∑j
i=2 γiki +

∑`
i=j+1 λ

α
i ki if j 6 `

k1 +
∑j
i=2 γiki +

∑j
i=`+1 λiki if ` < j 6 n

β if j = n+ 1

Indeed, δn = β + kn implying that the last transition is valid. Moreover,
it can be easily checked that none of these δj vanishes, unless β = 0. This
implies that all non-zero output differences β are valid.
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The last case in the above lemma is remarkable, as it states any output
difference is possible after n+ 1 rounds. To highlight this, we restate it as the
following corollary.

Corollary 2. For bison-like instances with more than n rounds whose round
keys k1, . . . , kn+1 satisfy the hypothesis of Lemma 5, and for any non-zero input
difference, every non-zero output difference is possible.

We now focus on a reduced version of the cipher limited to exactly n rounds
and look at the probabilities for every possible output difference. Most notably, we
exhibit in the following lemma an upper-bound on the MEDP which is minimized
when n is odd and the involved Boolean functions fb(i) are bent. In other words,
Rationale 2 which was initially motivated by the analysis in Section 3 for the
original round function based on x 7→ max(x, x + k) [48] is also valid when a
linear function Φk is used.

Lemma 6. Let us consider n rounds of a bison-like instance of the WSN
construction with round function involving Boolean functions fb(i). Let k1, . . . , kn
be any linearly independent round keys. Then, for any input difference α 6= 0 and
any β, we have

EDP(α, β) = Prw,x [Ek,w(x+ α) + Ek,w(x) = β]

6

(
1

2
+ 2−n max

16i6n
max
δ 6=0

∣∣∣ ̂∆δ(fb(i))(0)
∣∣∣)n−1 .

More precisely, if all fb(i) are bent,

EDP(α, β) =



0 if β =

n∑
i=`+1

λiki,

2−n+1 if β = k` +

n∑
i=`+1

λiki,

2−n otherwise,

(5)

(6)

(7)

where ` denotes as previously the latest round key that appears in the decomposition
of α into the basis (k1, . . . , kn), that is α = k` +

∑`−1
i=1 λiki.

The case of bent functions is visualized in Fig. 3, where we give an example
of the three possibilities for three rounds.

Proof. As proved in Lemma 5, (α, β) is an impossible differential if and only if
β =

∑n
i=`+1 λiki. For all other values of β = α+

∑n
i=1 λiki, we have

EDP(α, β) =

n∏
i=1

(
1

2
+ (−1)λi2−n ̂∆Φki (δi)

(fb(i))(0)

)
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Figure 3: Probabilities of output differences for three rounds and the cases of
the input difference α = k1 + k2, thus ` = 2. Dotted transitions are impossible.

where δi = α+
∑i
j=1 λjkj . The i-th term in the product is upper-bounded by

1

2
+ 2−n max

16i6n
max
δ 6=0

∣∣∣ ̂∆δ(fb(i))(0)
∣∣∣

except if Φki(δi) = 0, i. e., δi ∈ {0, ki}. As seen in Lemma 5, the case δi = 0
cannot occur in a valid characteristic. The case δi = ki occurs if and only if
i = ` and β = k` +

∑n
j=`+1 λjkj . In this situation, the `-th term in the product

equals 1. In the tree of differences this is visible as the collapsing of the two
branches from two possible succeeding differences into only one, which then of
course occurs with probability one, see upper branch of Fig. 3.

Most notably, all fb(i) are bent if and only if

max
16i6n

max
δ 6=0

∣∣∣ ̂∆δ(fb(i))(0)
∣∣∣ = 0 ,

leading to the result.
This can be seen on Fig. 3: the 2n−` possible differences coming from the

collapsed branch have a transition of probability one in that round, resulting in
an overall probability of 2−n+1, see Eq. (6). For the lower part of Fig. 3, all the
other differences are not affected by this effect and have a probability of 2−n, see
Eq. (7).

Because they allow us to minimize the MEDP, we now concentrate on the
case of bent functions for the sake of simplicity, which implies that the block size
is odd. However, if an even block size is more appropriate for implementation
reasons, we could also define bison-like instances based on maximally nonlinear
functions.

