S. Chaturantabut and D. C. Sorensen, A state space error estimate for POD-DEIM nonlinear model reduction, SIAM J. Numer. Anal, vol.50, issue.1, pp.46-63, 2012.

D. Amsallem and U. Hetmaniuk, Error estimates for Galerkin reduced-order models of the semi-discrete wave equation, ESAIM Math. Model. Numer. Anal, vol.48, issue.1, pp.135-163, 2014.

L. Moya, Locally implicit discontinuous Galerkin time-domain methods for electromagnetic wave propagation in biological tissues, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00950386

J. S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, 2007.

J. Viquerat, M. Klemm, S. Lanteri, and C. Scheid, Analysis of a generalized dispersive model coupled to a DGTD method with application to nanophotonics, SIAM J. Sci. Comput, vol.39, issue.3, pp.831-859, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01674031

S. Dosopoulos, B. Zhao, and J. Lee, Non-conformal and parallel discontinuous Galerkin time domain method for maxwell's equations: EM analysis of IC packages, J. Comput. Phys, vol.238, pp.48-70, 2013.

M. Lilienthal, S. M. Schnepp, and T. Weiland, Non-dissipative space-time hp-discontinuous Galerkin method for the time-dependent maxwell equations, J. Comput. Phys, vol.275, pp.589-607, 2014.

R. Léger, J. Viquerat, C. Durochat, C. Scheid, and S. Lanteri, A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles, J. Comput. Appl. Math, vol.270, pp.330-342, 2014.

L. Li, S. Lanteri, N. A. Mortensen, and M. Wubs, A hybridizable discontinuous Galerkin method for solving nonlocal optical response models, Comput. Phys. Commun, vol.219, pp.99-107, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01402634

L. Li, S. Lanteri, and R. Perrussel, A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3-D time-harmonic Maxwell's equation, J. Comput. Phys, vol.256, pp.563-581, 2014.

N. C. Nguyen, J. Peraire, and B. Cockburn, Hybridizable discontinuous Galerkin methods for the timeharmonic Maxwell's equations, J. Comput. Phys, vol.230, issue.19, pp.7151-7175, 2011.

M. Rathinam and L. R. Petzold, A new look at proper orthogonal decomposition, SIAM J. Numer. Anal, vol.41, issue.5, pp.1893-1925, 2003.

S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput, vol.32, issue.5, pp.2737-2764, 2010.

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM J. Numer. Anal, vol.40, issue.2, pp.492-515, 2002.

S. S. Ravindran, Adaptive reduced-order controllers for a thermal flow system using proper orthogonal decomposition, SIAM J. Sci. Comput, vol.23, issue.6, pp.1924-1942, 2002.

K. Kunisch, S. Volkwein, and L. Xie, HJB-POD-based feedback design for the optimal control of evolution problems, SIAM J. Appl. Dyn. Syst, vol.3, issue.4, pp.701-722, 2006.

M. F. De-pando, P. J. Schmid, and D. Sipp, Nonlinear model-order reduction for compressible flow solvers using the discrete empirical interpolation method, J. Comput. Phys, vol.324, pp.194-209, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01445651

A. Pierquin, T. Henneron, S. Clenet, and S. Brisset, Model-order reduction of magnetoquasi-static problems based on POD and Arnoldi-based Krylov methods, IEEE Trans. Magn, vol.51, issue.3, pp.1-4, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01163841

A. J. Siade, M. Putti, W. W. , and .. Yeh, Snapshot selection for groundwater model reduction using proper orthogonal decomposition, Water Resour. Resear, vol.46, issue.8, pp.2657-2662, 2010.

Z. Luo, H. Li, Y. Zhou, and X. Huang, A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem, J. Math. Anal. Appl, vol.385, issue.1, pp.310-321, 2012.

Z. Luo, F. Teng, and J. Chen, A POD-based reduced-order Crank-Nicolson finite volume element extrapolating algorithm for 2-D Sobolev equations, Math. Comput. Simulat, vol.146, pp.118-133, 2018.

K. Busch, J. Niegemann, M. Pototschnig, and L. Tkeshelashvili, A Krylov subspace based solver for the linear and nonlinear Maxwell's equations, Phys. Status. Solidi. (b), vol.244, issue.10, pp.3479-3496, 2007.

R. Börner, O. G. Ernst, and K. Spitzer, Fast 3-D simulation of transient electromagnetic fields by model reduction in the frequency domain using Krylov subspace projection, Geophys. J. Int, vol.173, issue.3, pp.766-780, 2008.

J. Zimmerling, L. Wei, P. Urbach, and R. Remis, A Lanczos model-order reduction technique to efficiently simulate electromagnetic wave propagation in dispersive media, J. Comput. Phys, vol.315, pp.348-362, 2016.

