, Let ? = 8? + 7 in the Siegel case, and ? = 4 Tr K/Q (?) + 7 in the Hilbert case. Then, given ? P and ? i(P ) at precision O(z ? )

, It is enough to recover the rational fractions s and p; afterwards, q and r can be deduced from the equation of C ? . First, assume that P is a Weierstrass point of C. Then s, p are invariant under the hyperelliptic involution. Therefore we have to recover univariate rational fractions in u of degree d ? 2? (resp. d ? Tr(?)). This can be done in quasi-linear time from their power series expansion up

, Since u has valuation 2 in z, we need to compute ? P at precision O(z 4d+1 )

, We now have to compute rational fractions of degree d ? 4? + 3 (resp. d ? 2 Tr(?) + 3)

, Compute at most 4 candidates for the tangent matrix of the isogeny ? using Proposition 4.26 in the Siegel case

, Choose a base point P on C such that ? P is of generic type, and compute the power series ? P and ? i(P ) up to precision O z 8?+7

&. , Let U ? A 2 (k) be the open set consisting of abelian surfaces A such that Aut(A) ? {±1}

A. Let and A. , A), j(A ? ) be their Igusa invariants. Assume that A and A ? are ?-isogenous over k, and that the subvariety of A 3 × A 3 cut out by the modular equations ? ?,i for 1 ? i ? 3 is normal at (j(A), j(A ? )). Then, given j(A) and j(A ? ), Algorithm 6.1 succeeds and returns 1. a field extension k ? /k of degree dividing 8, 2

, the rational representation (s, p, q, r) ? k ? (u, v) 4 of an ?-isogeny ? : Jac(C) ?

D. Abramovich, M. Olsson, and A. Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble), vol.58, pp.1057-1091, 2008.

D. Abramovich and A. Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc, vol.15, pp.27-75, 2002.

J. Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble), vol.63, pp.2349-2402, 2013.

J. Alper, Adequate moduli spaces and geometrically reductive group schemes, Algebr. Geom, vol.1, pp.489-531, 2014.

J. Alper, J. Hall, and D. Rydh, The étale local structure of algebraic stacks, 2019.

J. Alper, J. Hall, and D. Rydh, A Luna étale slice theorem for algebraic stacks, Ann. Math, vol.191, issue.3, pp.675-738, 2020.

Y. André, On the Kodaira-Spencer map of abelian schemes, Ann. Sc. Norm. Super. Pisa Cl. Sci, vol.17, issue.5, pp.1397-1416, 2017.

W. L. Baily and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math, issue.2, pp.442-528, 1966.

S. Ballentine, A. Guillevic, E. L. García, C. Martindale, M. Massierer et al., Isogenies for point counting on genus two hyperelliptic curves with maximal real multiplication, Algebraic Geometry for Coding Theory and Cryptography, vol.9, pp.63-94, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01421031

C. Birkenhake and H. Lange, Complex abelian varieties. Second, 2004.

A. Bostan, F. Morain, B. Salvy, and É. Schost, Fast algorithms for computing isogenies between elliptic curves, Math. Comp, vol.77, pp.1755-1778, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00091441

A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf et al., Algorithmes efficaces en calcul formel, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01431717

N. Bourbaki, Groupes et algèbres de Lie. Chapitres II et III. Actualités Scientifiques et Industrielles 1349, 1972.

N. Bourbaki, Groupes et algèbres de Lie. Chapitres VII et VIII

, Actualités Scientifiques et Industrielles 1364, 1975.

J. H. Bruinier, Hilbert modular forms and their applications". In: The 1-2-3 of modular forms, pp.105-179, 2008.

J. I. Burgos-gil and A. Pacetti, Hecke and Sturm bounds for Hilbert modular forms over real quadratic fields, Math. Comp, vol.86, pp.1949-1978, 2017.

C. Chai, Arithmetic minimal compactification of the Hilbert-Blumenthal moduli spaces, Ann. of Math, vol.3, issue.2, pp.541-554, 1990.

C. Ciliberto, G. Van-der, and . Geer, The moduli space of abelian varieties and the singularities of the theta divisor, Surveys in differential geometry, vol.7, pp.61-81, 2000.

A. Clebsch, Theorie der binären algebraischen Formen, p.1872

F. Cléry, C. Faber, G. Van-der, and . Geer, Covariants of binary sextics and vector-valued Siegel modular forms of genus two, Math. Ann, vol.369, pp.1649-1669, 2017.

B. Conrad, The Keel-Mori theorem via stacks, 2005.

E. Costa, N. Mascot, J. Sijsling, and J. Voight, Rigorous computation of the endomorphism ring of a Jacobian, In: Math. Comp, vol.88, pp.1303-1339, 2019.

J. Couveignes and T. Ezome, Computing functions on Jacobians and their quotients, In: Lond. Math. Soc. J. Comput. Math, vol.18, issue.1, pp.555-577, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01088933

A. J. De and J. , The moduli spaces of polarized abelian varieties, Math. Ann, vol.295, pp.485-503, 1993.

P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat, vol.349, pp.143-316, 1972.

A. Dudeanu, D. Jetchev, D. Robert, and M. Vuille, Cyclic isogenies for abelian varieties with real multiplication, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01629829

R. Dupont, Fast evaluation of modular functions using Newton iterations and the AGM", In: Math. Comp, vol.80, pp.1823-1847, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00644845

N. D. Elkies, Elliptic and modular curves over finite fields and related computational issues, Computational perspectives on number theory, vol.7, pp.21-76, 1995.

A. Enge and E. Thomé, CMH: Computation of Igusa class polynomials, 2014.

G. Faltings and C. Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol.22, issue.3, 1990.

B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitsure et al., Fundamental algebraic geometry. Mathematical Surveys and Monographs 123, 2005.