It would be convenient to assume in differential cryptanalysis that the EDP
of a differential does not increase when adding more rounds, while this does not
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hold in general. However, this argument can easily be justified for bison-like
instances using bent functions, when averaging over the whitening keys w.

Proposition 3. Let us consider r > n rounds of a bison-like instance of the
WSN construction with bent functions fb(i). Let k1, . . . , kn be any linearly inde-
pendent round keys. Then the probability of any non-trivial differential, averaged
over all whitening key sequences w is upper bounded by 2−n+1.

In other words, the MEDP of bison-like instances with bent fb(i) for r > n
rounds is 2−n+1.

Proof. By induction over r. The base case for r = n rounds comes from Lemma 6.
In the induction step, we first consider the case when the output difference β
after r rounds differs from kr. Then the output difference δr = β can be reached if
and only if the output difference after (r− 1) rounds δr−1 belongs to {β, β + kr}.
Then,

EDPr(α, β) = Prwr [Rkr,wr (xr) +Rkr,wr (xr + β) = β]EDPr−1(α, β)

+Prwr [Rkr,wr (xr) +Rkr,wr (xr + β + kr) = β]EDPr−1(α, β + kr)

=
1

2

(
EDPr−1(α, β) + EDPr−1(α, β + kr)

)
6 2−n+1 .

When the output difference β after r rounds equals kr, it results from δr−1 = kr
with probability 1. In this case

EDPr(α, β) = EDPr−1(α, β) 6 2−n+1 .

This bound is close to the ideal case, in which each differential has probability
1/(2n − 1).

We now give a detailed description of our instance bison.

5 Specification of bison

As bison-like instances should obviously generalise bison, this concrete instance
inherits the already specified parts. Thus bison uses two bent functions fb(i),
replaces the max function by Φk, and uses a key schedule that generates round
keys, where all n consecutive round keys are linearly independent. The resulting
instance for n bits iterates the WSN round function as defined below over
3 · n rounds. The chosen number of rounds mainly stems from the analysis of the
algebraic degree that we discuss in Section 6.

Security Claim. We claim n-bit security for bison in the single-key model. We
emphasize that we do not claim any security in the related-key, chosen-key or
known-key model.
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5.1 Round Function

For any nonzero round key k, we define Φk : Fn2 → Fn−12 as

Φk(x) := (xi(k) · k + x)[1, . . . , i(k)− 1, i(k) + 1, . . . , n], (8)

where i(k) denotes the index of the lowest bit set to 1 in k, and the notation
x[1, . . . , j − 1, j + 1, . . . , n] returns the (n− 1)-bit vector, consisting of the bits of
x except the jth bit.

Lemma 7. The function Φk : Fn2 → Fn−12 is linear and satisfies

ker(Φk) = {0, k}.

The proof can be done by simply computing both outputs for x and x+ k.
For the preimage of y ∈ Fn−12 and j = i(k) we have

Φ−1k (y) ∈
{
(y[1 : j − 1], 0, y[j :n− 1]) + k[1 :n],

(y[1 : j − 1], 0, y[j :n− 1])

}
. (9)

Due to the requirement for the fb(i) being bent, we are limited to functions
taking an even number of bits as input. The simplest example of a bent function
is the inner product.

Eventually we end up with the following instance of the WSN round.

bison’s Round Function

For round keys ki ∈ Fn2 and wi ∈ Fn−12 the round function computes

Rki,wi(x) := x+ fb(i)(wi + Φki(x))ki. (10)

where

– Φki is defined as in Eq. (8),
– fb(i) is defined as

fb(i) : Fn−12 → F2

fb(i)(x) := 〈x[1 : (n− 1)/2], x[(n+ 1)/2 : n]〉+ b(i),

– and b(i) is 0 if i 6 r
2 and 1 otherwise.

