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MINIMAX ADAPTIVE ESTIMATION IN MANIFOLD INFERENCE

Vincent Divol ∗

Abstract. We focus on the problem of manifold estimation: given a set of observations
sampled close to some unknown submanifold M , one wants to recover information about the
geometry of M . Minimax estimators which have been proposed so far all depend crucially
on the a priori knowledge of some parameters quantifying the regularity of M (such as its
reach), whereas those quantities will be unknown in practice. Our contribution to the matter
is twofold: first, we introduce a one-parameter family of manifold estimators (M̂t)t≥0, and show
that for some choice of t (depending on the regularity parameters), the corresponding estimator is
minimax on the class of models of C2 manifolds introduced in [GPPVW12]. Second, we propose
a completely data-driven selection procedure for the parameter t, leading to a minimax adaptive
manifold estimator on this class of models. This selection procedure actually allows to recover
the sample rate of the set of observations, and can therefore be used as an hyperparameter in
other settings, such as tangent space estimation.

1 Introduction

Manifold inference deals with the estimation of geometric quantites in a random setting. Given
Xn = {X1, . . . , Xn} a set of i.i.d. observations from some law P on RD supported on (or con-
centrated around) a d-dimensional manifold M , one wants to produce an estimator θ̂ which
estimates accurately some quantity θ(M) related to the geometry of M such as its dimen-
sion d [HA05, LJM09, KRW16], its homology groups [NSW08, BRS+12], its tangent spaces
[AL19, CC16], or M itself [GPPVW12, MMS16, AL18, AL19, PS19]. The emphasis has mostly
been put on designing estimators attaining minimax rates on a variety of models, which take
into account different regularities of the manifold and noise models. Those estimators rely on the
knowledge of quantities related either to the geometry of the manifold, such as its dimension or
its reach, or to the underlying distribution, such as bounds on its density. Apart from very spe-
cific cases, one will not have access to those quantities in practice. One possibility to overcome
this issue is to estimate in a preprocessing step those parameters. This may however become
the main bottleneck in the estimating process, as regularity parameters are typically harder to
estimate than the manifold itself (see for instance [AKC+19] for minimax rates for the estima-
tion of the reach of a manifold). Another approach, to which this paper is dedicated, consists
in designing adaptive estimators of θ(M). An estimator is called adaptive if it attains optimal
∗Inria Saclay and Université Paris-Sud, firstname.lastname@inria.fr
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Figure 1 – The t-convex hull Convd(t;A) (in green) of a curve A (in black).

rates of convergence on a large class of models (see Section 2 for a precise definition). Our main
contribution consists in introducing a manifold estimator M̂ which is adaptive minimax (with
respect to the Hausdorff distance dH) on all the C2-models with tubular noise introduced in
[GPPVW12] and [AL18].

Our estimator is built by considering a family of estimators given by the t-convex hull
Convd(t;Xn) of the set of observations Xn. For a given set A ⊂ RD, the (d-dimensional) t-convex
hull Convd(t;A) is defined by

Convd(t;A) :=
⋃

σ⊂A, r(σ)≤t
dim(σ)≤d

Conv(σ), (1.1)

where r(σ) is the radius of a set σ, i.e. the radius of the smallest enclosing ball of σ, dim(σ) is
its dimension and Conv(σ) is its convex hull (see Definition 3.1). For d = D, the t-convex hull
is an interpolation between the convex hull Conv(A) of A (t = +∞) and the set A itself (t = 0):
it gives a ”local convex hull” of A at scale t. See Figure 1 for an example.

The loss dH( Convd(t;Xn),M) of the t-convex hull Convd(t;Xn) can be efficiently con-
trolled for t larger than some threshold t∗(Xn) (see Definition 3.4). As the threshold t∗(Xn)
is very close to the sample rate ε(Xn) := dH(Xn,M) of the point cloud, it is known to be of
the order (logn/n)1/d (see e.g. [RC07, Theorem 2]), and one obtains a minimax estimator on
the C2-models by taking the parameter t of this order (see Theorem 3.7). The exact value of t
depends on the unknown parameters of the model (namely the dimension and the reach of the
manifold, as well as a lower bound on the density of the distribution), so that it is unclear how
the parameter t should be chosen in practice.

The adaptive estimator is build by selecting a parameter tλ,d(Xn) (depending on some
hyperparameter λ ∈ (0, 1)), which is chosen solely based on the observations Xn. More precisely,
we consider the convexity defect function of a set A, originally introduced in [ALS13], and defined
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by
hd(t, A) = dH( Convd(t;A), A) ∈ [0, t] for t ≥ 0. (1.2)

As its name indicates, the convexity defect function measures how far a set is from being convex
at a given scale. For instance, the convexity defect function of a convex set is null, whereas for a
manifoldM with positive reach τ(M), hd(t,M) ≤ t2/τ(M)� t for t� τ(M), so that a manifold
M is ”locally almost convex” (see Proposition 4.2). We show that the convexity defect function
of Xn exhibits a sharp change of behavior around the threshold t∗(Xn). Namely, for values t
which are smaller than a fraction of t∗(Xn), the convexity defect function hd(t,Xn) has a linear
behavior, with a slope approximately equal to 1 (see Proposition 4.3), whereas for t ≥ t∗(Xn),
the convexity defect function exhibits the same quadratic behavior than the convexity defect
of a manifold (see Proposition 4.4). In particular, its slope is much smaller than 1 as long as
t ≥ t∗(Xn) is significantly smaller than the reach τ(M). This change of behavior at the value
t∗(Xn) suggests to select the parameter

tλ,d(Xn) := sup{t < tmax, hd(t,Xn) > λt}, (1.3)

where λ ∈ (0, 1) and tmax is a parameter which has to be smaller than the reach τ(M) of the
manifold (see Definition 4.5). We show (see Proposition 4.6) that with high probability, in the
case where the sample Xn is exactly on the manifold M , we have

t∗(Xn) ≤ tλ,d(Xn) ≤ 2t∗(Xn)
λ

(
1 + t∗(Xn)

τ(M)

)
. (1.4)

In particular, we are able to control the loss of Convd(tλ,d(Xn);Xn) with high probability. By
choosing tmax as a slowly decreasing function of n, and by using a preliminary estimator d̂ of
the dimension d, we obtain an estimator

M̂ := Convd̂(tλ,d̂(Xn);Xn)

which is adaptive on the whole collection of C2-models as defined in Section 2 (see Corollary 4.7
and Remark 4.10 afterwards).

The estimator M̂ is to our knowledge the first minimax adaptive, completely data-
driven, manifold estimator. Our procedure actually allows us to estimate (up to a multiplicative
constant) the sample rate ε(Xn). The parameter tλ,d̂(Xn) can therefore be used as an hyperpa-
rameter in different settings. To illustrate this general idea, we show how to create an adaptive
estimator of the tangent spaces of a manifold (see Corollary 4.9).

Related work

”Localized” versions of convex hulls such as the t-convex hulls have already been introduced in
the support estimation litterature. For instance, slightly modified versions of the t-convex hull
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have been used as estimators in [AB16] under the assumption that the support has a smooth
boundary and in [RC07] under reach constraints on the support, with different rates obtained
in those models. Selection procedures were not designed in those two papers, and whether our
selection procedure leads to an adaptive estimator in those frameworks is an interesting question.

The statistical models we study in this article were introduced in [GPPVW12] and
[AL18], in which manifold estimators were also proposed. If the estimator in [GPPVW12]
is of purely theoretical interest, the estimator proposed by Aamari and Levrard in [AL18], based
on the Tangential Delaunay complex, is computable in polynomal time in the number of inputs
and linear in the ambient dimension D. Furthermore, it is a simplicial complex which is known
to be ambient isotopic to the underlying manifold M with high probability. It however requires
the tuning of several hyperparameters in order to be minimax, which may make its use delicate
in practice. In contrast, the t-convex hull estimator with parameter tλ,d(Xn) is completely data-
driven, computable in polynomial time (see Section 5), while keeping the minimax property.
However, unlike in the case of the Tangential Delaunay complex, we have no guarantees on the
homotopy type of the corresponding estimator.

A powerful method to select estimators is given by Lepski’s method [Lep92, Bir01] (and
its further refinement known as Goldenshluger-Lepski’s method, see e.g. [GL13]). In its simplest
form, this method applies to a hierarchized family of estimators (θ̂t)t≥0 of some θ ∈ R: typically,
we assume that the bias of the estimators is a nondecreasing function of t whereas their variance
is nonincreasing. The Lepski method consists in comparing each estimator θ̂t to the less biased
estimators θ̂t′ for t′ ≤ t and by choosing the smallest t for which the estimator θ̂t is close enough
to its less biased counterparts (with respect to t). Our method is based on a similar idea, with the
important modification that instead of comparing θ̂t to all the estimators θ̂t′ for t′ < t, we show
that it is enough to compare each estimator to some degenerate estimator (here corresponding to
Xn = Convd(0;Xn)) to select a parameter which leads to an adaptive estimator. In that sense,
our method largely stems from the Penalized Comparison to Overfitting method introduced in
[LMR17] in the setting of kernel density estimation.

