D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, Using The Barton Libraries Dataset As An RDF Benchmark, 2007.

C. Charu, K. Aggarwal, and . Subbian, Evolutionary Network Analysis: A Survey, ACM Comput. Surv, vol.47, p.36, 2014.

M. Edoardo, . Airoldi, M. David, S. E. Blei, E. P. Fienberg et al., Mixed membership stochastic blockmodels, Journal of machine learning research, vol.9, pp.1981-2014, 2008.

L. Akoglu and C. Faloutsos, RTG: a recursive realistic graph generator using random typing, Data Min. Knowl. Discov, vol.19, pp.194-209, 2009.

L. Akoglu, M. Mcglohon, and C. Faloutsos, RTM: Laws and a Recursive Generator for Weighted Time-Evolving Graphs, ICDM, pp.701-706, 2008.

A. Mohammed-ali, H. Alvari, A. Hajibagheri, K. Lakkaraju, and G. Sukthankar, Synthetic Generators for Cloning Social Network Data, Proceedings of the ASE International Conference on Social Informatics, 2014.

G. Aluç, O. Hartig, M. Tamerözsu, and K. Daudjee, Diversified Stress Testing of RDF Data Management Systems, Proceedings of the 13th International Semantic Web Conference -Part I (ISWC '14), pp.197-212, 2014.

K. Ammar, M. Tamerözsu-;, and W. Us, WGB: Towards a Universal Graph Benchmark, Advancing Big Data Benchmarks -Proceedings of the 2013 Workshop Series on Big Data Benchmarking, WBDB.cn, pp.58-72, 2013.

R. Angles, The Property Graph Database Model, AMW (CEUR Workshop Proceedings), 2018.

R. Angles, M. Arenas, P. Barceló, P. A. Boncz, H. L. George et al., G-CORE: A Core for Future Graph Query Languages, SIGMOD Conference, pp.1421-1432, 2018.

R. Angles, P. Boncz, J. Larriba-pey, I. Fundulaki, T. Neumann et al., The Linked Data Benchmark Council: A Graph and RDF Industry Benchmarking Effort, SIGMOD Rec, vol.43, issue.1, pp.27-31, 2014.

A. Arioua and A. Bonifati, User-guided Repairing of Inconsistent Knowledge Bases, EDBT. OpenProceedings.org, pp.133-144, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01979680

T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan, LinkBench: A Database Benchmark Based on the Facebook Social Graph, Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data (SIGMOD '13), pp.1185-1196, 2013.

A. David, K. Bader, and . Madduri, Design and Implementation of the HPCS Graph Analysis Benchmark on Symmetric Multiprocessors, Proceedings of the 12th International Conference on High Performance Computing (HiPC'05), pp.465-476, 2005.

G. Bagan, A. Bonifati, R. Ciucanu, G. Fletcher, A. Lemay et al., gMark: Schema-Driven Generation of Graphs and Queries, IEEE Transactions on Knowledge and Data Engineering, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01591706

A. Barabasi and R. Albert, Emergence of Scaling in Random Networks, Science, vol.286, pp.509-512, 1999.

D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. A. Lyons, ToXgene: An extensible template-based data generator for XML, WebDB, pp.49-54, 2002.

C. L. Barrett, R. J. Beckman, M. Khan, V. S. Kumar, M. V. Marathe et al., Generation and Analysis of Large Synthetic Social Contact Networks, Winter Simulation Conference (WSC '09). Winter Simulation Conference, pp.1003-1014, 2009.

R. Battle and D. Kolas, Enabling the geospatial semantic web with parliament and geosparql, Semantic Web, vol.3, pp.355-370, 2012.

, Benchmarking Graph Databases on the Problem of Community Detection, Sotirios Beis, Symeon Papadopoulos, and Yiannis Kompatsiaris, pp.3-14, 2015.

G. Bernstein and K. Brien, Stochastic Agent-based Simulations of Social Networks, Proceedings of the 46th Annual Simulation Symposium (ANSS 13), vol.8, 2013.

C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker et al., DBpedia -A Crystallization Point for the Web of Data, Web Semant, vol.7, issue.3, pp.154-165, 2009.

C. Bizer and A. Schultz, The Berlin SPARQL Benchmark, International Journal On Semantic Web and Information Systems, 2009.

D. Vincent, J. Blondel, R. Guillaume, E. Lambiotte, and . Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment, vol.10, p.10008, 2008.

