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Abstract: Wireless networks are now a part of the everyday life of many people and are used for many
applications. Recently, new technologies that enable low-power and long-range communications have
emerged. These technologies, in opposition to more traditional communication technologies rather
defined as "short range", allow kilometer-wide wireless communications. Long-range technologies are
used to form Low-Power Wide-Area Networks (LPWAN). Many LPWAN technologies are available,
and they offer different performances, business models etc., answering different applications’ needs.
This makes it hard to find the right tool for a specific use case. In this article, we present a survey
about the long-range technologies available presently as well as the technical characteristics they
offer. Then we propose a discussion about the energy consumption of each alternative and which one
may be most adapted depending on the use case requirements and expectations, as well as guidelines
to choose the best suited technology.
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1. Introduction

Wireless radio technologies, such as Wi-Fi, are used daily to enable inter-device communications.
In the last few years, new kinds of wireless technologies have emerged. In opposition to standard
wireless technologies referred to as “short-range”, long-range radio technologies allow devices to
communicate over kilometers-wide distances at a low energy cost, but at the expense of a low data rate.
This allows the creation of what is known as Low-Power Wide-Area Networks (LPWAN), spanning
tens of kilometers. This kind of technology has received and still benefits from a lot of academic
and industrial attention. In this survey, we focus on long-range wireless technologies that provide
kilometers-wide range only (in opposition to short-range technologies such as Wi-Fi or ZigBee).

While Sigfox and LoRa are pioneers of LPWAN technologies, presently, a lot of technologies are
available. Those are generally based on similar principles but may heavily differ in terms of behavior.
Some of those technologies are implementations of standards and offer small changes between the
different implementations. Some are based on proprietary hardware or software, some are open.
Some take advantage of the unlicensed Industrial, Scientific and Medical (ISM) radio bands, some
use the GSM frequency bands. There are not only differences in terms of technical details, but also in
commercial models. Some technologies offer the users to deploy their own base stations while other
offer services like an operator.

Because of those differences, the actual performance provided by these technologies greatly differ
on several metrics. Each one offers different range, data rate, energy consumption, delay etc., Even
those may vary depending on actual deployments, since depending on frequencies, modulation etc.,
in the same environment setting, different signals will not behave similarly. The most important
metrics that are usually put into light are the following: (i) range, which is the maximal distance of
communication, (ii) data rate which is the speed of the communication and (iii) energy consumption
which is directly dependent on the other metrics.
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Many different technologies are available, and it may be rather hard to get information about the
different characteristics and performances offered. Thus, in this paper, we present a comprehensive
study of the different current LPWAN radio technologies and their characteristics. We propose a
guide to choose the most appropriated LPWAN technology based on application requirements and
expectations. We have gathered and classified information from the literature but also from commercial
sources. After the raw information about the different technologies, we propose a discussion about the
different strengths and weaknesses that are associated with each technology. This is done in terms of
coverage, range, energy consumption, and other important factors. Then depending on the planned
use case, we propose a subjective recommendation on which technology may be more adapted to it.

While the literature already contains several surveys about long-range wireless technologies [1–7],
to the best of our knowledge, no work gives an overview of all the available possibilities including
commercial and mobile technologies. We provide useful technical detail about those technologies.
Moreover, we propose a discussion about the energy consumption of each long-range wireless
technology and general guidelines on how to easily choose which one is the most suitable relative to
the targeted use case.

Please note that the choice between long-range or short-range technologies is dictated by the
applications requirements and environments. In some cases, both kinds of technology can fit.
Nevertheless, this survey aims to provide a clear overview of long-range technologies only and
a guide for choosing the most appropriated one. Thus, we will not discuss about choosing between
long-range and short-range technologies.

The rest of this article is structured as follows. First, Section 2 introduces the long-range
wireless technologies that are available for use as of today with technical information. Section 3
proposes a discussion about the previously introduced technologies, relative to the different aspects of
performance such as the energy consumption of each alternative, as well as guidelines to choose the
best suited technology. Finally, Section 4 summarizes and concludes this article.

2. Long-Range Wireless Technologies

In this section, we give an overview of the long-range wireless technologies that are available
presently. Classifying those based on their proprietary or open aspects is not appropriate as some may
be part of both worlds, as LoRa [8]. Instead, we propose to gather them based on which frequency band
they use: (i) either the licensed mobile frequencies (a.k.a. cellular frequencies) (ii) or the unlicensed
ISM bands.

On the one hand, using the licensed mobile frequencies ensures that the band is used by
authorized devices in a sane manner. However, on the other hand, the use of these frequencies
requires subscription costs and they may already be very busy because of the wide spread of cellular
devices, especially in crowded urban areas.

On the contrary, using the unlicensed ISM bands [9] does not ensure a sane use of the frequencies,
as anybody is allowed to emit and a lot of devices may interfere. Still, the duty cycle restrictions
must be respected depending on the used frequency band, the power and the geographical location
of the device. However, at the same time, using unlicensed bands also implies that we can freely
expand the network with new base stations, create private networks and use those technologies to
possibly communicate in a peer-to-peer fashion between devices. One can wish to deploy their own
infrastructure for two main reasons : (i) either because the area to monitor is not covered by any other
technology (ii) or to keep control over the infrastructure management.

Managing the energy consumption of LPWAN devices is a key factor, because those devices are
usually expected to run autonomously for long periods of time, commonly several years. Replacing or
recharging batteries is often unpractical, especially when numerous devices are deployed in different
places, hostile or unreachable environments. Additionally, those devices may have to receive firmware
updates, e.g., for optimization or security reasons. As with battery replacement, mandatory physical
access to the devices for firmware updates is highly unpractical. Thus, supporting remote firmware
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updates, known as Firmware over the Air (FotA) updates, may turn out to be a key factor for choosing
a long-range technology.