R. Mancini and S. Volkwein, An inverse scattering problem for the time-dependent Maxwell equations: nonlinear optimization and model-order reduction, Numer. Lin. Alg. Appl, vol.20, issue.4, pp.689-711, 2013.

M. E. Kowalski and J. Jin, Model-order reduction of nonlinear models of electromagnetic phasedarray hyperthermia, IEEE Trans. Biomed. Engrg, vol.50, issue.11, pp.1243-1254, 2003.

K. Li, T. Huang, L. Li, S. Lanteri, L. Xu et al., A reduced-order discontinuous Galerkin method based on POD for electromagnetic simulation, IEEE Trans. Ant. Propag, vol.66, issue.1, pp.242-254, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01674360

Z. Luo and J. Gao, A POD reduced-order finite difference time-domain extrapolating scheme for the 2-D maxwell equations in a lossy medium, J. Math. Anal. Appl, vol.444, issue.1, pp.433-451, 2016.

Y. Sato and H. Igarashi, Model reduction of three-dimensional eddy current problems based on the method of snapshots, IEEE Trans. Magn, vol.49, issue.5, pp.1697-1700, 2013.

M. Ganesh, J. Hesthaven, and B. Stamm, A reduced basis method for electromagnetic scattering by multiple particles in three dimensions, J. Comput. Phys, vol.231, issue.23, pp.7756-7779, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01090927

Y. Chen, J. Hesthaven, Y. Maday, J. Rodríguez, and X. Zhu, Certified reduced basis method for electromagnetic scattering and radar cross section estimation, Comput. Methods Appl. Mech. Engrg, vol.233, pp.92-108, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00644805

B. Peherstorfer, K. Willcox, and M. Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Review, vol.60, issue.3, pp.550-591, 2018.

P. Benner, S. Gugercin, and K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Review, vol.57, issue.4, pp.483-531, 2015.

Z. Luo, Z. Xie, Y. Shang, and J. Chen, A reduced finite volume element formulation and numerical simulations based on POD for parabolic problems, J. Comput. Appl. Math, vol.235, issue.8, pp.2098-2111, 2011.

T. Iliescu and Z. Wang, Are the snapshot difference quotients needed in the proper orthogonal decomposition?, SIAM J. Sci. Comput, vol.36, issue.3, pp.1221-1250, 2014.

D. Pasetto, M. Putti, W. W. , and .. Yeh, A reduced-order model for groundwater flow equation with random hydraulic conductivity: application to Monte-Carlo methods, Water Res. Resear, vol.49, issue.6, pp.3215-3228, 2013.

P. S. Nigro, M. Anndif, Y. Teixeira, P. M. Pimenta, and P. Wriggers, An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems, Comput. Mech, vol.57, issue.4, pp.537-554, 2016.

O. Paul-dubois-taine and D. Amsallem, An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models, Int. J. Numer. Methods Engrg, vol.102, issue.5, pp.1262-1292, 2015.

L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3-D heterogeneous Maxwell equations on unstructured meshes, ESAIM Math. Model. Numer. Anal, vol.39, issue.6, pp.1149-1176, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00210500

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math, vol.90, issue.1, pp.117-148, 2001.

M. Brand, Incremental singular value decomposition of uncertain data with missing values, European Conference on Computer Vision, pp.707-720, 2002.

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2005.

H. Fahs, High-order leap-frog based discontinuous Galerkin method for the time-domain maxwell equations on non-conforming simplicial meshes, Numer. Math, vol.2, issue.3, pp.275-300, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00600467

D. Matsumoto and T. Indinger, On-the-fly algorithm for dynamic mode decomposition using incremental singular value decomposition and total least squares

T. Braconnier, M. Ferrier, J. Jouhaud, M. Montagnac, and P. Sagaut, Towards an adaptive POD/SVD surrogate model for aeronautic design, Comput. Fluids, vol.40, issue.1, pp.195-209, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01298892

G. Golub and A. Van-loan, Matrix Computations, 1996.

E. Hairer, G. Wanner, and S. P. Nørsett, Solving ordinary differential equations I: Nonstiff problems, 1993.

G. Benderskaya, W. Ackermann, H. D. Gersem, and T. Weiland, Adaptive time stepping for electromagnetic models with sinusoidal dynamics, IEEE Trans. Magn, vol.44, issue.6, pp.1262-1265, 2007.

M. Guo and J. S. Hesthaven, Data-driven reduced order modeling for time-dependent problems, Comput. Methods Appl. Mech. Engrg, vol.345, pp.75-99, 2019.

F. Vidal-codina, N. Nguyen, and J. Peraire, Computing parametrized solutions for plasmonic nanogap structures, J. Comput. Phys, vol.366, pp.89-106, 2018.