P. Boncz, M. Pham, O. Erling, I. Mikhailov, and Y. Rankka, Social Network Intelligence BenchMark, Hidders, and Alexandre Iosup. 2018a. A Survey of Benchmarks for Graph-Processing Systems, 2013.

A. Bonifati and G. Fletcher, Hannes Voigt, and Nikolay Yakovets. 2018b. Querying Graphs

J. M. Carlson and J. Doyle, Highly Optimized Tolerance: Robustness and Design in Complex Systems, Phys. Rev. Lett, vol.84, pp.2529-2532, 2000.

H. Chafi, J. Crawford, A. Green, and K. Hare, Graph Query Language GQL, 2018.

D. Chakrabarti and C. Faloutsos, Graph Mining: Laws, Generators, and Algorithms, ACM Comput. Surv, vol.38, issue.2, 2006.

D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A Recursive Model for Graph Mining, Proceedings of the Fourth SIAM International Conference on Data Mining, pp.442-446, 2004.

J. Cheng, Y. Ke, W. Ng, and A. Lu, Fg-index: Towards Verification-free Query Processing on Graph Databases, Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data (SIGMOD '07), pp.857-872, 2007.

G. Cheung, W. Su, Y. Mao, and C. Lin, Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights, 2016.

A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan, One trillion edges: Graph processing at facebook-scale, Proceedings of the VLDB Endowment, vol.8, pp.1804-1815, 2015.

M. Ciglan, A. Averbuch, and L. Hluchy, Benchmarking Traversal Operations over Graph Databases, Proceedings of the 2012 IEEE 28th International Conference on Data Engineering Workshops (ICDEW '12), pp.186-189, 2012.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, Benchmarking Cloud Serving Systems with YCSB, Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC '10), pp.143-154, 2010.

L. Danon, A. Diaz-guilera, J. Duch, and A. Arenas, Graph Database Benchmarking on Cloud Environments with XGDBench, P09008. Miyuru Dayarathna and Toyotaro Suzumura, vol.09, pp.509-533, 2005.

D. Dominguez-sal, N. Martinez-bazan, V. Muntes-mulero, P. Baleta, and J. , A Discussion on the Design of Graph Database Benchmarks, Proceedings of the Second TPC Technology Conference on Performance Evaluation, Measurement and Characterization of Complex Systems (TPCTC'10), pp.25-40, 2011.

D. Dominguez-sal, P. Urbón-bayes, A. Giménez-vañó, S. Gómez-villamor, N. Martínez-bazán et al., Survey of Graph Database Performance on the HPC Scalable Graph Analysis Benchmark, Proceedings of the 2010 International Conference on Web-age Information Management (WAIM'10), pp.37-48, 2010.

P. Doreian and F. N. Stokman, Evolution of Social Networks. Number sv. 1 in The journal of mathematical sociology, 1997.

A. Songyun-duan, K. Kementsietsidis, O. Srinivas, and . Udrea, Apples and Oranges: A Comparison of RDF Benchmarks and Real RDF Datasets, Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data (SIGMOD '11), pp.145-156, 2011.

C. Dwork and J. Lei, Differential privacy and robust statistics, Proceedings of the forty-first annual ACM symposium on Theory of computing, pp.371-380, 2009.

C. Dwork and A. Roth, The algorithmic foundations of differential privacy, Foundations and Trends R in Theoretical Computer Science, vol.9, pp.211-407, 2014.

S. Edunov, D. Logothetis, C. Wang, A. Ching, and M. Kabiljo, Darwini: Generating realistic large-scale social graphs, 2016.

P. Erdos and A. Renyi, On the evolution of random graphs, Publ. Math. Inst. Hungary. Acad. Sci, vol.5, pp.17-61, 1960.

O. Erling, A. Averbuch, J. Larriba-pey, H. Chafi, A. Gubichev et al., Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD '15), 2015.

, , pp.619-630

W. Fan, Y. Wu, and J. Xu, Functional Dependencies for Graphs, SIGMOD Conference, pp.1843-1857, 2016.

A. Javier-d-fernández, J. Polleres, and . Umbrich, Towards Efficient Archiving of Dynamic Linked Open Data, Proc. of DIACHRON, pp.34-49, 2015.

J. D. Fernández, J. Umbrich, and A. Polleres, BEAR: Benchmarking the Efficiency of RDF Archiving, 2015.

A. Ferrara, D. Lorusso, S. Montanelli, and G. Varese, Towards a Benchmark for Instance Matching, CEUR Workshop Proceedings, vol.431, 2008.