Figure 1 summarizes this section by positioning each main technology with regards to
its maximum data rate and theoretical urban range (based on data available in datasheets
referenced further). Table A1 and Table A2 summarize the technologies’ technical information.
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Figure 1. Technologies’ maximum data rate over urban range.

2.1. Mobile Band-Based Technologies

Mobile technologies are widely deployed and used worldwide, as we can see in Figure 2.
Although white zones remain, mobile networks may well be the widest wireless networks deployed to
provide Internet access. The 3rd Generation Partnership Project (3GPP) consortium, which defines
and proposes standards for mobile technologies, recently proposed an amendment to existing mobile
standards. These amendments aim to make mobile communications usable for Internet of Things
(IoT) applications, in respect to IoT special constraints, mainly in terms of computation power and
energy restriction.

Figure 2. LTE-Advanced (LTE-A) coverage map [10].
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There are two main mobile IoT technologies that are deployed and widely used right now:
enhanced Machine-Type Communication (eMTC), and Narrow-Band IoT (NB-IoT). Both are derived
from the LTE 3GPP standard. Two other technologies could be potential candidates: Extended
Coverage GSM IoT (EC-GSM-IoT), and 5G. These technologies are going to be presented in more depth
further in this section.

2.1.1. Enhanced Machine-Type Communication (eMTC, a.k.a. LTE-M)

Long Term Evolution (LTE), a.k.a. 4G, is a standard from the 3GPP. LTE Cat M1, which is known
as either LTE-M or eMTC, is derived from the LTE standard and specified in 3GPP release 13 [11]. It is
designed for Machine to Machine (M2M) communications (e.g., IoT). eMTC is a simplified version of
LTE that aims to draw less battery power and to extend its range. In contrast to classic LTE, eMTC
reduces the data rate to a tenth of LTE (up to 1 Mbps) and strips down the bandwidth from 20 MHz to
1.4 MHz. eMTC supports full duplex communications, as well as optional half duplex operations to
reduce consumed power. FotA updates are possible using eMTC. It may be worth noting that Voice
over LTE (VoLTE) is also usable on LTE-M communications. Two new features are enabled in eMTC,
namely extended Discontinuous Reception (eDRX), and Power Saving Mode (PSM). The former allows
longer paging cycles, while the latter allows nodes to be inactive for an indefinite period of time. Both
aim at reducing the power consumption. eMTC also supports handover, which makes it usable when
considering mobile IoT applications.

eMTC is already deployed in numerous countries worldwide, as we can see in Figure 3. It is
rather easy for Mobile Network Operators (MNO) to deploy eMTC, as the infrastructure only needs
a software upgrade, without any physical hardware modifications. As an example, Orange, one of
the main MNO in France, recently launched its own eMTC network. Its current coverage is available
in [12].

Figure 3. LTE-M and NB-IoT coverage map [13].

2.1.2. Narrow-Band IoT (NB-IoT)

Narrow-Band IoT (NB-IoT), a.k.a. LTE Cat NB1, is another derivation of the LTE standard which
is also specified in 3GPP release 13. It is designed for IoT applications that are even more constrained
than the ones using eMTC. It is based on narrow-band communications, and uses a bandwidth of
180 kHz. As a result, the data rate is greatly reduced (around 250 kbps down-link and 20 kbps up-link),
which makes FotA updates hard to achieve using NB-IoT. On the bright side, NB-IoT consumes less
energy power, and benefits from a greater range than eMTC. NB-IoT can be used with three different
modes: in-band, guard-band LTE, and standalone. In-band mode uses the LTE band, guard-band uses
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the unused part of the LTE band, and standalone uses a dedicated spectrum (e.g., GSM bands). NB-IoT
does not support handover, so it is hardly worth consideration for mobile IoT applications.

NB-IoT is already available in some regions and is still being deployed in other countries, as
visible in Figure 3. However, its deployment is not as easy as eMTC because NB-IoT requires a
hardware upgrade of the existing LTE infrastructure.

2.1.3. Extended Coverage GSM IoT (EC-GSM-IoT)

Extended Coverage GSM IoT (EC-GSM-IoT) is also specified in 3GPP release 13. In contrast
with eMTC and NB-IoT, EC-GSM-IoT is based on eGPRS technology (a.k.a. 2.75G) and not LTE (4G).
EC-GSM-IoT could be considered to be the equivalent of LTE-M in the GSM spectrum, as it mainly
brings range and power efficiency improvements. Bandwidth per channel is of 200 kHz, for a total
bandwidth of 2.4 MHz. It offers a data rate of 70 or 240 kbps depending on the modulation used
(GMSK or 8PSK).

While this technology could be extremely useful for already existing and deployed IoT
applications that use the GSM network, it is getting much less attention than its two aforementioned
counterparts. This is because some MNO are planning to decommission their GSM network soon [14].
On top of that, no operational EC-GSM-IoT network is available for use today.

2.1.4. 5G

5G is the latest innovation in mobile network technologies that is currently being developed.
It is expected to be a "revolutionizing technology" for the mobile world as well as for IoT
communications [15]. However, for now, few to no explanations exist on how to integrate the
high-speed technology of 5G with the low power consumption that is needed for IoT applications.
Indeed, 5G is meant to enable ultra-high-speed communications, using high frequency (e.g., 60 GHz)
and wide bandwidth [16]. It aims to offer a very high data rate (1–10 Gbps). This does not seem
applicable out-of-the-box when you consider energy constrained IoT objects. Moreover, this technology
is not available right now for use outside of test labs. 5G should begin to be commercially deployed
and available around 2020.