Outline of the paper

The framework of minimax adaptive estimation as well as preliminary results on manifold esti-
mation are detailed in Section 2. In Section 3, we define the t-convex hull of a set, and show
that the estimator Convd(t;Xn) is minimax for some choice of t. In Section 4, we introduce
the convexity defect function of a set, originally defined in [ALS13], and study in details the
behavior of the convexity defect of the observation set Xn. This study is then used to select a
parameter tλ,d(Xn), depending on two hyperparameters λ and tmax, and we show the adaptivity
of the estimator Convd(tλ,d(Xn);Xn). We also discuss how the scale parameter tλ,d(Xn) can be
used as a scale parameter in the setting of tangent spaces estimation, leading to an adaptive
procedure in this framework as well. We present some numerical illustrations of our procedure
in Section 5. A discussion is given in Section 6. Proofs of the main results are found in the

4



Appendix.

2 Preliminaries

Throughout the paper, we fix a probabilistic space (Ω,F ,P) and denote by E the integration
with respect to P. All the random variables Xi, Yi, Zi appearing in the following have for domain
this same probabilistic space.

On the use of constants

Except if explicitly stated otherwise, symbols c0, c1, C0, C1, . . . will denote absolute constants in
the following. If a constant depends on additional parameters α, β, . . . , it will be denoted by
Cα,β,....

Notations

The Euclidean norm in RD is denoted by ‖ · ‖ and 〈·, ·〉 stands for the dot product. If A ⊂ RD
and x ∈ RD, then d(x,A) := infy∈A ‖x − y‖ is the distance to a set A while diam(A) :=
supx,y∈A ‖x − y‖ is its diameter. Given r ≥ 0, B(x, r) is the closed ball of radius r centered
at x and we write BA(x, r) for B(x, r) ∩ A. We let Cd be the set of C2 compact connected
d-dimensional submanifolds of RD without boundary. If M ∈ Cd and p ∈ M , then TpM is the
tangent space of M at p. It is identified with a d-dimensional subspace of RD. The asymmetric
Hausdorff distance between sets A,B ⊂ RD is defined as dH(A|B) := supx∈A d(x,B). and the
Hausdorff distance is then defined as dH(A,B) = max{dH(A|B), dH(B|A)}. The asymmetric
Hausdorff distance verifies the following pseudo triangle inequality: for any sets A,B,C ⊂ RD,
one has

dH(A|C) ≤ dH(A|B) + dH(B|C), (2.1)

a fact we will use in the following. For A ⊂M , we denote by ε(A) := dH(A,M) the sample rate
of A.

Reach of a manifold

The regularity of a submanifold M is measured by its reach τ(M). This is the largest number
r such that if d(x,M) < r for x ∈ RD, then there exists an unique point of M , denoted by
πM (x), which is at distance d(x,M) from x. Thus, the projection πM on the manifold M is
well-defined on the r-tubular neigborhood M r := {x ∈ M, d(x,M) ≤ r} for r < τ(M). The
notion of reach was introduced for general sets by Federer in [Fed59], where it is also proven
that a C2 compact submanifold without boundary has a positive reach τ(M) > 0 (see [Fed59,
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p. 432]). For τmin > 0, we denote by Cdτmin the set of manifolds M ∈ Cd with reach larger than
τmin.

Minimax rates

Let (Y,H) be some measurable space and let P0 be a subset of the space of probability measures
on (Y,H). Assume that there is a measurable function ι : (Y,H)→ (X ,G) such that we observe
i.i.d. variables X1, . . . , Xn ∼ ι#P for some P ∈ P0. The tuple (Y,H,P0,X ,G, ι) is a statistical
model. Let θ be a functional of interest defined on P0, taking its value in some measurable
space (E, E) endowed with some measurable loss function ρ : E ×E → [0,∞). We assume that
P0 is written for n ≥ 0 as an union

⋃
q∈Q Pq,n, where the index q ∈ Q has to be thought as a

measure of the regularity of the elements of P0. An estimator θ̂ on Pq,n is a measurable function
X (N) = ti≥1X i → E, which may depend also on q. The risk of an estimator θ̂ on Pq,n given n
observations is defined as

Rn(θ̂,Pq,n) := sup
P∈Pq,n

E[ρ(θ̂(X1, . . . , Xn), θ(P ))], (2.2)

where X1, . . . , Xn are i.i.d. of law ι#P . The minimax risk for the estimation of θ on Pq,n is then
defined as

mn(θ;Pq,n) := inf
θ̂
Rn(θ̂,Pq,n), (2.3)

where the infimum is taken over all estimators of θ on Pq,n, i.e. the minimax risk is the best
possible risk an estimator can attain uniformly on Pq,n. An estimator θ̂ realizing the infimum
mn(θ;Pq,n) (up to a constant which does not depend on n) is called minimax. We say that an
estimator θ̂ of θ on P0 (i.e. not depending on q ∈ Q) is minimax adaptive on the whole collection
P0 if

sup
q∈Q

lim sup
n→∞

Rn(θ̂,Pq,n)
mn(θ;Pq,n) <∞. (2.4)

Rates of convergence of minimax risks as n→ +∞ have been studied in the framework
of manifold estimation. Namely, we consider the following models:

Definition 2.1 (Noise-free model). Let d be an integer smaller than D and τmin, fmin, fmax
be positive constants, with fmax possibly equal to +∞. The set Pdτmin,fmin,fmax

is the set of all
distributions having for support a manifold M ∈ Cdτmin, which are absolutely continuous with
respect to the volume measure on M , and such that their densities with respect to the volume
measure are bounded from below by fmin and from above by fmax. The statistical model is then
build by letting (X ,G) = (Y,H) be RD endowed with its borelian σ-algebra and ι be the identity.

Note that there are implicit constraints on the different parameters of the model. Indeed,
by [NSW08, Proposition 6.1], the norm of the second fundamental form of a manifold M is
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bounded by 1/τ(M) and by [Alm86], this implies that the volume Vol(M) of M is larger than
ωdτ(M)d, where ωd is the volume of an unit d-sphere, with equality if and only if M is a d-
dimensional sphere of radius τ(M). Hence, if P has a density f on M lowerbounded by fmin,
we have

1 =
∫
M
f(x)dx ≥ fmin Vol(M) ≥ fminωdτ(M)d,

with equality if and only if P is the uniform distribution on a d-sphere of radius τ(M). We
therefore have the following lemma.

Lemma 2.2. Let d be an integer smaller than D and τmin, fmin be positive constants. Then,
Pdτmin,fmin,+∞ is empty for fminωdτ

d
min > 1 and contains only uniform distributions on d-sphere

of radius τmin if fminωdτ
d
min = 1.

A model containing only spheres is degenerate from a minimax perspective, as laws in
the model are then characterized by only d + 1 observations. To discard such a model, we will
assume in the following that there exists a constant κ < 1 such that fminωdτ

d
min ≤ κd. Note that

this is not restrictive as any P ∈ Pdτmin,fmin,+∞ also belongs to Pdτ ′min,f
′
min,+∞

for τ ′min ≤ τmin and
f ′min ≤ fmin.

Definition 2.3 (Tubular noise model). Let d be an integer smaller than D and τmin, fmin,
fmax, γ be positive constants, with fmax possibly equal to +∞. The set Pdτmin,fmin,fmax,γ

is the set
of probability distributions P on RD × RD with first marginal P1 in Pdτmin,fmin,fmax

and second
marginal P2 supported on B(0, γ). The statistical model is then build by letting (Y,H) be RD ×
RD, (X ,G) be RD (endowed with their borelian σ-algebras), and letting ι : RD × RD → RD be
the addition.

Concretely, in the tubular noise model, we observe samples X1, . . . , Xn of the form
Xi = Yi + Zi, with the Yis i.i.d. of law P ∈ Pdτmin,fmin,fmax

and the Zis are i.i.d. of norm smaller
than γ, not necessarily independent from the Yis. With a slight abuse of notation, we will
identify Pdτmin,fmin,fmax

with Pdτmin,fmin,fmax,0 in the following.

We let Pd(κ) be the union of the Pdτmin,fmin,fmax,γ
for 0 ≤ d ≤ D and τmin, fmin, fmax,

γ > 0 with fminωdτ
d
min ≤ κd. Also, let P(κ) :=

⋃
d≤D Pd(κ). For P ∈ P(κ), let M(P ) be equal

to the support of its first marginal P1. Then, M takes its values in the space of all compact
subsets of RD, which is a metric space when endowed with the Hausdorff distance dH .