5.2 Key Schedule

In the ith round, the key schedule has to compute two round keys: ki ∈ Fn2 and
wi ∈ Fn−12 . We compute those round keys as the states of lfsrs after i clocks,
where the initial states are given by a master key K. The master key consists of
two parts of n and n− 1 bits, i.e.

K = (k,w) ∈ Fn2 × Fn−12 .
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As the all-zero state is a fixed point for any lfsr, we exclude the zero key for
both k and w. In particular k = 0 is obviously a weak key that would result in a
ciphertext equal to the plaintext p = Er0,w(p) for all p, independently of w or of
the number of rounds r.

It is well-known that choosing a feedback polynomial of an lfsr to be primitive
results in an lfsr of maximal period. Clocking the lfsr then corresponds
to multiplication of its state with the companion matrix of this polynomial.
Interpreted as elements from the finite field, this is the same as multiplying with
a primitive element.

In order to avoid structural attacks, e. g. invariant attacks [39,50,28], as well
as the propagation of low-weight inputs, we add round constants ci to the round
key wi.

These round constants are also derived from the state of an lfsr with the
same feedback polynomial as the wi lfsr, initialized to the unit vector with the
least significant bit set. To avoid synchronization with the wi lfsr, the ci lfsr
clocks backwards.

bison’s Key Schedule

For two primitive polynomials pw(x), pk(x) ∈ F2[x] with degrees
deg(pw) = n − 1 and deg(pk) = n and the master key K = (k,w) ∈
Fn2 × Fn−12 , k,w 6= 0 the key schedule computes the ith round keys as

KSi : Fn2 × Fn−12 → Fn2 × Fn−12

KSi(k,w) := (C(pk)
i
k,C(pw)

−i
e1 + C(pw)

i
w) = (ki, ci + wi)

where C(·) is the companion matrix of the corresponding polynomial,
and 0 6 i < r.
In [12, Appendix A] we give concrete polynomials for 5 6 n 6 129-bit
block sizes.

As discussed above, this key schedule has the following property, see also
Rationale 1.

Lemma 8. For bison’s key schedule, the following property holds: Any set
of n consecutive round keys ki are linearly independent. Moreover there exist
coefficients λi such that

kn+i = ki +

n+i−1∑
j=i+1

λjkj .

Proof. To prove this, we start by showing that the above holds for the first n
round keys, the general case then follows from a similar argumentation. We need
to show that there exists no non-trivial ci ∈ F2 so that

∑n
i=1 ciC(pk)

i
k = 0,

which is equivalent to showing that there exists no non-trivial ci ∈ F2 so that∑n−1
i=0 ciC(pk)

i
k = 0. In this regard, we recall the notion of minimal polynomial
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of k with respect to C(pk), defined as the monic polynomial of smallest degree
QL(k)(x) =

∑d
i=0 qix

i ∈ F2[x] such that
∑d
i=0 qiC(pk)

i
k = 0. Referring to a

discussion that has been done for instance in [4], we know that the minimal
polynomial of k is a divisor of the minimal polynomial of C(pk). Since in our
case our construction has been made so that this later is equal to pk which is
a primitive polynomial, we deduce that the minimal polynomial of k 6= 0 is pk
itself. Since the degree of pk is equal to n, this prove that the first n keys are
linearly independent.

The equation holds, since pk(0) = 1.

6 Security Analysis

As we have already seen, bison is resistant to differential cryptanalysis. In this
section, we argue why bison is also resistant to other known attacks.

6.1 Linear Cryptanalysis

For linear cryptanalysis, given the fact that bison is based on a bent function,
i. e. a maximally non-linear function, arguing that no linear characteristic with
high correlation exist is rather easy. Again, we start by looking at the Fourier
coefficients for one round.

From one Round Using the properties of f being bent, we get the following.

Proposition 4. Let Rk,w : Fn2 → Fn2 be the round function as defined in Eq. (10).
Then, its lat consists of the entries

R̂k,w(α, β) =


2n if α = β and 〈β, k〉 = 0

±2n+1
2 if 〈α, k〉 = 1 and 〈β, k〉 = 1

0 if 〈α+ β, k〉 = 1 or (α 6= β and 〈β, k〉 = 0)

. (11)

We prove the proposition in [12, Section 6.1.1, Proposition 4].