As for now, 5G aims at two things: massive Machine-Type Communications (mMTC), and critical
Machine-Type Communications (cMTC) leveraging Ultra Reliable and Low Latency Communications
(URLLC). The requirements for cMTC are too strict for IoT, while mMTC was developed for IoT. LTE-M
and NB-IoT already fulfill mMTC 5G requirements, so there is no dedicated solution other than eMTC
and NB-IoT that is planned to be specified for 5G IoT [17].

2.2. ISM Band-Based Technologies

In contrast to mobile IoT technologies, ISM-based LPWAN technologies are using unlicensed
parts of the spectrum to carry communications. Unlicensed bands are usable by everyone without any
specific authorization. In return, legal restrictions must be respected, e.g., a given duty cycle that must
not be overrun.

2.2.1. Sigfox

Sigfox [18] is a proprietary end-to-end solution for IoT connectivity. Sigfox positions itself as an
alternative network operator, and deploys base stations around the world, as we can see in Figure 4.
This technology uses Binary Phase Shift Keying (BPSK) modulation over an Ultra-Narrow-Band
(UNB) carrier of the sub-GHz ISM bands. UNB greatly reduces noise levels, which extends the
communication range. The counterpart is a very slow data rate of 100 bps. To respect the duty cycle
regulation imposed on the sub-GHz bands, Sigfox limits up-link communications to 140 transmissions
of 12 bytes payload, and down-link to 4 transmissions of 8 bytes payload, per day and per device.
The Sigfox network is available in several countries of the world, as we can see in Figure 4. Because it
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is the same network, which is managed by a single operator, there is no roaming involved when using
Sigfox in different countries.

Figure 4. Sigfox coverage map [19]—blue is current coverage/purple is future coverage.

2.2.2. LoRa

Long Range (LoRa) is a proprietary technology from Semtech [8]. Based on Chirp Spread
Spectrum (CSS) modulation, it can use several bands of the ISM sub-GHz spectrum depending
on the geographical location. LoRa communications are reasonably resilient to detection and jamming,
and are immune to Doppler deviation. LoRa offers several parameters that can be modified to adjust
the trade-off between range and data rate (from 0.3 to 50 kbps), e.g., the spreading factor. While LoRa
is the technology of the physical layer, LoRaWAN [20] which is supported by the LoRa Alliance, is an
open protocol for the MAC and network layers. LoRaWAN describes 3 classes of devices. Roughly,
class-A is for heavily energy constrained devices, class-B for moderately energy constrained devices
and class-C for always-on devices. FotA updates over LoRa may be conceivable, but hard to achieve.
They may need to use multicast class-C devices only, which uses a lot of power [21]. Several scientific
studies (e.g., [22,23] show that LoRa performs well in terms of range when a line of sight is available for
communications, but the range is greatly reduced when it is not available, like in an urban environment.

Several MNO are deploying LoRa (e.g., Orange in France [12]), as well as public community
initiative such as The Things Network [24]. A map of the current LoRaWAN worldwide deployment
is visible in Figure 5. An additional benefit of using LoRa is the possibility to deploy personal LoRa
base stations to extend the network.
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Figure 5. Countries with a LoRaWAN deployment [20].

2.2.3. Ingenu

Ingenu is another proprietary LPWAN technology. In contrast to other LPWAN, Ingenu proposes
to use the 2.4 GHz ISM band, which is already used by other technologies (e.g., Wi-Fi), instead of
the sub-GHz ISM bands. The advantage is that this band does not fall under heavy restrictions
regarding duty cycle as the sub-GHz does. Ingenu is based on a proprietary physical technology
known as Random Phase Multiple Access (RPMA), which is a variation of Code Division Multiple
Access (CDMA). Ingenu is reported to have better performance than most of the other LPWAN
technologies [25], especially in terms of range and data rate (78 kbps up-link and 19.5 kbps down-link).
However, no scientific study is available to verify these claims.

2.2.4. Weightless

Weightless [26] is a set of standards developed by the Weightless Special Interest Group
(Weightless-SIG). Three different standards exist: W, P, and N. Weightless-W uses TV white space
frequencies, and offers a data rate between 1 kbps and 10 Mbps using a narrow-band signal, based on
QAM and several other modulations. This is interesting because it takes advantage of a part of the
unused ultra-high frequency spectrum. However, access to TV white space is not permitted worldwide
as the regulation differs for different countries, which makes it impossible to build a small antenna
that could access all the usable frequencies [27]. Weightless-N is based on UNB for upward only
communications, using the ISM sub-GHz bands, and a DBPSK modulation. It is similar to Sigfox
technology-wise, which means that it shares the same advantages and limitations, but has a higher
data rate (30 to 100 kbps). Nwave [28] is the main company supporting Weightless-N technology.
Weightless-P [29] is the latest Weightless standard. It offers bidirectional connectivity based on the ISM
sub-GHz bands as well, using channels 12.5 kHz wide which results in a data rate between 0.2 kbps
and 100 kbps. GMSK and QPSK modulations are used. It also officially supports acknowledgments
and FotA updates [30]. Ubiik [31] is the main provider of Weightless-P technology today.
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2.2.5. Telensa

Telensa [32] is a company providing end-to-end LPWAN connectivity. It has mainly deployed
smart lighting networks in cities. It uses a proprietary UNB technology operating in the sub-GHz ISM
bands [33], offering a low data rate of 62.5 bps up-link and 500 bps down-link. Telensa does not seem
to propose its network for an external use other than their own applications for now, but they aim to
standardize their technology.

2.2.6. DASH7

The DASH7 Alliance [34] is an industry consortium. They propose a full stack protocol known
as DASH7 Alliance Protocol (D7AP) based on narrow-band modulation in the ISM sub-GHz bands.
D7AP defines a complex network stack and has features such as inevitable periodic wake up of the
nodes. This results in a much lower latency for the communications, but it also results in an increase in
power consumption. It offers a data rate of 9.6 to 166.7 kbps.