Minimax rates for the estimation of the manifold M with respect to the Hausdorff dis-
tance on this model have been studied in [AL18], following the works of [GPPVW12, KZ15].
We use the following parametrization of the set Pd(κ) : let Qd(κ) be the set of tuples q =
(τmin, fmin, fmax, η), τmin, fmin, fmax, η > 0 and fminωdτ

d
min ≤ κd. We let Pdq,n = Pdτmin,fmin,fmax,γn

for γn = η(logn/n)2/d.
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Theorem 2.4. Let κ ∈ (0, 1). For any 0 < d < D and q = (τmin, fmin, fmax, η) ∈ Qd(κ) with
fmax <∞, we have for n large enough,(

η

2 + C(1− κ)
(ωdfmin)2/dτmin

)
≤ lim inf

n

mn(M ;Pdq,n)
(logn/n)2/d ≤ lim sup

n

mn(M ;Pq,n)
(logn/n)2/d ≤ Cq,d (2.5)

where C is an absolute constant and Cq,d is a constant which depends on q and d.

The upper bound in the previous theorem is given by Theorem 2.9 in [AL18], whereas
the constant in the lower bound follows from a careful adaptation of the proof of Theorem 1 in
[KZ15], detailed in Appendix D.

Note that probability distributions in Theorem 2.4 contain ”almost no noise”, as the
level of noise γn is chosen to be negligible in front of the sample rate ε(Xn) (which is of order
(logn/n)1/d). Changing the model by adding a small proportion of outliers would not change the
minimax rates, as explained in [GPPVW12] or [AL18]. However, the t-convex hull estimators
proposed in the next section are very sensible to this addition and some decluttering techniques
would be needed to obtain better estimators on such models. Note also that the t-convex hull
estimators will be minimax on the model Pdτmin,fmin,+∞,γn

, for which the minimax rate is also
equal to (logn/n)2/d (the lower bound is clear, and the next section will show the upper bound).

As the parameter κ is fixed from now, we will drop the dependence in κ to ease the
notations, i.e. P := P(κ), Pd := Pd(κ) and Qd := Qd(κ).

3 Minimax manifold estimation with t-convex hulls

Let σ ⊂ RD. There exists an unique closed ball with minimal radius which contains σ (see
[ALS13, Lemma 15]). This ball is called the minimal enclosing ball of σ and its radius, called
the radius of σ, is denoted by r(σ) in the following.

Definition 3.1. Let A ⊂ RD and t ≥ 0. For 0 < d < D, the d-dimensional t-convex hull of A
is defined as

Convd(t;A) :=
⋃

σ⊂A, r(σ)≤t
dim(σ)≤d

Conv(σ), (3.1)

where the dimension dim(σ) of a finite set σ is equal to its number of elements minus one.

In this section, we derive rates of convergence for Convd(t;Xn), where Xn is a n-sample
of law P ∈ Pdq,n.
Remark 3.2. The application taking its values in the space of compact subsets of RD endowed
with its Borel σ-field and defined by:

(x1, . . . , xn) ∈ (RD)n 7→ Convd(t; {x1, . . . , xn})
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is measurable. Indeed, it can be written as⋃
I⊂{1,...,n}

Conv({xi}i∈I) ∩ fI(x1, . . . , xn)

where fI(x1, . . . , xn) = ∅ if r({xi}i∈I) > t or dim({xi}i∈I) > d and is equal to RD otherwise.
As the operations ∪, ∩, Conv are measurable [Aam17, Proposition III.7] and the function r is
continuous [ALS13, Lemma 16], the measurability follows.

In order to obtain rates of convergence, we give a bound on the Hausdorff distance
dH( Convd(t;A),M) for a general subset A ⊂ M . First, [ALS13, Lemma 12] bounds the asym-
metric Hausdorff distance between the convex hull of a subset of M and the manifold M .

Lemma 3.3. Let σ ⊂M with r(σ) < τ(M) and let y ∈ Conv(σ). Then,

d(y,M) ≤ r(σ)2

τ(M) . (3.2)

Proof. Lemma 12 in [ALS13] states that if σ ⊂M satisfies r(σ) < τ(M) and y ∈ Conv(σ), then,

d(y,M) ≤ τ(M)
(

1−
√

1− r(σ)2

τ(M)2

)
.

As
√
u ≥ u for u ∈ [0, 1], one obtains the conclusion.

This lemma directly implies that dH( Convd(t;A)|M) ≤ t2/τ(M) if t < τ(M), so that
the set Convd(t;A) is included in the t-neighborhood of M . Therefore, the projection πM is
well defined on the t-convex hull of A for such a t. We introduce a scale parameter t∗(A), which
has to be thought as the ”best” scale parameter t for approximating M with Convd(t;A).

Definition 3.4. For A ⊂M , let

t∗(A) := inf{t < τ(M), πM ( Convd(t;A)) = M} ∈ [0, τ(M)) ∪ {+∞}. (3.3)

See Figure 2 for an illustration. Assume that t∗(A) < +∞. Then, for t∗(A) < t < τ(M),
and for any point p ∈M , there exists y ∈ Convd(t;A) with πM (y) = p. Therefore,

d(p, Convd(t;A)) ≤ ‖y − p‖ = d(y,M) ≤ dH( Convd(t;A)|M).

By taking the supremum over p ∈M , we obtain that for any t∗(A) < t < τ(M).

dH( Convd(t;A),M) = max{dH( Convd(t;A)|M), dH(M |Convd(t;A))

= dH( Convd(t;A)|M) ≤ t2

τ(M) .
(3.4)

The minimax rate is now obtained thanks to two observations: (i) t∗(A) is close to the
sample rate ε(A) and (ii) the sample rate of a random sample can be very well controlled.
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t ≥ t∗(A)t < t∗(A)

Figure 2 – The t-convex hull of the finite set A (red crosses) is displayed (in green) for two values
of t. The black curve represents the (one dimensional) manifold M . On the first display, the
value of t is smaller than t∗(A), as there are regions of the manifold (circled in blue) which are
not attained by the projection πM restricted to the t-convex hull. The value of t is larger than
t∗(A) on the second display.

Proposition 3.5. Let A ⊂M be a finite set. If ε(A) ≤ τ(M)/78, then

ε(A)
(

1− 4
3
ε(A)
τ(M)

)
≤ t∗(A) ≤ ε(A)

(
1 + 6 ε(A)

τ(M)

)
. (3.5)

In particular, t∗(A) is finite.

Proposition 3.6. Let P ∈ Pd,τmin,fmin,+∞ and let Xn = {X1, . . . , Xn} be a n-sample of law P .
If r ≤ τmin/4, then

P(ε(Xn) > r) ≤ 8d

αdfminrd
exp(−n2dαdfminr

d), (3.6)

where αd is the volume of a unit d-ball. In particular, for n large enough

E[ε(Xn)2] ≤ 2
( logn
αdfminn

)2/d
≤ 2π2

( logn
ωdfminn

)2/d
. (3.7)

Proofs of Proposition 3.5 and Proposition 3.6 are found in Section B. By gathering those
different observations and by using stability properties of t-convex hulls with respect to noise,
we show that t-convex hulls are minimax estimators on C2-models.

Theorem 3.7. Let d be an integer smaller than D, n > 0 and q = (τmin, fmin,+∞, η) ∈ Qd. If
tn =

(
3 logn

2dαdfminn

)1/d
, then we have for n large enough

Rn( Convd(tn;Xn),Pdq,n) ≤
( logn

n

)2/d
(
η + 4π2

τmin(ωdfmin)2/d

)
(3.8)
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i.e. Convd(tn;Xn) is a minimax estimator of M on Pdq,n.

A proof of Theorem 3.7 is found in Section B.3.

4 Selection procedure for the t-convex hulls

Assuming that we have observed a n-sample Xn having a distribution P ∈ Pdq,n, we were able in
the previous section to build a minimax estimator of the underlying manifold M . The tuning
of this estimator requires the knowledge of d, τmin, fmin, η, whereas those quantities will likely
not be accessible in practice. A powerful idea to overcome this issue is to design a selection
procedure for the family of estimators ( Convd(t;Xn))t≥0. Assume first for the sake of simplicty
that the noise level η is null. As the loss of the estimator Convd(t;Xn) is controlled efficiently
for t ≥ t∗(Xn) (see (3.4)), a good idea is to select the parameter t larger than t∗(Xn). We
however do not have access to this quantity based on the observations Xn, as the manifold M is
unknown. To select a scale close to t∗(Xn), we monitor how the estimators Convd(t;Xn) deviate
from Xn as t increases. Namely, we use the convexity defect function introduced in [ALS13].

Definition 4.1. Let A ⊂ RD and t > 0. The d-dimensional convexity defect function at scale t
of A is defined as

hd(t, A) := dH( Convd(t;A), A). (4.1)

As its name indicates, the convexity defect function measures the (lack of) convexity of a
set A at a given scale t. The next proposition states preliminary results on the convexity defect
function.

Proposition 4.2. Let A ⊂ RD and t ≥ 0.

1. We have 0 ≤ hd(t, A) ≤ t.

2. If A is convex then hd(·, A) ≡ 0.

3. If M is a manifold of reach τ(M) and t < τ(M), then

hd(t,M) ≤ t2/τ(M). (4.2)

Proof. As hd(t, A) ≤ hD(t, A), Point 1 follows from [ALS13, Section 3.1]. Point 2 is clear and
Point 3 is a consequence of Lemma 3.3.