S. Fortunato and M. Barthelemy, Resolution limit in community detection, Proceedings of the national academy of sciences, vol.104, pp.36-41, 2007.

G. Garbis, K. Kyzirakos, and M. Koubarakis, Geographica: A Benchmark for Geospatial RDF Stores (Long Version), The Semantic Web -ISWC 2013 -12th International Semantic Web Conference, pp.343-359, 2013.

M. Giatsoglou, S. Papadopoulos, and A. Vakali, Massive Graph Management for the Web and Web 2.0, pp.19-58, 2011.

R. Goerke, R. Kluge, A. Schumm, C. Staudt, and D. Wagner, An Efficient Generator for Clustered Dynamic Random Networks, 2012.

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, Advances in neural information processing systems, pp.2672-2680, 2014.

. O. Graphanalysis, HPC Scalable Graph Analysis Benchmark, 2009.

M. Grossniklaus, S. Leone, and T. Zaschke, Towards a benchmark for graph data management and processing, 2013.

A. Grover, A. Zweig, and S. Ermon, Graphite: Iterative generative modeling of graphs, 2018.

Y. Guo, Z. Pan, and J. Heflin, LUBM: A benchmark for {OWL} knowledge base systems, Selcted Papers from the International Semantic Web Conference, vol.3, pp.158-182, 2004.

T. Hellmann and M. Staudigl, Evolution of social networks, European Journal of Operational Research, vol.234, pp.583-596, 2014.

W. Paul, K. B. Holland, S. Laskey, and . Leinhardt, Stochastic blockmodels: First steps, Social networks, vol.5, pp.109-137, 1983.

D. Hric, K. Richard, S. Darst, and . Fortunato, Community detection in networks: Structural communities versus ground truth, Physical Review E, vol.90, p.62805, 2014.

A. Iosup, T. Hegeman, S. Wing-lung-ngai, A. Heldens, T. Prat-pérez et al., LDBC Graphalytics: A Benchmark for Large-scale Graph Analysis on Parallel and Distributed Platforms. Proc. VLDB Endow, vol.9, pp.1317-1328, 2016.

. Iso, Information technology -Database languages -SQL -Part, vol.1, pp.9075-9076, 2008.

K. Amit, P. Joshi, G. Hitzler, and . Dong, LinkGen: Multipurpose Linked Data Generator, The Semantic Web -ISWC 2016, pp.113-121, 2016.

J. Kim and J. Lee, Community Detection in Multi-Layer Graphs: A Survey. SIGMOD Rec, vol.44, pp.37-48, 2015.

M. Kim and J. Leskovec, Multiplicative Attribute Graph Model of Real-World Networks, pp.62-73, 2010.

N. Thomas, M. Kipf, and . Welling, Variational graph auto-encoders, 2016.

G. Tamara, A. Kolda, T. Pinar, C. Plantenga, and . Seshadhri, A scalable generative graph model with community structure, SIAM Journal on Scientific Computing, vol.36, pp.424-452, 2014.

G. Kossinets and D. J. Watts, Empirical Analysis of an Evolving Social Network, Science, vol.311, pp.88-90, 2006.

M. Koubarakis and K. Kyzirakos, Modeling and querying metadata in the semantic sensor web: The model stRDF and the query language stSPARQL, Extended Semantic Web Conference, pp.425-439, 2010.

R. Kumar, J. Novak, and A. Tomkins, Structure and Evolution of Online Social Networks, Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '06), pp.611-617, 2006.

M. Kunjir, P. Kalmegh, and S. Babu, Thoth: Towards Managing a Multi-System Cluster, PVLDB, vol.7, pp.1689-1692, 2014.

A. Lancichinetti and S. Fortunato, Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities, Phys. Rev. E, vol.80, p.16118, 2009.

A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark graphs for testing community detection algorithms, Phys. Rev. E, vol.78, p.46110, 2008.

. Ldbc, Semantic Publishing Benchmark v2, 2015.

D. Le-phuoc, M. Dao-tran, M. Pham, P. Boncz, T. Eiter et al., Linked stream data processing engines: Facts and figures, International Semantic Web Conference, pp.300-312, 2012.

J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication, Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'05), 2005.