2.2.7. IEEE Standards

The Institute of Electrical and Electronics Engineers (IEEE) defined three standards for IoT
communications. These are based on 802.15.4 and 802.11 specifications. IEEE 802.15.4k [35] is a
standard operating in the ISM bands (sub-GHz and 2.4 GHz). The 802.15.4 modulation schemes are
switched to DSSS and FSK, and MAC layer to CSMA/CA without Priority Channel Access (PCA),
CSMA, and ALOHA with PCA. This allows a data rate between 1.5 bps and 128 kbps. It is worth
noting that Ingenu’s technology is compliant with this standard. IEEE 802.15.4g [36] is a different
specification based on the same standard as 802.15.4k. Here, we have three different modulation
schemes usable at the physical layer: FSK, OFDMA and QPSK. Data rate is between 4.8 and 800 kbps.
The sub-GHz bands are also used. One of the differences with traditional 802.15.4 is that frames can
be up to 1500 bytes instead of only 127 bytes to avoid IP fragmentation. MAC layer is the same as
in 802.15.4e. IEEE 802.11ah [37] a.k.a. Wi-Fi HaLow is based on OFDM and aims to increase the
transmission range and decrease energy consumption of Wi-Fi, at the expense of a lower data rate
(0.6 to 8 Mbps). It achieves better performance than e.g., ZigBee or Bluetooth but far from previous
LPWAN technologies presented in this report.

2.2.8. Others

In this section, we focused on the main LPWAN technologies but there exist plenty of others.
For instance, Qowisio [38] proposes a dual LPWAN technology based on its own UNB technology
and LoRa as a service for the end users. No technical specifications of the technology are available.
Previously mentioned, Nwave [28] propose a protocol based on UNB (like Sigfox) in the sub-GHz ISM
bands. The company mainly offers Smart Parking devices. Little technical information is available but
they are claimed to achieve 10 km range [39]. WAVIoT [40] proposes a full stack protocol known as
Narrow-Band Fidelity (NB-Fi). Based on a DBPSK modulation scheme, it uses the sub-GHz ISM bands.

3. Discussion

3.1. On the Energy Consumption

As the energy consumption of each technology entirely depends on the hardware and the
transmitting power, it is not very relevant to present an energy consumption rate alongside each
technology. Rather, here we propose a ranking of which technology should consume more or less
energy compared to the others, based on the modulation and the frequency used, as well as the data
rate offered by each protocol. We also present informative energy rate reported from the data-sheet of
popular wireless chipsets. Also note that some low-energy technologies feature low data rates and thus,
require more time to send the same amount of data, leading to equivalent energy consumption than
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more energy greedy but faster technologies. UNB technologies should be the ones that use less energy,
thanks to the modulation used and the very narrow bandwidth (which in return also means a very
low data rate). Among all the aforementioned technologies, Sigfox and Telensa are UNB technologies.
As an example, this Sigfox chipset [41] consumes 37 mA in transmission mode. Nwave, which is based
on Weightless-N, is also a UNB technology, and thus should have a similarly low energy consumption.
Qowisio should offer a similar consumption although the specification is not yet known. Then, the
LoRa technology have a similar or higher consumption than UNB technologies, depending on the
parameters used (e.g., [42] consumes between 18 and 125 mA in transmission mode). Weightless-P
consume an amount of energy that is close to LoRa’s (e.g., [43] 49 mA at 15 dBm in transmission).
Mobile technologies come after as they consume much more power (e.g., [44] 235 mA LTE-M and
190 mA NB-IoT in transmission mode). This is mainly due to the modulation, the data rate and the
synchronization to the base stations which is required for mobile communications. We can note that
due to a high data rate and a fast frequency, Ingenu RPMA should consume more energy than the
previously cited technologies, although they claim the opposite.

While the absolute energy rates are important, another aspect that must be taken into account is
the on-air duration of the communications [45]. Indeed, if a technology provides a better data rate, the
transmission time will be shorter. Thus, a technology consuming a higher amount of energy could, in
the end, consume less energy than a more restrained technology. This is because, for the same amount
of information, the duration of the transmission would be shorter.

3.2. On Which Technology to Use

Considering all the above, mobile IoT technologies have numerous advantages to be used as a
one-hop technology to access the Internet. First, considering coverage, mobile technology is more
likely to be available worldwide than ISM-based LPWAN. Using ISM-based LPWAN, there is a need
to deploy base stations in isolated areas which is costly. Furthermore, deploying a network connected
to the Internet may not be part of a company’s purpose. In reverse, using mobile would also mean that
there is no way to extend the base mobile network in an isolated area if needed, as the spectrum is
under licensed use.

As for the spectrum, many long-range technologies make use of the sub-GHz ISM unlicensed
bands. This means that everyone can use it, and it is likely that a high level of interference will become
common as the number of connected devices using those technologies increases, especially considering
technologies such as LoRa that spread the signal across a wide bandwidth. Mobile may bypass noise
produced in the sub-GHz, but on the other side, mobile IoT technologies are partly based on the
existing and already widely used LTE bands, which are also used for cellphone communications (i.e.,
more interference).

Regarding the financial cost of using mobile networks, several things need to be taken into
account. A summary of the module and connectivity costs depending on the technology is shown
in Table 1. The prices are given on an indicative basis, as they depend on the countries, the operators
and different other factors. Alternative solutions exist, e.g., Hologram [46], which proposes worldwide
mobile connectivity and provides a universal SIM card for 1$ per month plus 40 cents (prices vary
depending on the number of devices). As it gives an access to every mobile network available on our
planet, hologram benefits from an excellent coverage, as depicted in Figure 6.
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Table 1. Cost to connect [47].