As expected, the convexity defect of a convex set is null, whereas for small values of
t, the convexity defect of a manifold hd(t,M) is very small (compared to the maximum value
possible, which is t): when looked at locally, M is ”almost flat” (and thus almost convex).

The convexity defect function hd(·,Xn) of the set of observations Xn has two very different
behaviors according to the values of t, as summed up by the two following propositions.
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Proposition 4.3 (Short-scale behavior). Let d be an integer smaller than D, and let q =
(τmin, fmin, fmax, 0) ∈ Qd with fmax < +∞. Let Xn be a n-sample of law P ∈ Pdq,n. Fix
0 < λ < 1. There exist positive constants t0, C0, C1, C2 depending on q and λ such that the
following holds. Let, for x > 0, φ(x) = x2e−x and ψ(x) = φ(x)/ log(1/φ(x)). Then, for n large
enough and 0 < t ≤ t0, we have

hd(t,Xn) ≥ λt with probabilty larger than 1− C0 exp(−C1t
−dψ(C2nt

d)). (4.3)

The proof of Proposition 4.3 is found in Section C.1.

Proposition 4.4 (Long-scale behavior). Let A ⊂M . For t∗(A) < t < τ(M),

hd(t, A) ≤ t2

τ(M) + t∗(A)
(

1 + t∗(A)
τ(M)

)
. (4.4)

Proof. By using that hd(t, A) ≤ t and (3.4), for any t∗(A) < s < t,

hd(t, A) = dH( Convd(t;A), A)
≤ dH( Convd(t;A),M) + dH(M, Convd(s;A)) + dH( Convd(s;A), A)

≤ t2

τ(M) + s2

τ(M) + s.

The conclusion is obtained by letting s go to t∗(A).

Let us shortly explain the content of the two previous propositions. The probability
appearing in (4.3) will be close to 1 as long as t is smaller than a fraction of (logn/n)1/d and
larger than (1/n)(2−δ)/d for any 0 < δ < 1. Therefore, with high probability, the convexity
defect function hd(t,Xn) is very close to t for (1/n)(2−δ)/d . t . (logn/n)1/d. On the contrary,
standard techniques show that if t . (1/n)2/d, then hd(t,Xn) is null with probability larger than,
say, 1/2, indicating that the lower bound in the previous range is close from being optimal. The
arguments to prove Proposition 4.3 are of a purely probabilistic nature and do not rely on the
geometry of the support of P . On the contrary, the long-scale behavior described in Proposition
4.4 relies only on the geometry of M and is completely deterministic, in the sense that it holds
for any set A ⊂M for which t∗(A) < τ(M). It indicates that when t is larger than the threshold
t∗(A) (which is of order (logn/n)1/d for A = Xn), then the geometry of M becomes the only
factor driving the growth of h(t, A), and this growth is the same than the growth of the convexity
defect of the manifold M . See also Figure 3.

The previous discussion indicates to choose the smallest t in the quadratic behavior range
to select a value larger than (but close to) t∗(Xn).

Definition 4.5. Let A ⊂M , λ > 0 and tmax > 0. We define

tλ,d(A) := sup{t < tmax, hd(t, A) ≥ λt}. (4.5)
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Figure 3 – The convexity defect function for 50 points Xn uniformly sampled on the unit circle.
The two behaviors described by Proposition 4.3 and 4.4 are observed: hd(·,Xn) is linear at first,
then a quadratic rate of growth appears. The threshold value is roughly at the value t ' 0.3,
while ε(Xn) is equal to 0.32.

Propositions 4.3 and 4.4 prove that for any λ < 1, tλ,d(Xn) is with high probability of
order (logn/n)1/d, that is of the same order than t∗(Xn). However, selecting a parameter of the
order of t∗(Xn) is not enough to obtain a tight bound on the loss, as such a control only holds
for t > t∗(Xn) (at least in the noise-free model, see (3.4)). We are able to obtain a more precise
inequality for general subsets B close to M , as summed up by the next proposition.

Theorem 4.6. Let 0 < λ < 1, γ ≥ 0 and M ∈ Cd. Let A ⊂ M be a finite set with ε(A) ≤
τ(M)/78 and B ⊂ RD with dH(A,B) ≤ γ. Assume that

1. t∗(A) + γ < tmax <
λτ(M)

2 ,

2. t∗(A) ≤ cλτ(M) where cλ = min
(

13
2 (1− λ), λ2

24

)
,

3. γ ≤ 1
6(1− λ)t∗(A).

Then,
t∗(A) + γ ≤ tλ,d(B) ≤ 2t∗(A)

λ

(
1 + t∗(A)

τ(M)

)
+ 6γ

λ
. (4.6)

The proof of Theorem 4.6 is found in Section C.2. As a corollary of this result, we obtain
the adaptivity of the the t-convex hull estimator of parameter tλ,d(Xn).
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Corollary 4.7. Let 0 < λ < 1 and tmax = 1/ log(n). Let d be an integer smaller than D and
q = (τmin, fmin,+∞, η) ∈ Qd. Then, for n large enough

Rn( Convd(tλ,d(Xn);Xn),Pdq,n) ≤
( logn

n

)2/d
(
η + 121π2

λ2(ωdfmin)2/dτmin

)
. (4.7)

In particular, the estimator Convd(tλ,d(Xn);Xn) is minimax adaptive on the scale of models
given by Pd =

⋃
q∈Qd Pdq,n, i.e. we have

sup
q∈Qd

lim sup
n

Rn( Convd(tλ,d(Xn);Xn),Pdq,n)
mn(M,Pdq,n) ≤ Cκ,λ. (4.8)

A proof of Corollary 4.7 is found in Section C.3.
Remark 4.8. Note that the previous result is of asymptotic nature. In particular, should n
not be large enough (i.e. if t∗(Xn) is larger than some fraction of the reach), then the selection
procedure is doomed to fail, as the long-scale behavior corresponding to the range [t∗(Xn), τ(M)]
is too small to be captured by the selection procedure (or even is non-existent).

We now show that the parameter tλ,d(Xn) can also be used to estimate tangent spaces
in an adaptive way. Let p ∈ M and A ⊂ M be a finite set. We denote by Tp(A, t) to be
the d-dimensional vector space U which minimizes dH(A ∩ B(p, t)|p + U). This estimator was
originally studied in [BSW09]. For the sake of simplicity, we fix the level noise η at 0 in the next
corollary, although it is possible to adapt the works of [BSW09] (and hence the next corollary)
to samples with tubular noise. The angle between subspaces is denoted by ∠ (see Section A).

Corollary 4.9. Let 0 < λ < 1 and tmax = 1/ log(n). Let d be an integer smaller than D and
q = (τmin, fmin,+∞, 0) ∈ Qd. Then, for n large enough

sup
P∈Pd

q,n

sup
p∈M

E∠(TpM,Tp(Xn, 11tλ,d(Xn))) ≤
( logn

n

)1/d 137
√

2π
λ(ωdfmin)1/dτmin

, (4.9)

where M denotes the underlying manifold of P .

This rate is the minimax rate (up to logarithmic factors) according to [AL19, Theorem
3]. A proof of Corollary 4.9 is found in Section C.3.
Remark 4.10. An issue with the estimators of the previous corollaries is that they still require
the a priori knowledge of the dimension d of the manifold M . As a consequence, the estimators
are only adaptive on Pd, and not P =

⋃
0<d<D Pd. To obtain adaptive estimators on P, it is

possible to use a parameter-free estimator d̂ of d as a preliminary estimator, and then to use
tλ,d̂(Xn) as a selected parameter. Such a dimension estimator is described in [BH19, Definition
5], and it satisfies P(d̂ 6= d) ≤ 4 exp(2n1−(d+1)/(D+1)) for n large enough. This superpolynomial
rate of convergence ensures that the manifold estimator Convd̂(tλ,d̂(Xn);Xn) is adaptive on P.
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5 Numerical considerations

The selection procedure described in Section 4 amounts to compute the convexity defect function
of the set Xn ⊂ RD. To do so, we need for each simplex σ ⊂ Xn of dimension less than d to (i)
compute its radius r(σ) and (ii) compute dH(Conv(σ)|Xn). As the dimension of σ is less than d,
its radius can be computed in constant time while [ABG+03] proposes an algorithm to compute
the distance between a d-simplex and a family of m points with time complexity O(Dmd+2). As
there are O(nd+1) simplexes of dimension less than d in Xn, a direct use of this algorithm yields
that hd(·,Xn) can be computed in O(Dn2d+3). This complexity may be prohibitive for large
n, but can be reduced by computing an approximation of the convexity defect function: the
Hausdorff distance dH(Conv(σ)|Xn) can be approximated by computing the Hausdorff distance
between a discretization of size ηr(σ) of Conv(σ) and Xn for some η ∈ (0, 1), which can be
done (naively) in O(Dnη−d) time. Hence, the worst time complexity of the algorithm becomes
O(Dnd+2η−d). We now argue that it suffices to compute the convexity defect function for d = 1
to select a good scale t, whatever the dimension d of the underlying manifold M is actually
equal to.