To more Rounds When we look at more than one round, we try to approximate
the linear hull by looking at the strongest linear trail. As already discussed in
Lemma 2, for r < n there are trails with probability one. We now show that any
trail’s correlation for r > n rounds is actually upper bounded by 2−

n+1
2 :

Proposition 5. For r > n rounds, the correlation of any non-trivial linear trail
for bison is upper bounded by 2−

n+1
2 .

Proof. It is enough to show the above for any n-round trail. By contradiction,
assume there exists a non-trivial trail θ = (θ0, . . . , θn) with correlation one.
Following Proposition 4, for every round i the intermediate mask θi has to fulfill
〈θi, ki〉 = 0. Further θi = θi+1 for 0 6 i < n. Because all n round keys are linearly
independent, this implies that θi = 0, which contradicts our assumption. Thus,
in at least one round the second or third case of Eq. (11) has to apply.
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It would be nice to be able to say more about the linear hull, analogously to
the differential case. However, for the linear cryptanalysis this looks much harder,
due to the denser lat. In our opinion developing a framework where bounding
linear hulls is similarly easy as it is for bison with respect to differentials is a
fruitful future research topic.

6.2 Higher-Order Differentials and Algebraic Attacks.

High-order differential attacks, cube attacks, algebraic attacks and integral attacks
all make use of non-random behaviour of the ANF of parts of the encryption
function. In all these attacks the algebraic degree of (parts of) the encryption
function is of particular interest. In this section, we argue that those attacks do
not pose a threat to bison.

We next elaborate in more detail on the algebraic degree of the WSN construc-
tion. In particular, we are going to show that the algebraic degree increases at
most linearly with the number of rounds. More precisely, if the round function is
of degree d, the algebraic degree after r rounds is upper bounded by r(d− 1) + 1.

Actually, we are going to consider a slight generalization of the WSN con-
struction and prove the above statement for this generalization.

General Setting Consider an initial state of n bits given as x = (x0, . . . , xn−1)
and a sequence of Boolean functions

fi : Fn+i2 → F2

for 0 6 i < r. We define a sequence of values yi by setting y0 = f0(x) and

yi = fi(x0, . . . , xn−1, y0, . . . , yi−1),

for 1 6 i < r. Independently of the exact choice of fi the degree of any y`, as a
function of x can be upper bounded as stated in the next proposition.

Proposition 6. Let fi be a sequence of functions as defined above, such that
deg(fi) 6 d. The degree of y` at step ` seen as a function of the bits of the initial
state x0, . . . , xn−1 satisfies

deg(y`) 6 (d− 1)(`+ 1) + 1.

Moreover, for any I ⊆ {0, . . . , `},

deg(
∏
i∈I

yi) 6 (d− 1)(`+ 1) + |I|.

Proof. The first assertion is of course a special case of the second one, but we
add it for the sake of clarity. We prove the second, more general, statement by
induction on `.

Starting with ` = 0, we have to prove that deg(y0) 6 d, which is obvious, as

y0 = f0(x0, . . . , xn−1)
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and deg(f0) ≤ d.
Now, we consider some I ⊆ {0, . . . , `} and show that

deg(
∏
i∈I

yi) 6 (d− 1)(`+ 1) + |I| .

We assume that ` ∈ I, otherwise the result directly follows the induction hypoth-
esis.

Since f` depends both on y0, . . . , y`−1 and x, we decompose it as follows:

y` = f`(y0, . . . , y`−1, x) =
∑

J ⊆ {0, . . . , `− 1}
0 6 |J| 6 min(d, `)

∏
j∈J

yj

 gJ(x)

with deg(gJ) 6 d− |J | for all J since deg(f`) 6 d.
Then, for I = {`} ∪ I ′, we look at

y`

(∏
i∈I′

yi

)
=

∑
J ⊆ {0, . . . , `− 1}
0 6 |J| 6 min(d, `)

 ∏
j∈J∪I′

yj

 gJ(x) .