Module Connectivity Infrastructure

LTE-M $10–15 $3–5 / mo for 1 Mb

NB-IoT $7–12 <$1 / mo for 100 kb

Sigfox $5–10 <$1 / mo

Ingenu $10–15 Unknown

LoRaWAN Public $9–12 $1–2 / mo

LoRaWAN Private $9–12 $0.25 / mo $500

Figure 6. Hologram coverage [46].

If we consider using mobile IoT, we need to choose which technology. EC-GSM-IoT and 5G can
be put aside right away. The former is not going to be deployed anymore and the network may even
be decommissioned soon [14], while the latter is not deployed at all by the time of writing and will not
be usable before several years.

eMTC and NB-IoT both propose interesting features and are likely to be deployed and
used increasingly in the upcoming years, while being already available in several countries.
Choosing between one or the other is difficult: eMTC supports FotA updates, while NB-IoT does not.
On the other side, eMTC have a high energy cost, while NB-IoT consumes less power. Considering
world coverage, restricting to only one of the two would also restrict the possible deployments to the
countries where that technology is available (cf. Figure 3).

Regarding these issues, the best answer may be to keep both technologies. Several radio chips
supporting both eMTC and NB-IoT are already available (e.g., [44]). A simple idea could be to use
NB-IoT for regular monitoring communications, and eMTC for FotA updates. However, this can create
new issues too, as areas where coverage for both technologies may be scarce. So, we would need to
provide viable solutions also for scenarios where only one of these two technologies are available.

This is where LPWAN technologies presented in Section 2.2 may be useful. Devices could form a
network in a multi-hop fashion where only one node would need to relay the communications to the
Internet, whereas the other nodes would use an ISM-based LPWAN technology to share their data.
This would extend the range for nodes out of direct mobile coverage. As mobile technologies cannot
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be used (licensed spectrum) for this kind of “local LPWAN”, another LPWAN technology based on the
sub-GHz unlicensed bands such as the ones previously introduced could be used instead.

To address this, we need an LPWAN technology which could enable FotA redistribution by the
gateway once it has acquired the firmware via mobile communications and which costs less in terms
of energy at the same time. Among the ones presented before, LoRa and Weightless-P are the best
candidates for this. As mentioned previously, Weightless-P already support FotA updates. However,
because of the modulation it uses, it offers a shorter range than LoRa. A combination of multiple
LPWAN technologies (e.g., Weightless-P and Weightless-N or LoRa) could be used depending on the
type of traffic to share data on a local scale, which may allow further energy savings.

Considering all the above, we can see a simplified decision diagram in Figure 7. It can be followed
to find which technology to use depending on the application requirements. We will introduce it
with simple use case examples. First, let us consider an agriculture use case, where static devices
remotely monitor weather metrics in fields. For this use case, we assume that the monitored fields are
covered by an already deployed technology and that we do not want to operate our own infrastructure.
Static monitoring of the weather does not generate an important volume of data (data rate < 50 kbps),
but may need long-range communications as fields may be isolated (range > 10 km). Thus, the
Sigfox technology is a choice worth considering. As a second example, let us consider a tracking
system for patients in hospitals. Here, we may need to deploy our own base stations to cover special
areas, e.g., basements, and be independent from any operator. We do not need a high data rate
(data rate < 70 kbps), thus Ingenu and LoRa are interesting choices. As LoRa communications are
known to be resilient against low speed mobility, LoRa may be the best choice for this use case.

Do you wish to deploy your own 
infrastructure ?

YES NO

Do you need data rate > 
200 kbps?

Do you need data rate > 
50 kbps?

YES NO YES
NO

Do you need data 
rate > 70 kbps?

YES NO

Use 802.15.4k / 
Weightless-N / 
Weightless-P / 

DASH7

Use
Sigfox

Do you need data 
rate > 500 kbps?

YES NO

Use NB-IoT

Do you need 
range > 10 km?

YES NO

Use LoRa

Country policy 
about TV 
bands usage

Deployment cost

Energy 
consumption

Use LTE-MUse Ingenu / 
LoRa

Do you need data 
rate > 1 Mbps?

YES NO

Use 
Weightless-W

Use 
802.15.4g

No handover

Heavy limitations

Figure 7. Technology decision diagram.

4. Conclusions

Long-range radio technologies are attracting a lot of attention. In opposition to short-range
technologies, LPWAN technologies enable kilometers-wide communications. Those technologies
provide an interesting connectivity solution for IoT networks in terms of range and energy
consumption, and enable the use of networks known as LPWAN. As a result, an increasing amount
of standards and technologies are conceived and become available on the market. In this article, we
introduced the technologies available along with technical detail. Those are based either on licensed or
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unlicensed frequency bands and offer different performances. They feature so different performances
in terms of data rate, range, payload size etc. that there is a wide range of possibilities for each use case.

Based on those performances and other factors, we discussed which of these technologies may
be the best suited depending on the use case. In particular, in terms of energy efficiency, which is the
main point of focus for constrained devices, each technology offers different consumption rates. We
have tried to provide a comprehensive state-of-the-art that includes commercial costs and coverage
status besides technical characteristics. We have proposed an easy-to-use guide to assist one wishing
to deploy such an application in choosing a given technology.

We can conclude that there is no perfect technology that fits all applications at once and that there
is often a trade-off to consider between every performance criteria and cost.
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Appendix A

Table A1. Technology table.