Lemma 5.1. Let 1 ≤ d ≤ D be an integer and let cd =
√

1
2 −

1
2d . Let B ⊂ RD and tmax > 0,

cd < λ < 1. Then,
tλ,d(B) ≤ tλ,1(B) ≤ tλ−cd,d(B). (5.1)

Proof. A direct computation shows that if σ is a d-simplex of radius smaller than t, then the
Hausdorff distance between Conv(σ) and the 1-skeleton of σ (the union of its edges) is bounded
by cdt. Hence, hd(t, B) ≤ h1(t, B) ≤ hd(t, B) + cdt. The conclusion follows from the definition
of tλ,d(B).

Hence, if some sets A,B ⊂ M satisfy the conditions of Theorem 4.6 for λ and λ − cd,
then tλ,1(B) satisfies

t∗(A) + γ ≤ tλ,1(B) ≤ 2t∗(A)
λ− cd

(
1 + t∗(A)

τ(M)

)
+ 6γ
λ− cd

,

and Convd(tλ,1(Xn);Xn) is also a minimax adaptive estimator, while the time complexity for
the computation of an η-approximation of tλ,1(Xn) is O(Dn3η−1). If a cubic complexity is still
too expensive, it is possible to only compute dH(Conv(σ)|Xn) for a random subset of L pairs σ
in Xn. The time complexity is then of order O(DnLη−1), and the output of the algorithm is a
function smaller than h1(·,Xn), so that the selected t will be larger than tλ,1(Xn). If we have no
guarantees on the output of this last algorithm, it appears in our experiments that it is similar
to h1(·,Xn) for L significantly smaller than n2.

As a numerical illustration of our procedure, we compute the convexity defect function
h1(·,Xn) of three synthetic datasets: (a) na = 103 points uniformly sampled on the unit circle,
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(b) nb = 104 points sampled on a torus of inner radius 4 and outer radius 1, and (c) nc = 105

points sampled on a swiss roll using the SciPy Python library [VGO+20] (which was also used
to compute the Hausdorff distance between point clouds). The convexity defect functions (a),
(b) and (c) were approximated using the algorithm described in the previous paragraph with
parameters η = 0.1 and respectively La = ∞ (all pairs computed), Lb = 106 and Lc = 107.
On each function, displayed in Figure 4, the behavior described in Section 4 is observed: first
a linear growth up to a certain value, then a quadratic growth until the reach of the manifold
(equal to 1 in the first two illustrations, and slightly larger than 3 for the swiss roll dataset).
We then fix tmax = 0.5 diam(Xn)/ log(n) and compute tλ,1(Xn) for different values of λ. When λ
is very close to 1, tλ,1(Xn) is always 0, whereas it slowly increases as λ decreases, until reaching
tmax at some value λmin. As a rule of thumb, we choose λ∗ = 1+λmin

2 and select the parameter
tλ∗,1(Xn), which is equal to ta = 0.049, tb = 0.31 and tc = 0.48 in the different experiments
(a), (b) and (c), while the sample rates ε(Xn) where evaluated (by oversampling) at εa = 0.021,
εb = 0.31 and εc = 0.33.

6 Discussion and further works

In this article, we introduced a particularly simple manifold estimator, based on an unique rule:
add the convex hull of any subset of the set of observations which is of radius smaller than t.
After proving that this leads to a minimax estimator for some choice of t, we explained how to
select the parameter t by computing the convexity defect function of the set of observations.
Surprisingly enough, the selection procedure allows to find a parameter tλ,d(Xn) which is with
high probability between, say, 1

3ε(Xn) and 3ε(Xn) (at least for λ close enough to 1). The
selected parameter can therefore be used as a scale parameter in a wide range of procedures
in geometric inference. We illustrated this general idea by showing how an adaptive tangent
space estimator can be created thanks to tλ,d(Xn). The main limitation to our procedure is its
non-robustness to outliers. Indeed, even in the presence of one outlier in Xn, the loss function
t 7→ dH( Convd(t;Xn),M) would be constant, equal to the distance between the outlier and the
manifold M : with respect to the Hausdorff distance, all the estimators Convd(t;Xn) are then
equally bad. Of course, even in that case, we would like to assert that some values of t are
”better” than others in some sense. A solution to overcome this issue would be to change the
loss function, for instance by using Wasserstein distances on judicious probability measures built
on the t-convex hulls Convd(t;Xn) instead of the Hausdorff distance.
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Figure 4 – The convexity defect function of the datasets (a), (b) and (c), and the corresponding
choices of tλ,1(Xn) with respect to λ.
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A Properties of manifolds with reach constraints

In this section, M is a manifold in Cd. We recall that for p ∈M , TpM is the tangent space of M
at p. The corresponding affine subspace passing through p is denoted by T̃pM . For U ⊂ RD a
vector space, we let πU be the orthogonal projection on U and π⊥U be the orthogonal projection
on the orthogonal space U⊥. Also, we write πp for πTpM and we define π̃p : RD → T̃pM by
π̃p(x) = πp(x− p) + p for x ∈ RD, so that π̃p(p) = p. The angle ∠(U, V ) between two subspaces
U, V of RD is defined as the distance ‖πU − πV ‖op for the operator norm between the orthogonal
projections on U and V . The principal angle θ(U, V ) is defined by the relation

sin θ(U, V ) :=
∥∥∥π⊥V ◦ πU∥∥∥op

. (A.1)

If U and V have the same dimension, then sin θ(U, V ) = ∠(U, V ) (see for instance [Aam17,
Section III.4]).

Lemma A.1 (Lemma 3.4 in [BSW09]). Let p, q ∈M with ‖p− q‖ ≤ τ(M)/2. Then,

cos θ(TpM,TqM) ≥ 1− 2‖p− q‖
2

τ(M)2 .
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In particular,
∠(TpM,TqM) < 2‖p− q‖

τ(M) .

The following characterization of the reach is useful to control how points on manifold
deviate from their projections on some tangent space.

Lemma A.2 (Theorem 4.18 in [Fed59]). For p, q ∈M ,

‖π⊥p (q − p)‖ ≤ ‖q − p‖
2

2τ(M) . (A.2)

The following lemma asserts that the projection from a manifold to its tangent space is
well-behaved.

Lemma A.3. Let p ∈M .

1. Let x ∈ RD with d(x,M) < τ(M). Then, πM (x) = p if and only if π̃p(x) = p.

2. For r ≤ τ(M)/3, the map π̃p is a diffeormorphism from BM (p, r) on its image. Moreover,
its image π̃p(BM (p, r)) contains BT̃pM

(p, 7r/8). In particular, if x ∈ BM (p, τ(M)/4), then

‖π̃p(x)− p‖ ≥ 7
8‖x− p‖. (A.3)

Proof. 1. See Point (12) in [Fed59, Theorem 4.8].

2. We first show that π̃p is injective on BM (p, τ(M)/3). Assume that π̃p(q) = π̃p(q′) for some
q 6= q′ ∈ M . Consider without loss of generality that ‖p − q‖ ≥ ‖p − q′‖. The goal is to
show that ‖p−q‖ > τ(M)/3. If ‖p−q‖ > τ(M)/2, the conclusion obviously holds. Lemma
A.1 states that if it is not the case then ∠(TpM,TqM) < 2‖p−q‖τ(M) . Also, by definition,

∠(TpM,TqM) ≥ ‖(πp − πq)(q − q
′)‖

‖q − q′‖

= ‖πq(q − q
′)‖

‖q − q′‖
≥
‖q − q′‖ − ‖π⊥q (q − q′)‖

‖q − q′‖

≥ 1− ‖q − q
′‖

2τ(M) by (A.2)

≥ 1− ‖p− q‖
τ(M) by the triangle inequality.

Therefore, we have 3‖p − q‖/τ(M) > 1, i.e. ‖p − q‖ > τ(M)/3, and π̃p is injective on
BM (p, τ(M)/3). To conclude that π̃p is a diffeomorphism, it suffices to show that its
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differential is always invertible. As π̃p is an affine application, the differential dqπ̃p is equal
to πp. Therefore, the Jacobian Jπ̃p(q) of the function π̃p : M → TpM in q is given by the
determinant of the projection πp restricted to TqM . In particular, it is larger than the
smallest singular value of πp ◦ πq to the power d, which is larger than

(1− ∠(TpM,TqM))d ≥
(

1− 2‖p− q‖
τ(M)

)d
≥
(1

3

)d
,

thanks to Lemma A.1 and using that ‖p − q‖ ≤ τ(M)/3. In particular, the Jacobian
is positive, and π̃p is a diffeormorphism from BM (p, τ(M)/3) to its image. The second
statement of Point 2 is stated in [AL19, Lemma A.2]. The last statement is a consequence
of the two first, using that if ‖x− p‖ ≤ τ(M)/4, then 8‖π̃p(x)− p‖/7 ≤ τ(M)/3.

Note that Point 2 was already proven in [ACLZ17, Lemma 5], but with a slightly worse
constant of τ(M)/12. We end this section on preliminary geometric results by stating two
lemmas on the properties of convex hull built on manifolds.