. Springer-verlag, , pp.133-145

J. Leskovec, J. Kleinberg, and C. Faloutsos, Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD '05), pp.177-187, 2005.

J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, Statistical Properties of Community Structure in Large Social and Information Networks, Proceedings of the 17th International Conference on World Wide Web (WWW '08), pp.695-704, 2008.

J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson et al., Out-of-order processing: a new architecture for high-performance stream systems, Proceedings of the VLDB Endowment, vol.1, pp.274-288, 2008.

Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, Learning deep generative models of graphs, 2018.

, Towards Benchmarking Multi-Model Databases, CIDR 2017, 8th Biennial Conference on Innovative Data Systems Research, 2017.

J. Lu and I. Holubová, Multi-model Databases: A New Journey to Handle the Variety of Data, ACM Comput. Surv, vol.52, 2019.

L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan et al., Towards a Complete OWL Ontology Benchmark, Proceedings of the 3rd European Conference on The Semantic Web: Research and Applications (ESWC'06), pp.125-139, 2006.

P. Mahadevan and D. Krioukov, Systematic topology analysis and generation using degree correlations, ACM SIGCOMM Computer Communication Review, vol.36, pp.135-146, 2006.

G. Malewicz, . Matthew-h-austern, J. C. Aart, . Bik, C. James et al., Pregel: a system for large-scale graph processing, Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pp.135-146, 2010.

A. Mauri, J. Calbimonte, D. Dellaglio, M. Balduini, M. Brambilla et al., Triplewave: Spreading RDF streams on the web, International Semantic Web Conference, pp.140-149, 2016.

A. Mcgregor, Graph stream algorithms: a survey, ACM SIGMOD Record, vol.43, pp.9-20, 2014.

M. Meimaris and G. Papastefanatos, The EvoGen Benchmark Suite for Evolving RDF Data, Joint Proceedings of the 2nd Workshop on Managing the Evolution and Preservation of the Data Web (MEPDaW 2016) and the 3rd Workshop on Linked Data Quality (LDQ 2016) co-located with 13th, 2016.

, European Semantic Web Conference (ESWC 2016), pp.20-35, 2016.

O. Michail, An Introduction to Temporal Graphs: An Algorithmic Perspective, pp.308-343, 2015.

G. A. Miller, Some effects of intermittent silence, American Journal of Psychology, vol.70, pp.311-314, 1957.

A. George and . Miller, WordNet: A Lexical Database for English, Commun. ACM, vol.38, pp.39-41, 1995.

M. Morsey, J. Lehmann, S. Auer, and A. Ngomo, Usage-centric Benchmarking of RDF Triple Stores, Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI'12), pp.2134-2140, 2012.

M. Morsey, J. Lehmann, S. Auer, and A. Ngomo, DBpedia SPARQL Benchmark -Performance Assessment with Real Queries on Real Data, pp.454-469, 2011.

G. Mark, S. Namata, and L. Getoor, Identifying graphs from noisy and incomplete data, SIGKDD Explorations, vol.12, pp.33-39, 2010.

D. F. Nettleton, A synthetic data generator for online social network graphs, Social Network Analysis and Mining, vol.6, p.44, 2016.

S. Pan and X. Zhu, Graph Classification with Imbalanced Class Distributions and Noise, IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, pp.1586-1592, 2013.

V. Papakonstantinou, G. Flouris, I. Fundulaki, K. Stefanidis, and G. Roussakis, Versioning for Linked Data: Archiving Systems and Benchmarks, Proceedings of the Workshop on Benchmarking Linked Data (BLINK 2016) co-located with the 15th International Semantic Web Conference (ISWC), 2016.

A. Paranjape, A. R. Benson, and J. Leskovec, Motifs in Temporal Networks, Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (WSDM '17), pp.601-610, 2017.

M. Pham, P. Boncz, and O. Erling, S3G2: A Scalable Structure, 2013.

H. Springer-berlin, , pp.156-172


N. Pobiedina, S. Rümmele, S. Skritek, and H. Werthner, Benchmarking Database Systems for Graph Pattern Matching, pp.226-241, 2014.

A. Prat, -. Pérez, and D. Dominguez-sal, How Community-like is the Structure of Synthetically Generated Graphs, Proceedings of Workshop on GRAph Data Management Experiences and Systems (GRADES'14), 2014.

A. Prat-pérez, D. Dominguez-sal, J. Brunat, and J. Larriba-pey, Put three and three together: Triangle-driven community detection, ACM Transactions on Knowledge Discovery from Data (TKDD), vol.10, p.22, 2016.