Technology Sigfox LoRaWAN Ingenu Telensa LTE-M NB-IoT EC-GSM-IoT

Modulation UNB DBPSK,
GFSK CSS

RPMA-DSSS,
CDMA UNB 2-FSK 16QAM QPSK GMSK

Band
Sub-GHz ISM:
EU (868 MHz),
US (902 MHz)

Sub-GHz ISM:
EU (433 MHz,

868 MHz),
US (915 MHz),
Asia (430 MHz)

ISM 2.4 GHz

Sub-GHz bands
including ISM:
EU (868 MHz),
US (915 MHz),
Asia (430 MHz)

Licensed
700–900 MHz

Licensed
700–900 MHz

Licensed
800–900 MHz

Data rate 100 bps (UL),
600 bps (DL)

03–37.5 kbps (LoRa),
50 kbps (FSK)

78 kbps (UL),
19.5 kbps (DL)

62.5 bps (UL),
500 bps (DL) 1 Mbps

158.5 kbps (UL),
106 kbps (DL) 70–240 kbps

Range 10 km (urban),
50 km (rural)

5 km (urban),
15 km (rural)

15 km (urban),
500 km line LOS 1 km (urban) 11 km 15 km 15 km

MAC pure ALOHA pure ALOHA CDMA-like Unknown FDMA/OFDMA FDMA/OFDMA CDMA

Topology star star of stars star, tree star star star star

Payload size 12 B (UL), 8 B (DL) up to 250 B 10 KB 64 KB Unknown
125 B (UL),

85 B (DL) [48] Unknown

Proprietary aspects PHY and
MAC layers PHY layer Full stack Full stack Full stack Full stack Full stack

Deployment model Operator-based
Private and

operator-based Private Private Operator-based Operator-based Operator-based
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Table A2. Standard table.

Standard DASH7 IEEE 802.15.4k IEEE 802.15.4g Weightless-W Weightless-N Weightless-P

Modulation GFSK DSSS, FSK
MR-(FSK,

OFDMA, OQPSK)
16-QAM, BPSK,
QPSK, DBPSK UNB DBPSK GMSK, offset-QPSK

Band Sub-GHz 433 MHz,
868 MHz, 915 MHz

ISM Sub-GHz
& 2.4 GHz

ISM Sub-GHz
& 2.4 GHz

TV white spaces
470-790 MHz

ISM Sub-GHz
EU (868 MHz),
US (915 MHz)

ISM Sub-GHz
(169/433/470/780/
868/915/923 MHz)

Data rate 9.6, 55.6, 166.7 kbps 1.5 bps–128 kbps 4.8 kbps–800 kbps 1 kbps–10 Mbps 30 kbps–100 kbps 200 bps–100 kbps

Range 0–5 km (urban) 5 km (urban) 10 km [49] 5 km (urban) 3 km (urban) 2 km (urban)

MAC CSMA/CA
CSMA/CA or

ALOHA with PCA CSMA/CA TDMA/FDMA slotted ALOHA TDMA/FDMA

Topology tree, star star
star, mesh,

peer-to-peer star star star

Payload size 256 B 2047 B 2047 B >10 B 20 B >10 B

Proprietary aspects Open standard Open standard Open standard Open standard Open standard Open standard

Deployment model Private Private Private Private Private Private



Future Internet 2020, 12, 13 15 of 16

References

1. Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun.
Surv. Tutorials 2017, 19, 855–873.

2. Finnegan, J.; Brown, S. A Comparative Survey of LPWA Networking. arXiv 2018, arXiv:1802.04222.
3. Qadir, Q.M.; Rashid, T.A.; Al-Salihi, N.K.; Ismael, B.; Kist, A.A.; Zhang, Z. Low power wide area networks:

A survey of enabling technologies, applications and interoperability needs. IEEE Access 2018, 6, 77454–77473.
4. Bembe, M.; Abu-Mahfouz, A.; Masonta, M.; Ngqondi, T. A survey on low-power wide area networks for IoT

applications. Telecommun. Syst. 2019, 71, 249–274.
5. Sinha, R.S.; Wei, Y.; Hwang, S.H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017,

3, 14–21.
6. Ikpehai, A.; Adebisi, B.; Rabie, K.M.; Anoh, K.; Ande, R.E.; Hammoudeh, M.; Gacanin, H.; Mbanaso, U.M.

Low-Power Wide Area Network Technologies for Internet-of-Things: A Comparative Review. IEEE Internet
Things J. 2019, 6, 2225–2240.

7. Poursafar, N.; Alahi, M.E.E.; Mukhopadhyay, S. Long-range wireless technologies for IoT applications:
A review. In Proceedings of the 2017 Eleventh International Conference on Sensing Technology (ICST),
Sydney, Australia, 4–6 December 2017.

8. Semtech LoRa Technology Overview. Available online: https://www.semtech.com/lora (accessed on 13 January 2020).
9. ISM Radio Bands. Available online: https://en.wikipedia.org/wiki/ISM_band (accessed on 13 January 2020).
10. Global mobile Suppliers Association (GSA). Evolution from LTE to 5G: Global Market Status; Technical Report;

GSA: Washington, DC, USA, 2018.
11. 3GPP Release 13. Available online: https://www.3gpp.org/release-13 (accessed on 13 January 2020).
12. Orange LTE-M. Available online: https://www.orange-business.com/fr/reseau-LTE-M (accessed on 13 January 2020).
13. Mobile IoT Deployments. Available online: https://www.gsma.com/iot/deployment-map/ (accessed on

13 January 2020).
14. Worth, A. A Complete Overview of 2G & 3G Sunsets. Available online: https://1ot.mobi/resources/blog/

a-complete-overview-of-2g-3g-sunsets (accessed on 13 January 2020).
15. 5G—The High-Speed Mobile Network of the Future. Available online: https://www.infineon.com/cms/

en/discoveries/mobile-communication-5g/ (accessed on 13 January 2020).
16. GSMA. 5G Spectrum GSMA Public Policy Position. Technical report, 2019. Available online: https://www.gsma.

com/spectrum/wp-content/uploads/2019/09/5G-Spectrum-Positions.pdf (accessed on 13 January 2020).
17. Liberg, O.; Sundberg, M.; Wang, Y.P.E.; Bergman, J.; Sachs, J. Chapter 10—5G and the Internet of Things.