Lemma A.4. Let p ∈ M , σ ⊂ BM (p, τ(M)/4) and σ̃ = π̃p(σ). Assume that p ∈ Conv(σ̃).
Then,

r(σ̃) ≤ r(σ) ≤ r(σ̃)
(

1 + 6 r(σ̃)
τ(M)

)
. (A.4)

Proof. As the projection is 1-Lipschitz, it is clear that r(σ̃) ≤ r(σ). Let us prove the other
inequality. Let σ = {x0, . . . , xk}, σ̃ = {x̃0, . . . , x̃k} and fix 0 ≤ i ≤ k. As xi ∈ BM (p, τ(M)/4),
we have by (A.3)

‖xi − p‖ ≤
8
7‖x̃i − p‖ ≤

16
7 r(σ̃), (A.5)

where we used that ‖x̃i − p‖ ≤ 2r(σ̃) as p ∈ Conv(σ̃). Let z̃ be the center of the minimum
enclosing ball of σ̃. Write z̃ =

∑k
j=0 λj x̃j as a convex combination of the points of σ̃ and let

z =
∑k
j=0 λjxj ∈ Conv(σ). Then, we have

‖z − xi‖ ≤ ‖z − z̃‖+ ‖z̃ − x̃i‖+ ‖x̃i − xi‖

≤
k∑
j=0

λj‖xj − x̃j‖+ r(σ̃) + ‖xi − p‖
2

2τ(M) using (A.2)

≤
k∑
j=0

λj
‖xj − p‖2

2τ(M) + r(σ̃) + 128
49

r(σ̃)2

τ(M) using (A.2) and (A.5)

≤ r(σ̃) + 256
49

r(σ̃)2

τ(M) ≤ r(σ̃) + 6 r(σ̃)2

τ(M) using (A.5).

We obtain the conclusion as σ is included in the ball of radius maxi ‖z − xi‖ and center z.
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Lemma A.5. Let σ ⊂M with r(σ) < τ(M) and p ∈M with p ∈ πM (Conv(σ)). Then,

σ ⊂ B
(
p, 2r(σ)

(
1 + r(σ)

2τ(M)

))
. (A.6)

Proof. Let y ∈ Conv(σ) with πM (y) = p and let q ∈ σ. One has ‖q − p‖ ≤ ‖q − y‖+ ‖y − p‖ ≤
2r(σ) + r(σ)2

τ(M) by using Lemma 3.3.

B Proofs of Section 3

Delaunay triangulations will be at the core of the proof of Proposition 3.5 and we therefore
need some preliminary definitions. A finite set will be called a simplex in the following, and
a k-simplex is a set of cardinality k + 1. The circumball of a d-simplex σ in Rd is defined as
the unique ball having the simplex σ on its boundary. It exists as long as σ does not lie on a
hyperplane of Rd. The radius of the circumball σ is called the circumradius of σ and is denoted
by circ(σ). Note that in particular circ(σ) ≥ r(σ).

A triangulation T of a finite set A ⊂ Rd is a set of d-simplices such that

1.
⋃
σ∈T σ = A,

2. for σ 6= σ′ ∈ T , the interior of Conv(σ) does not intersect the interior of Conv(σ′),

3.
⋃
σ∈T Conv(σ) = Conv(A) and

4. for every σ ∈ T , Conv(σ) intersects A only at points of the simplex σ.

Given a finite set A ⊂ Rd, a Delaunay triangulation of A is a triangulation of A such that the
interior of every circumball of a simplex of the triangulation does not contain any point of A.
Such a triangulation exists as long as A does not lie on a hyperplane of Rd. It may however not
be unique.

B.1 Proof of Proposition 3.5

We first show a weak version of Proposition 3.5:

Lemma B.1. Let M ∈ Cd be a d-dimensional manifold and let A ⊂ M be a finite set. If
t∗(A) ≤ τ(M)/36, then

t∗(A) ≤ ε(A)
(

1 + 6 ε(A)
τ(M)

)
and (B.1)

t∗(A) ≥ ε(A)
(

1− 4
3
ε(A)
τ(M)

)
. (B.2)
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Proof of inequality (B.1). For p ∈M , define

t∗(p,A) := inf{t < τ(M), p ∈ πM ( Convd(t;A))}. (B.3)

We have t∗(A) = supp∈M t∗(p,A) ≤ τ(M)/36. Let p ∈ M be such that t∗(p,A) = t∗(A).
Let σ(p) be a simplex of A (of dimension less than d) such that p ∈ πM (Conv(σ(p)), with
r(σ(p)) = t∗(p,A). Write σ̃(p) for π̃p(σ(p)). Also, let Ãp = π̃p(A ∩ B(p, τ(M)/4)).

Lemma B.2. Under the assumption t∗(A) = t∗(p,A) ≤ τ(M)/36, the set Ãp does not lie on a
hyperplane of T̃pM .

Proof. Assume that Ãp lies on some hyperplane H of T̃pM . Then, as t∗(p,A) ≤ τ(M)/36, we
have p ∈ Conv(σ̃p) ⊂ Conv(Ãp) ⊂ H by assumption. Therefore, the hyperplane H contains p.
Consider a point q̃ ∈ T̃pM nearby p with q̃ − p orthogonal to H. Then, by Point 2 in Lemma
A.3, there exists q ∈ BM (p, τ(M)/4) with π̃p(q) = q̃, and q belongs to πM (Conv(σ(q)) for some
simplex σ(q) of radius smaller than r(σ(p)). Therefore, if t∗(A) = r(σ(p)) ≤ τ(M)/36, then by
Lemma A.5,

σ(q) ⊂ BM
(
q, 2r(σ(q))

(
1 + r(σ(q))

2τ(M)

))
⊂ BM

(
q,
τ(M)

18

(
1 + 1

72

))
⊂ BM

(
q,
τ(M)

8

)
⊂ BM

(
p, ‖p− q‖+ τ(M)

8

)
⊂ BM

(
p,
τ(M)

4

)
by choosing q̃ close enough to p and using (A.3). Hence, we have π̃p(σ(q)) ⊂ Ãp ⊂ H. Let
y ∈ Conv(σ(q)) be such that πM (y) = q. Then, π̃p(y) ∈ Conv(Ãp) ⊂ H. Therefore, recalling
that q̃ − p is orthogonal to H, we have

‖y − p‖2 = ‖y − q̃‖2 − ‖p− q̃‖2

≤ (‖y − q‖+ ‖q − q̃‖)2 − ‖p− q̃‖2

≤ ‖y − q‖2 + ‖q − q̃‖2 + 2‖y − q‖‖q − q̃‖ − ‖p− q̃‖2. (B.4)

By (A.2) and Lemma A.3, we have ‖q− q̃‖ ≤ ‖p− q‖2/(2τ(M)) ≤ 64‖p− q̃‖2/(98τ(M)), as long
as ‖p − q̃‖ is sufficiently small. Also, by Lemma 3.3, ‖y − q‖ ≤ r(σ(q))2/τ(M) ≤ τ(M)/(36)2.
Therefore, from (B.4), we obtain that ‖y − p‖ < ‖y − q‖ if ‖p− q̃‖ is sufficiently small. This is
a contradiction with having πM (y) = q. Therefore, Ãp does not lie on H.

Hence, there exists a Delaunay triangulation of Ãp, which we will consider in the fol-
lowing. If t∗(p,A) ≤ τ(M)/36, then σ(p) ⊂ B(p, τ(M)/4) according to Lemma A.5. Therefore,
using Point 1 in Lemma A.3, we see that p ∈ π̃p(Conv(σ(p))) ⊂ Conv(Ãp) and that there exists
a d-simplex σ̃0 in a Delaunay triangulation of Ãp with p ∈ Conv(σ̃0). We denote by σ0 be the
corresponding d-simplex in A.
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Lemma B.3. Assume that p ∈ M satisfies t∗(p,A) ≤ τ(M)/36 and that there exists ỹ ∈ T̃pM
with ‖p− ỹ‖ ≤ 3t∗(p,A). Then, there exists y ∈M with π̃p(y) = ỹ and d(y,A) ≥ d(ỹ, Ãp).

Before proving Lemma B.3, let us finish the proof. Let z̃ be the center of the smallest
enclosing ball of σ̃(p) and w̃ be the center of the circumsphere of σ̃0. We apply Lemma B.3 on
a certain ỹ, which is built in a different way, depending on whether w̃ and z̃ are close or not.

• Case 1: Assume that ‖z̃ − w̃‖ ≤ 2r(σ̃(p)). Then, we choose ỹ := w̃. Indeed, we have:

– ‖p− w̃‖ ≤ ‖p− z̃‖+‖z̃− w̃‖ ≤ r(σ̃(p))+2r(σ̃(p)) = 3r(σ̃(p)) ≤ 3t∗(p,A). The second
inequality holds as p ∈ Conv(σ̃(p)) ⊂ B(z̃, r(σ̃(p))).

– d(w̃, Ãp) = circ(σ̃0) ≥ r(σ̃0) as σ̃0 is in the Delaunay triangulation.