E. Prud, &. , and A. Seaborne, SPARQL Query Language for RDF, 2008.

S. Purohit, B. Lawrence, G. Holder, and . Chin, Temporal Graph Generation Based on a Distribution of Temporal Motifs, Proceedings of the 14th International Workshop on Mining and Learning with Graphs (MLG), 2018.

Z. Shi-qiao and . Meralözsoyoglu, RBench: Application-Specific RDF Benchmarking, Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD '15), pp.1825-1838, 2015.

Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao et al., Generating synthetic decentralized social graphs with local differential privacy, Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp.425-438, 2017.

C. R. Rivero, A. Schultz, C. Bizer, and D. Ruiz, Benchmarking the Performance of Linked Data Translation Systems, WWW2012 Workshop on Linked Data on the Web, p.16, 2012.

. Sherif-sakr, Processing large-scale graph data: A guide to current technology, IBM Developerworks, p.15, 2013.

. Sherif-sakr, Big data 2.0 processing systems: a survey, 2016.

S. Sakr, I. Faisal-moeen-orakzai, Z. Abdelaziz, and . Khayyat, Large-scale graph processing using Apache Giraph, 2016.

, Graph Data Management: Techniques and Applications, 2011.

M. Saleem, Q. Mehmood, and A. Ngomo, FEASIBLE: A Feature-Based SPARQL Benchmark Generation Framework, pp.52-69, 2015.

A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu et al., XMark: A Benchmark for XML Data Management, Proceedings of the 28th International Conference on Very Large Data Bases (VLDB '02). VLDB Endowment, pp.974-985, 2002.

M. Schmidt, T. Hornung, M. Meier, C. Pinkel, and G. Lausen, SP2Bench: A SPARQL Performance Benchmark, pp.371-393, 2010.

M. Simonovsky and N. Komodakis, GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01990381

, Emanuele Della Valle, Andrea Mauri, and Marco Brambilla, Hotea Solutions. 2016. The TPC Benchmark -H, pp.202-209, 2016.

C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen et al., A Comparison of a Graph Database and a Relational Database: A Data Provenance Perspective, Proceedings of the 48th Annual Southeast Regional Conference (ACM SE '10), vol.42, 2010.

B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, On the Evolution of User Interaction in Facebook, Proceedings of the 2Nd ACM Workshop on Online Social Networks (WOSN '09), pp.37-42, 2009.

. W3c, OWL Web Ontology Language Overview, 2004.

C. Wang, G. Wang, Y. L. Lei, and S. Qiao, Community Evolution in Dynamic Social Networks, Information Technology Applications in Industry, vol.756, pp.2634-2638, 2013.

S. Wang, Y. Guo, A. Qasem, and J. Heflin, Rapid Benchmarking for Semantic Web Knowledge Base Systems, pp.758-772, 2005.

X. Wang, M. Maghami, and G. Sukthankar, Leveraging network properties for trust evaluation in multi-agent systems, Proceedings of the 2011 IEEE, vol.02, pp.288-295, 2011.

Y. Wang and X. Wu, Preserving differential privacy in degree-correlation based graph generation, Transactions on data privacy, vol.6, p.127, 2013.

H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu et al., Path Problems in Temporal Graphs, Proc. VLDB Endow, vol.7, pp.721-732, 2014.

H. Wu, T. Fujiwara, Y. Yamamoto, J. Bolleman, and A. Yamaguchi, BioBenchmark Toyama 2012: an evaluation of the performance of triple stores on biological data, Journal of Biomedical Semantics, vol.5, p.32, 2014.

X. Wu, X. Ying, K. Liu, and L. Chen, A survey of privacy-preservation of graphs and social networks. In Managing and mining graph data, pp.421-453, 2010.

J. Yang and J. Leskovec, Defining and evaluating network communities based on groundtruth, Knowledge and Information Systems, vol.42, pp.181-213, 2015.

Y. Yao, J. Zhou, L. Han, F. Xu, and J. Lü, Comparing Linkage Graph and Activity Graph of Online Social Networks, pp.84-97, 2011.

J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models, International Conference on Machine Learning, pp.5694-5703, 2018.

Y. Zhao, A survey on theoretical advances of community detection in networks, Wiley Interdisciplinary Reviews: Computational Statistics, vol.9, p.5, 2017.