In Cellular Internet of Things; Elsevier: Amsterdam, The Netherlands, 2018; pp. 361–366.
18. Sigfox. Available online: https://www.sigfox.com/en (accessed on 13 January 2020).
19. Sigfox Coverage Map. Available online: https://www.sigfox.com/en/coverage (accessed on 13 January 2020).
20. LoRaWAN Coverage Map. Available online: https://lora-alliance.org/ (accessed on 13 January 2020).
21. Firmware Updates over Low-Power Wide Area Networks. Available online: https://www.thethingsnetwork.

org/article/firmware-updates-over-low-power-wide-area-networks (accessed on 13 January 2020).
22. Haxhibeqiri, J.; Karaagac, A.; den Abeele, F.V.; Joseph, W.; Moerman, I.; Hoebeke, J. LoRa indoor coverage

and performance in an industrial environment: Case study. In Proceedings of the 2017 22nd IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus,
12–15 September 2017.

23. Amadou, I.; Foubert, B.; Mitton, N. LoRa in a haystack: a study of the LORA signal behavior. In Proceedings
of the 2019 International Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob), Barcelona, Spain, 21–23 October 2019.

24. The Things Network. Available online: https://www.thethingsnetwork.org/ (accessed on 13 January 2020).
25. RPMA: Technology for the Internet of Things. Available online: https://theinternetofthings.report/

Resources/Whitepapers/4cbc5e5e-6ef8-4455-b8cd-f6e3888624cb_RPMA%20Technology.pdf (accessed on
13 January 2020).

26. Weightless. Available online: http://www.weightless.org/ (accessed on 13 January 2020).
27. What is Weightless? Available online: https://www.link-labs.com/blog/what-is-weightless (accessed on

13 January 2020).
28. Nwave. Available online: https://www.nwave.io/ (accessed on 13 January 2020).

https://www.semtech.com/lora
https://en.wikipedia.org/wiki/ISM_band
https://www.3gpp.org/release-13
https://www.orange-business.com/fr/reseau-LTE-M
https://www.gsma.com/iot/deployment-map/
https://1ot.mobi/resources/blog/a-complete-overview-of-2g-3g-sunsets
https://1ot.mobi/resources/blog/a-complete-overview-of-2g-3g-sunsets
https://www.infineon.com/cms/en/discoveries/mobile-communication-5g/
https://www.infineon.com/cms/en/discoveries/mobile-communication-5g/
https://www.gsma.com/spectrum/wp-content/uploads/2019/09/5G-Spectrum-Positions.pdf
https://www.gsma.com/spectrum/wp-content/uploads/2019/09/5G-Spectrum-Positions.pdf
https://www.sigfox.com/en
https://www.sigfox.com/en/coverage
https://lora-alliance.org/
https://www.thethingsnetwork.org/article/firmware-updates-over-low-power-wide-area-networks
https://www.thethingsnetwork.org/article/firmware-updates-over-low-power-wide-area-networks
https://www.thethingsnetwork.org/
https://theinternetofthings.report/Resources/Whitepapers/4cbc5e5e-6ef8-4455-b8cd-f6e3888624cb_RPMA%20Technology.pdf
https://theinternetofthings.report/Resources/Whitepapers/4cbc5e5e-6ef8-4455-b8cd-f6e3888624cb_RPMA%20Technology.pdf
http://www.weightless.org/
https://www.link-labs.com/blog/what-is-weightless
https://www.nwave.io/


Future Internet 2020, 12, 13 16 of 16

29. Weightless-P System specification. Available online: https://pro-bee-user-content-eu-west-1.s3.amazonaws.
com/public/users/Integrators/929cb090-e779-401a-b06c-c629ff6b0fea/ap-cambridgestartuplimi/
Weightless-P_v1.03.pdf (accessed on 13 January 2020).

30. Weightless Firmware over the Air. Available online: https://www.ubiik.com/single-post/2017/03/28/
FOTA-Weightless-P-vs-LoRaWAN (accessed on 13 January 2020).

31. Ubiik. Available online: https://www.ubiik.com/ (accessed on 13 January 2020).
32. Telensa. Available online: https://www.telensa.com/ (accessed on 13 January 2020).
33. Telensa. Data sheet: UNB Smart City Network. Available online: https://info.telensa.com/hubfs/

Resources%20page%20files/datasheet_telensa_planet_network.pdf (accessed on 13 January 2020).
34. DASH7 Alliance. Available online: http://www.dash7-alliance.org/ (accessed on 13 January 2020).
35. IEEE 802.15.4k-2013—Standard for Local and metropolitan area networks— Part 15.4: Low-Rate Wireless

Personal Area Networks (LR-WPANs)—Amendment 5: Physical Layer Specifications for Low Energy,
Critical Infrastructure Monitoring Networks. doi:10.1109/IEEESTD.2013.6581828. Available online: https:
//ieeexplore.ieee.org/document/6581828 (accessed 14 January 2020).

36. IEEE 802.15.4g-2012—Standard for Local and metropolitan area networks–Part 15.4: Low-Rate Wireless
Personal Area Networks (LR-WPANs) Amendment 3: Physical Layer (PHY) Specifications for
Low-Data-Rate, Wireless, Smart Metering Utility Networks. doi:10.1109/IEEESTD.2012.6190698. Available
online: https://ieeexplore.ieee.org/document/6190698 (accessed 14 January 2020).

37. IEEE 802.11ah-2016—Standard for Information technology–Telecommunications and information exchange
between systems—Local and metropolitan area networks–Specific requirements—Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Sub 1 GHz License
Exempt Operation. doi:10.1109/IEEESTD.2017.7920364. Available online: https://ieeexplore.ieee.org/
document/7920364 (accessed 14 January 2020).