Therefore, one can apply Lemma B.3 to w̃: one has ε(A) ≥ d(w,A) ≥ d(w̃, Ãp) ≥ r(σ̃0) for
some w ∈M . Also, there exists an element y ∈ Conv(σ0) with π̃p(y) = p by construction.
As r(σ0) ≤ τ(M)/4, we have πM (y) = p, according to Point 1 in Lemma A.3 and Lemma
3.3. This implies that t∗(p,A) ≤ r(σ0). Therefore, according to Lemma A.4, as σ0 ⊂
BM (p, τ(M)/4) by construction,

t∗(p,A) ≤ r(σ0) ≤ r(σ̃0)
(

1 + 6 r(σ̃0)
τ(M)

)
≤ ε(A)

(
1 + 6 ε(A)

τ(M)

)
.

• Case 2: Assume that ‖z̃ − w̃‖ > 2r(σ̃(p)). Consider

ỹ = z̃ + 2r(σ̃(p)) w̃ − z̃
‖w̃ − z̃‖

.

Then, we have:

– ‖p− ỹ‖ ≤ ‖p− z̃‖+ ‖z̃ − ỹ‖ ≤ r(σ̃(p)) + 2r(σ̃(p)) = 3r(σ̃(p)) ≤ 3t∗(p,A).
– ‖ỹ − w̃‖ = ‖z̃ − w̃‖ − 2r(σ̃(p)) ≤ ‖z̃ − p‖+ ‖p− w̃‖ − 2r(σ̃(p)) ≤ ‖p− w̃‖ − r(σ̃(p)).

As p is in the circumball of σ̃0, ‖ỹ − w̃‖ ≤ ‖p − w̃‖ ≤ circ(σ̃0), i.e. ỹ is also in the
circumball of σ̃0. Therefore, letting S be the circumsphere of σ̃0,

d(ỹ, Ãp) ≥ d(ỹ,S) = circ(σ̃0)− ‖ỹ − w̃‖
≥ circ(σ̃0)− ‖p− w̃‖+ r(σ̃(p)) ≥ r(σ̃(p)).

Likewise the first case, one can apply Lemma B.3 to ỹ and obtain ε(A) ≥ r(σ̃(p)). There-
fore, using Lemma A.4,

t∗(p,A) = r(σ(p)) ≤ r(σ̃(p))
(

1 + 6r(σ̃(p))
τ(M)

)
≤ ε(A)

(
1 + 6 ε(A)

τ(M)

)
.
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We therefore have shown that t∗(A) = t∗(p,A) ≤ ε(A)
(
1 + 6 ε(A)

τ(M)

)
in both cases.

Proof of Lemma B.3. According to Point 2 in Lemma A.3, if we have t∗(p,A) ≤ τ(M)/36,
then there exists y ∈ BM (p, τ(M)/4) with π̃p(y) = ỹ. As the projection is 1-Lispchitz, we have
d(ỹ, Ãp) ≤ d(y,A∩B(p, τ(M)/4)). To conclude, it suffices to show that d(y,A∩B(p, τ(M)/4)) =
d(y,A) . If this is not the case, then there exists a ∈ A with ‖p− a‖ > τ(M)/4 and ‖y − a‖ ≤
d(y,A ∩ B(p, τ(M)/4)), so that

‖y − p‖+ d(y,A ∩ B(p, τ(M)/4)) ≥ ‖y − p‖+ ‖y − a‖ ≥ ‖p− a‖ > τ(M)/4.

Let σ(p) be a simplex of A of dimension less than d with r(σ(p)) = t∗(p,A) and such
that p ∈ πM (Conv(σ(p))). By Lemma A.5, σ(p) ⊂ B(p, τ(M)/4). Therefore, for x ∈ σ(p), we
have

d(y,A ∩ B(p, τ(M)/4)) ≤ ‖y − x‖ ≤ ‖y − p‖+ ‖p− x‖.
From Lemma A.5, one has ‖p−x‖ ≤ 2t∗(p,A) (1 + t∗(p,A)/(2τ(M))). Also, according to (A.3),
‖y − p‖ ≤ 8‖ỹ − p‖/7. Therefore,

‖y − p‖+ d(y,A ∩ B(p, τ(M)/4)) ≤ 16
7 ‖ỹ − p‖+ ‖p− x‖

≤ 16
7 3t∗(p,A) + 2t∗(p,A)

(
1 + t∗(p,A)

2τ(M)

)
≤ τ(M)/4 if t∗(p,A) ≤ τ(M)

36 ,

which concludes the proof.

Proof of inequality (B.2). Let p ∈ M . There exists a simplex σ(p) of dimension less than d
with r(σ(p)) ≤ t∗(A) and x ∈ Conv(σ(p)) with πM (x) = p. By Lemma 1 in [ALS13], we have
d(x, σ(p)) ≤ r(σ(p)), i.e. there exists q ∈ σ(p) with ‖x− q‖ ≤ r(σ(p)). Then,

d(p,A) ≤ ‖p− q‖ ≤ ‖p− x‖+ ‖x− q‖

≤ t∗(A)2

τ(M) + t∗(A) by Lemma 3.3.

By taking the supremum over p ∈ M in, we obtain ε(A) ≤ t∗(A)
(
1 + t∗(A)

τ(M)

)
. In particular,

ε(A) ≤ 2t∗(A), and by using (B.1), we obtain that, if t∗(A) ≤ τ(M)/36,

ε(A) ≤ t∗(A)

1 +
ε(A)

(
1 + 6 ε(A)

τ(M)

)
τ(M)


≤ t∗(A)

(
1 + 4

3
ε(A)
τ(M)

)
,

so that ε(A)
(
1− 4

3
ε(A)
τ(M)

)
≤ t∗(A) as long as t∗(A) ≤ τ(M)/36.
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Proof of Proposition 3.5. To prove Proposition 3.5, by using Lemma B.1, it suffices to show that
there exists two absolute constants c0, c1 for which

t∗(A) ≤ c0ε(A) if ε(A) ≤ c1τ(M). (B.5)

Lemma B.4. Let A ⊂ Rd be a finite set. If dH(B(0, 1)|A) ≤ 1, then 0 ∈ Conv(A).

Proof. We prove the contrapositive. If 0 6∈ Conv(A), then there exists an half space which
contains A. Let x be the unit vector orthogonal to this halfspace. Then, d(x,A) > 1.

Let p ∈ M and let ỹ ∈ BT̃pM
(p, ε(A)). If ε(A) ≤ 7τ(M)/24, then there exists y ∈

BM (p, 8ε(A)/7) with π̃p(y) = ỹ according to Point 2 in Lemma A.3. By assumption, there exists
a ∈ A with ‖y−a‖ ≤ ε(A), and this point a is in B(p, 15ε(A)/7). Therefore, as π̃p is 1-Lipschitz,

dH(BT̃pM
(p, ε(A))|π̃p(A ∩ B(p, 15ε(A)/7))) ≤ ε(A). (B.6)

By Lemma B.4, this implies that

p ∈ Conv(π̃p(A ∩ B(p, 15ε(A)/7))).

By Carathéodory’s theorem, there exists a d-simplex σ̃p ⊂ π̃p(A ∩ B(p, 15ε(A)/7)) such that
p ∈ Conv(σ̃p). Let σp be the corresponding simplex in A∩B(p, 15ε(A)/7). If 15ε(A)/7 < τ(M),
then there is x ∈ Conv(σp) with πM (x) = p according to Point 1 in Lemma A.3 and Lemma 3.3.
As this holds for any p ∈M , we have

t∗(A) ≤ sup
p∈M

r(σp) ≤
15ε(A)

7 , (B.7)

as long as ε(A) < 7τ(M)/24, thus showing (B.5) with c0 = 15/7 and c1 = 7/24. If ε(A) ≤
τ(M)/78, then t∗(A) ≤ c0τ(M)/78 ≤ τ(M)/36, concluding the proof of Proposition 3.5.
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B.2 Proof of Proposition 3.6

Proof of Equation (3.6) is found in [Aam17, Lemma III.23]. To obtain Equation (3.7), we use
that for L > 0,

E[ε(Xn)2] = E[ε(Xn)21{ε(Xn) ≤ L}] + E[ε(Xn)21{L ≤ ε(Xn) ≤ τmin/4}]
+ E[ε(Xn)21{τmin/4 ≤ ε(Xn)}]

≤ L2 +
∫ (τmin/4)2

L2
P(ε(Xn)2 > u)du+ diam(M)2P(ε(Xn) > τmin/4)

≤ L2 +
∫ +∞

L2

8d

αdfminud/2 exp(−n2dαdfminu
d/2)du

+ diam(M)2 16d

αdfminτ
d/2
min

exp(−n4dαdfminτ
d/2
min).