From the induction hypothesis, the term of index J in the sum has degree at
most

(d− 1)`+ |J ∪ I ′|+ deg(gJ) = (d− 1)`+ |J ∪ I ′|+ d− |J |
6 (d− 1)(`+ 1) + |J ∪ I ′| − |J |+ 1

6 (d− 1)(`+ 1) + |J |+ |I ′| − |J |+ 1

6 (d− 1)(`+ 1) + |I| .

Special Case of bison In the case of bison, we make use of quadratic functions,
and thus Proposition 6 implies that after r rounds the degree is upper bounded
by r + 1 only. Thus, it will take at least n− 2 rounds before the degree reaches
the maximal possible degree of n− 1. Moreover, due to the construction of WSN,
if all component functions of Erk,w are of degree at most d, there will be at least
one component function of Er+n−1k,w of degree at most d. That is, there exist a
vector β ∈ Fn2 such that

〈β,Er+n−1k,w (x)〉
has degree at most d. Namely, for

β ∈ span {kr, . . . , kr+s}⊥

it holds that

deg
(
〈β,Er+sk,w (x)〉

)
= deg

(
〈β,Erk,w(x)〉+

r+s∑
i=r

λi〈β, ki〉
)

= deg
(
〈β,Erk,w(x)〉

)
.
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We conclude there exists a component function of Er+sk,w of non-maximal degree,
as long as 0 6 r 6 n − 2 and 0 6 s 6 n − 1. Thus for bison there will be at
least one component function of degree less than n− 1 for any number of rounds
0 6 r 6 2n− 3. However, similarly to the case of zero-correlation properties as
described in Lemma 3, the vector β is key dependent and thus this property does
not directly lead to an attack.

Finally, so far we only discussed upper bounds on the degree, while for arguing
security, lower bounds on the degree are more relevant. As it seems very hard (just
like for any cipher) to prove such lower bounds, we investigated experimentally
how the degree increases in concrete cases. As can be seen in [12, Figure 4]
the maximum degree is reached for almost any instance for n+ 5 rounds. Most
importantly, the fraction of instances where it takes more than n + 2 rounds
decreases with increasing block length n. Moreover, the round function in bison
experimentally behaves with this respect as a random function, as can be seen
in [12, Figure 5]. Thus, as the number of rounds is 3n, we are confident that
attacks exploiting the algebraic degree do not pose a threat for bison.

Besides the WSN construction, a special case of the above proposition worth
mentioning is a non linear feedback generator (NLFSR).

Degree of NLFSRs One well-known special case of the above general setting
is an NLFSR or, equivalently a maximally unbalanced Feistel cipher, depicted
below.

fi �

Proposition 6 implies that the degree of any NLFSR increases linearly with the
number of rounds. To the best of our knowledge, this is the first time this have
been observed in this generality. We like to add that this is in sharp contrast to
how the degree increases for SPN ciphers. For SPN ciphers the degree usually
increases exponentially until a certain threshold is reached [11].

6.3 Other attacks

We briefly discuss other cryptanalytic attacks.

Impossible Differentials In Lemma 5 and Corollary 2, we discuss that every
output difference is possible after more than n rounds. Consequently, there are
no impossible differentials for bison.

Truncated Differentials Due to our strong bounds on differentials it seems
very unlikely that any strong truncated differential exists.
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Zero Correlation Linear Cryptanalysis In Lemma 3 we already discussed
generic zero correlation linear hulls for the WSN construction. Depending on
the actual key used, this technique may be used to construct a one-round-longer
zero-correlation trail. For this, we need two distinct elements α ∈ 〈k1, . . . , kn−1〉⊥,
β ∈ 〈kn, . . . , k2n−2〉⊥, and construct the trail analogously to Lemma 3 (which
may not exist, due to the key dependency).