38. Qowisio. Available online: https://www.qowisio.com/. (accessed on 13 January 2020).
39. Nwave. Data Sheet: Sparkit Wireless Smart Parking Management. Available online: https://www.nwave.

io/nwave-parking-sensor-datasheet.pdf (accessed on 13 January 2020).
40. WAVIoT. Available online: https://waviot.com/ (accessed on 13 January 2020).
41. TD1204 chipset datasheet. Available online: https://github.com/Telecom-Design/Documentation_TD_RF_

Module/raw/master/TD1204%20Datasheet.pdf (accessed on 13 January 2020).
42. SX1272/73 Chipset Datasheet. Available online: https://www.mouser.com/datasheet/2/761/sx1272-

1277619.pdf (accessed on 13 January 2020).
43. Ubiik LPWAN Comparison. Available online: https://www.ubiik.com/lpwan-comparisons (accessed on

13 January 2020).
44. Digi XBee3 R© Cellular LTE-M/NB-IoT. Available online: https://www.digi.com/products/xbee-rf-

solutions/embedded-cellular-modems/xbee3-cellular-lte-m-nb-iot (accessed on 13 January 2020).
45. NB-IoT Versus SIGFOX, LoRaWAN, and Weightless—Power/Energy the Inconvenient Truth. Available

online: http://www.gsm-modem.de/M2M/iot-university/nb-iot-power-consumption/ (accessed on
13 January 2020).

46. Hologram. Available online: https://hologram.io/ (accessed on 13 January 2020).
47. Brian, R. Cost of Building with LPWAN Technologies. Available online: https://www.link-labs.com/blog/

costs-in-iot-lte-m-vs.-nb-iot-vs.-sigfox-vs.-lora (accessed on 13 January 2020).
48. Ayoub, W.; Samhat, A.E.; Nouvel, F.; Mroue, M.; Prévotet, J. Internet of Mobile Things: Overview

of LoRaWAN, DASH7, and NB-IoT in LPWANs Standards and Supported Mobility. IEEE Commun.
Surv. Tutorials 2019, 21, 1561–1581.

49. Sum, C.; Rahman, M.A.; Lu, L.; Kojima, F.; Harada, H. On communication and interference range of IEEE
802.15.4g smart utility networks. In Proceedings of the 2012 IEEE Wireless Communications and Networking
Conference (WCNC), Paris, France, 1 April 2012.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://pro-bee-user-content-eu-west-1.s3.amazonaws.com/public/users/Integrators/929cb090-e779-401a-b06c-c629ff6b0fea/ap-cambridgestartuplimi/Weightless-P_v1.03.pdf
https://pro-bee-user-content-eu-west-1.s3.amazonaws.com/public/users/Integrators/929cb090-e779-401a-b06c-c629ff6b0fea/ap-cambridgestartuplimi/Weightless-P_v1.03.pdf
https://pro-bee-user-content-eu-west-1.s3.amazonaws.com/public/users/Integrators/929cb090-e779-401a-b06c-c629ff6b0fea/ap-cambridgestartuplimi/Weightless-P_v1.03.pdf
https://www.ubiik.com/single-post/2017/03/28/FOTA-Weightless-P-vs-LoRaWAN
https://www.ubiik.com/single-post/2017/03/28/FOTA-Weightless-P-vs-LoRaWAN
https://www.ubiik.com/
https://www.telensa.com/
https://info.telensa.com/hubfs/Resources%20page%20files/datasheet_telensa_planet_network.pdf
https://info.telensa.com/hubfs/Resources%20page%20files/datasheet_telensa_planet_network.pdf
http://www.dash7-alliance.org/
https://ieeexplore.ieee.org/document/6581828
https://ieeexplore.ieee.org/document/6581828
https://ieeexplore.ieee.org/document/6190698
https://ieeexplore.ieee.org/document/7920364
https://ieeexplore.ieee.org/document/7920364
https://www.qowisio.com/
https://www.nwave.io/nwave-parking-sensor-datasheet.pdf
https://www.nwave.io/nwave-parking-sensor-datasheet.pdf
https://waviot.com/
https://github.com/Telecom-Design/Documentation_TD_RF_Module/raw/master/TD1204%20Datasheet.pdf
https://github.com/Telecom-Design/Documentation_TD_RF_Module/raw/master/TD1204%20Datasheet.pdf
https://www.mouser.com/datasheet/2/761/sx1272-1277619.pdf
https://www.mouser.com/datasheet/2/761/sx1272-1277619.pdf
https://www.ubiik.com/lpwan-comparisons
https://www.digi.com/products/xbee-rf-solutions/embedded-cellular-modems/xbee3-cellular-lte-m-nb-iot
https://www.digi.com/products/xbee-rf-solutions/embedded-cellular-modems/xbee3-cellular-lte-m-nb-iot
http://www.gsm-modem.de/M2M/iot-university/nb-iot-power-consumption/
https://hologram.io/
https://www.link-labs.com/blog/costs-in-iot-lte-m-vs.-nb-iot-vs.-sigfox-vs.-lora
https://www.link-labs.com/blog/costs-in-iot-lte-m-vs.-nb-iot-vs.-sigfox-vs.-lora
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Long-Range Wireless Technologies
	Mobile Band-Based Technologies
	Enhanced Machine-Type Communication (eMTC, a.k.a. LTE-M)
	Narrow-Band IoT (NB-IoT)
	Extended Coverage GSM IoT (EC-GSM-IoT)
	5G

	ISM Band-Based Technologies
	Sigfox
	LoRa
	Ingenu
	Weightless
	Telensa
	DASH7
	IEEE Standards
	Others


	Discussion
	On the Energy Consumption
	On Which Technology to Use

	Conclusions
	
	References