P. Gaudry, D. Kohel, and B. Smith, Counting points on genus 2 curves with real multiplication, ASIACRYPT 2011, vol.7073, pp.504-519, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00598029

P. Gaudry and É. Schost, Genus 2 point counting over prime fields, J. Symb. Comput, vol.47, pp.368-400, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00542650

E. Z. Goren and K. E. Lauter, Genus 2 curves with complex multiplication, IMRN 5, pp.1068-1142, 2012.

A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I", In: Inst. Hautes Études Sci. Publ. Math, vol.20, p.259, 1964.

D. Gruenewald, Computing Humbert surfaces and applications, Arithmetic, geometry, cryptography and coding theory 2009, vol.521, pp.59-69, 2010.

T. Ibukiyama, Vector-valued Siegel modular forms of symmetric tensor weight of small degrees, Comment. Math. Univ. St. Pauli, vol.61, pp.51-75, 2012.

J. Igusa, On Siegel modular forms of genus two, Amer. J. Math, vol.84, pp.175-200, 1962.

J. Igusa, Modular forms and projective invariants, Amer. J. Math, vol.89, pp.817-855, 1967.

J. Igusa, On the ring of modular forms of degree two over Z, Amer. J. Math, vol.101, issue.1, pp.149-183, 1979.

J. Igusa, Arithmetic variety of moduli for genus two, Ann. of Math, issue.2, pp.612-649, 1960.

A. Joux and R. Lercier, Counting points on elliptic curves in medium characteristic, 2006.

E. Kani, Elliptic subcovers of a curve of genus 2. I. The isogeny defect, Ann. Math. Qué, vol.43, pp.281-303, 2019.

S. Keel and S. Mori, Quotients by groupoids, Ann. of Math, vol.1, issue.2, pp.193-213, 1997.

K. Kodaira and D. C. Spencer, On deformations of complex analytic structures, I, Ann. of Math, issue.2, pp.328-401, 1958.

G. Laumon and L. Moret-bailly, Champs algébriques, p.39, 2000.

K. Lauter and T. Yang, Computing genus 2 curves from invariants on the Hilbert moduli space, J. Number Theory, vol.131, pp.936-958, 2011.

Q. Liu, Courbes stables de genre 2 et leur schéma de modules, Math. Ann, vol.295, pp.201-222, 1993.

D. Luna, Slices étales, Sur les groupes algébriques, p.33, 1973.

C. Martindale, Isogeny graphs, modular polynomials, and applications, 2018.
URL : https://hal.archives-ouvertes.fr/tel-01992715

J. Mestre, Construction de courbes de genre 2 à partir de leurs modules, Effective methods in algebraic geometry, vol.94, pp.313-334, 1990.

E. Milio, Modular polynomials
URL : https://hal.archives-ouvertes.fr/hal-01520262

E. Milio, A quasi-linear time algorithm for computing modular polynomials in dimension 2, LMS J. Comput. Math, vol.18, pp.603-632, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01080462

E. Milio and D. Robert, Modular polynomials on Hilbert surfaces, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01520262

J. S. Milne, Abelian varieties, Arithmetic geometry, pp.103-150, 1984.

J. S. Milne, Jacobian varieties, Arithmetic geometry, pp.167-212, 1984.

P. Molin, Hcperiods: Period matrices and Abel-Jacobi maps of hyperelliptic and superperelliptic curves, 2018.

P. Molin and C. Neurohr, Computing period matrices and the Abel-Jacobi map of superelliptic curves, In: Math. Comp, vol.88, pp.847-888, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02416012

B. Moonen, G. Van-der-geer, and B. Edixhoven, Abelian varieties, 2012.

D. Mumford, J. Fogarty, and F. Kirwan, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) 34, 1994.

D. Mumford, The structure of the moduli spaces of curves and abelian varieties, Actes du Congrès International des Mathématiciens, pp.457-465, 1970.

D. Mumford, Tata lectures on theta. II. Progr. Math. 43. Birkhäuser, 1984.

S. Nagaoka, On the ring of Hilbert modular forms over Z, J. Math. Soc. Japan, vol.35, pp.589-608, 1983.

M. C. Olsson, Hom-stacks and restriction of scalars, Duke Math. J, vol.134, issue.1, pp.139-164, 2006.

M. Rapoport, Compactifications de l'espace de modules de Hilbert-Blumenthal, Compositio Math, vol.36, issue.3, pp.255-335, 1978.

D. Rydh, The canonical embedding of an unramified morphism in an étale morphism, Math. Z, vol.268, pp.707-723, 2011.

D. Rydh, Existence and properties of geometric quotients, J. Algebraic Geom, vol.22, pp.629-669, 2013.

R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p", In: Math. Comp, vol.44, pp.483-494, 1985.

R. Schoof, Counting points on elliptic curves over finite fields, J. Théorie Nr. Bordx, vol.7, issue.1, pp.219-254, 1995.

M. Streng, Complex multiplication of abelian surfaces, 2010.

, The PARI group. Pari/GP version 2.11.0. Univ, 2019.

, The Stacks project authors, 2018.

J. Thomae, 0) durch die Klassenmoduln algebraischer Functionen, J. Reine Angew. Math, vol.71, pp.201-222, 1870.

G. Van-der and . Geer, Siegel modular forms and their applications". In: The 1-2-3 of modular forms, pp.181-245, 2008.

, Siegel modular forms ? 4 , ? 6 , ? 10 and ? 12 via the Hilbert embedding H are symmetric Hilbert modular forms of even weight, so they have expressions in terms of G 2 , F 6 , F 10 . These expressions can be computed using linear algebra on Fourier expansions