Invariant Attacks For an invariant attack, we need a Boolean function g,
s. t. g(x) + g(Erk,w(x)) is constant for all x and some weak keys (k,w). As the
encryption of any message is basically this message with some of the round keys
added, key addition is the only operation which is performed. It has been shown
in [4, Proposition 1] that any g which is invariant for a linear layer followed by the
addition of the round key ki as well as for the same up to addition of a different
kj , has a linear space containing ki + kj . In the case of the linear layer being the
identity, the linear space actually contains also the ki and kj (by definition).

Thus, the linear space of any invariant for our construction has to contain
span {k1, . . . , k3n} which is obviously the full space Fn2 . Following the results
of [4], there are thus no invariant subspace or nonlinear invariant attack on
bison.

Related-Key Attacks In generic related-key attacks, the attacker is also
allowed to exploit encryptions under a related, that is k′ = f(k), key – in the
following, we restrict our analysis to the case where f is the addition with a
constant. That is, the attacker cannot only request Ek,w(x), and Ek,w(x+ α),
but also Ek+β,w+β′(x) or Ek+β,w+β′(x + α), for α (difference in the input x),
β (difference in the key k) and β′ (difference in the key w) of her choice. As
β = β′ = 0 would result in the standard differential scenario, we exclude it for
the remainder of this discussion. Similar, β = k results in Φk+β = Φ0, which we
did not define, thus we also skip this case and refer to the fact that if an attacker
chooses β = k, she basically already has guessed the secret key correctly.

For bison, the following proposition holds.

Proposition 7. For r rounds, the probability of any related-key differential
characteristic for bison, averaged over all whieting key sequences (w1, . . . , wr),
is upper bounded by

(
3
4

)r.
For more details and a proof of the proposition, see [12, Section 6.3.5, Propo-

sition 7].

Further Observations During the design process, we observed the following
interesting point: For sparse master keys k and w and message m, e. g. k = w =
m = 1, in the first few rounds, nothing happens. This is mainly due to the choice
of sparse key schedule polynomials pw and pk and the fact that f0 outputs 0 if
only one bit in its input is set (as 〈0, x〉 = 0 for any x).

To the best of our knowledge, this observation cannot be exploited in an
attack.
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Experimental Results We conducted experiments on small-scale versions of
bison with n = 5. The ddts and lats, depicted using the “Jackson Pollock
representation” [8], for one to ten rounds are listed in [12, Appendix B]. In [12,
Appendix B.1] one can see that the two cases of averaging over all possible wi
and choosing a fixed wi results in very similar differential behaviors. Additionally,
after 5 = n rounds, the plots do not change much.

The results in the linear case, see [12, Appendix B.2], are quite similar. The
major difference here, is the comparable bigger entries for a fixed wi. Nonetheless,
most important is that there are no high entries in the average lat which would
imply a strong linear approximation for many keys. Additionally one also expects
for a random permutation not too small lat entries. Note that one can well
observe the probability-one approximation for 4 = n − 1 rounds (lower right
corner of the corresponding plot).

7 Conclusion

Efficiency of symmetric ciphers have been significantly improved further and
further, in particular within the trend of lightweight cryptography. However,
when it comes to arguing about the security of ciphers, the progress is rather
limited and the arguments basically did not get easier nor stronger since the
development of the AES. In our opinion it might be worth shifting the focus
to improving security arguments for new designs rather than (incrementally)
improving efficiency. We see bison as a first step in this direction.

With our instance for the WSN construction and its strong resistance to
differential cryptanalysis, this framework emerges as an interesting possibility to
design block ciphers. Unfortunately, we are not able to give better then normal
arguments for the resistance to linear cryptanalysis. It is thus an interesting
question, if one can find a similar instance of the WSN construction for which
comparable strong arguments for the later type of cryptanalysis exist.

Alternative designs might also be worth looking at. For example many con-
structions for bent functions are known and could thus be examined as alternatives
for the scalar product used in bison. One might also look for a less algebraic
design – but we do not yet see how this would improve or ease the analysis or
implementation of an instance.

Finally, for an initial discussion of implementation figures, see [12, Section 7].
Another line of future work in this direction is the in-depth analysis of imple-
mentation optimizations and side channel-resistance of bison.
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