As diam(M) is bounded by a constant depending on d, fmin, τmin (see [AL18, Lemma 2]), the
last term is negligible in front of (logn/n)2/d if n is large enough with respect to the parameters
of the model. Also, by a change of variables, the second term is equal to∫ +∞

n2dαdfminLd

16dnαdfmin
αdfminv

exp(−v) 1
(n2dαdfmin)2/d

2
d
v2/d−1dv

= 2
d

16d

(2dαdfmin)2/dn
1−2/d

∫ +∞

n2dαdfminLd
v2/d−2 exp(−v)dv

≤ 1
2d

16d

(αdfmin)2/dn
1−2/d(n2dαdfminL

d)2/d−1 exp(−n2dαdfminL
d)

≤ 2 8d

dαdfmin
L2−d exp(−n2dαdfminL

d),

where, at the second to last line, we used a classical bound on the incomplete Gamma function
(see [BC+09, Theorem 2.1]). Letting Ld = a logn/(n2dαdfmin) for a > 0, we obtain

E[ε(Xn)21{ε(Xn) ≤ τmin/4}] ≤ L2
(

1 + 2 8d

dαdfmin

L−d

na

)

≤
(

a logn
n2dαdfmin

)2/d
(

1 + 16d

d

2
ana−1 logn

)
.

Choosing 1 ≤ a < 2 yields that for n large enough,

E[ε(Xn)2] ≤
( logn
nαdfmin

)2/d
+ diam(M)2 16d

αdfminτ
d/2
min

exp(−n4dαdfminτ
d/2
min)

≤ 2
( logn
nαdfmin

)2/d
.
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Also, note that (ωd/αd)2/d ≤ π2, yielding the second inequality in (3.7).

B.3 Proof of Theorem 3.7

We first state a lemma which shows that the t-convex hull is stable under small perturbations
with respect to the Hausdorff distance.

Lemma B.5. Let t, γ > 0 and A,B ⊂ RD with dH(A,B) ≤ γ. Then,

dH( Convd(t;B)|Convd(t+ γ;A)) ≤ γ. (B.8)

Proof. Let σ ⊂ B be a simplex of dimension less than d with r(σ) ≤ t. For each y ∈ σ, let x ∈ A
with ‖x− y‖ ≤ γ. By doing so, we create a non-empty simplex ξ ⊂ A of dimension less than d
with dH(σ|ξ) ≤ γ. One has r(ξ) ≤ t+ γ (see [ALS13, Lemma 16]) and dH(Conv(σ)|Conv(ξ)) ≤
dH(σ|ξ) ≤ γ. This implies the conclusion.

Let A ⊂ M and B ⊂ RD with dH(A,B) ≤ γ. Then, if t∗(A) < t − γ < t + γ < τ(M),
using (2.1), Lemma B.5 and (3.4),

dH( Convd(t;B)|M) ≤ dH( Convd(t;B)|Convd(t+ γ;A)) + dH( Convd(t+ γ;A)|M)

≤ γ + (t+ γ)2

τ(M) and

dH(M |Convd(t;B)) ≤ dH(M |Convd(t− γ;A)) + dH( Convd(t− γ;A)|Convd(t;B))

≤ (t− γ)2

τ(M) + γ,

so that
dH( Convd(t;B),M) ≤ γ + (t+ γ)2

τ(M) . (B.9)

Let q = (τmin, fmin,+∞, η) ∈ Qd, let P ∈ Pdq,n with underlying manifold M and let Xn
be a n-sample of law ι#P , with Yn the corresponding sample of law P1, the first marginal of P .
Then, for 0 ≤ t < τ(M)− γ,

EdH( Convd(t;Xn),M) = EdH( Convd(t;Xn),M)1{t− γ > t∗(Yn)}
+ EdH( Convd(t;Xn),M)1{t− γ ≤ t∗(Yn)}

≤ γ + (t+ γ)2

τ(M) + (diam(M) + γ)P(t∗(Yn) ≥ t− γ).

By Proposition 3.5, if ε(Yn) ≤ τ(M)/78, then t∗(Yn) ≥ t implies that

ε(Yn) ≥ t
(

1 + 6ε(Yn)
τ(M)

)−1
≥ 13

14 t.
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Therefore, if t ≤ τ(M)/78 and t∗(Yn) ≥ t then ε(Yn) ≥ 13
14 t. By using Proposition 3.6, and by

noting that diam(M) is bounded by a constant depending on d, fmin, τmin (see [AL18, Lemma
2]), we obtain that, if t ≤ τ(M)/78,

EdH( Convd(t;Xn),M) ≤ γ + (t+ γ)2

τ(M) + Cd,τmin,fmin
exp(−2dαdfminn(t− γ)d)

(t− γ)d . (B.10)

In particular, by letting t =
(

3 logn
2dαdfminn

)1/d
, if γ ≤ η (logn/n)2/d, we obtain

EdH( Convd(t;Xn),M)

≤
( logn

n

)2/d
η + 1

τmin

(( 3
2dαdfmin

)1/d
+ η

( logn
n

)1/d
)2
+ C ′d,τmin,fmin

n−2

logn

≤
( logn

n

)2/d
(
η + 1

τmin

( 4
2dαdfmin

)2/d
)

if n is large enough

≤
( logn

n

)2/d
(
η + 1

τmin
π2 42/d

4

( 1
ωdfmin

)2/d
)

as (ωd/αd)2/d ≤ π2

≤
( logn

n

)2/d
(
η + 4π2

τmin

( 1
ωdfmin

)2/d
)
.

C Proofs of Section 4

C.1 Proof of Proposition 4.3

Let P ∈ Pdτmin,fmin,fmax
be a probability distribution with support M and let Xn be a n-sample

of law P . We will use repeatedly in the proof the fact that there exist constants cd, Cd > 0 such
that, if t ≤ τ(M)/4, then cdfmint

d ≤ P (B) ≤ Cdfmaxt
d for all balls B of radius t centered at

points of M (see [Aam17, Lemma III.23]).

Lemma C.1. Assume that t ≤ td,τmin,fmax. There exists a partition C = {U1, . . . , UK} of M into
K measurable parts such that:

1. for k = 1, . . . ,K, Uk contains a ball Bk of radius 2t,

2. for k = 1, . . . ,K, P (Uk) = 1/K,

3. we have 1/(2Cdfmaxt
d) ≤ K ≤ 1/(Cdfmaxt

d).

Proof. If t ≤ τ(M)/8, then P (B) ≤ Cdfmaxt
d for any ball B of radius 2t. Assume that t is small

enough so that Cdfmaxt
d ≤ 1/2 and let K be the largest integer such that 1/K ≥ Cdfmaxt

d, so
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that 1/(2Cdfmaxt
d) ≤ K ≤ 1/(Cdfmaxt

d). Build C in the following way. Start with an union of
K disjoint balls Bk of radius 2t, for k = 1, . . . ,K, choose Vk any measurable set in M\

⋃K
k=1Bk

with P (Vk) = 1/K−P (Bk) ≥ 0 and let Uk = Bk∪Vk. The setM\
⋃K
k=1 Uk is of P -measure null,

so that by adding it to U1 for instance, we obtain a partition following the required properties.
Note that we used the fact that for any A ⊂M and 0 ≤ p ≤ P (A), there exists a subset V ⊂ A
with P (V ) = p: this holds as P is absolutely continuous with respect to the volume measure on
M .

We fix such a partition in the following. For V ⊂M , let NV be the number of points of
Xn in V and write Nk for NUk

. Denote by B′k the ball sharing its center with Bk, of radius t
and define Ek the event

(Nk = 2 and NB′
k

= 2)⇒ r(Xn ∩ Uk) < λt

≡ Nk 6= 2 or (Nk = 2 and (NB′
k
< 2 or (NB′

k
= 2 and r(Xn ∩ Uk) < λt)))

≡ Nk 6= 2 or Fk.
(C.1)

Lemma C.2. If hd(t,Xn) < λt, then Ek is satisfied for k = 1, . . . ,K.

Proof. Let σ = Xn ∩ Uk. If Nk = 2 and NB′
k

= 2, then both points of σ are in B′k and one has
r(σ) ≤ t. Therefore, dH(Conv(σ)|Xn) < λt. Let Xe be the middle of the two points composing
σ. The smallest enclosing ball of σ is of radius smaller than t, and is therefore included in Bk
(which is of radius 2t). As NBk

= 2, one has d(Xe,Xn) = d(Xe, σ) = r(σ). Therefore, we have
r(σ) ≤ dH(Conv(σ)|Xn) < λt and Ek is satisfied.

We therefore obtain the bound

P(hd(t,Xn) < λt) ≤ P(∀k = 1, . . . ,K, Ek)
= E [P(∀k = 1, . . . ,K, Ek|(Nk)k=1,...,K)]

≤ E
[
K∏
k=1

(1{Nk 6= 2}+ P(Fk|Nk = 2)1{Nk = 2})
]

≤ E
[
K∏
k=1

(1− (1− P(Fk|Nk = 2))1{Nk = 2})
]
.

Lemma C.3. There exists a positive constant C0 (depending on λ, d, fmin, fmax) such that

P(Fk|Nk = 2) ≤ e−C0 for k = 1, . . . ,K.

Proof. Let Y1, Y2 be two independent random variables sampled according to P , conditioned on
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being in B′k. Then,

P(Fk|Nk = 2) = P(NB′
k
< 2|Nk = 2)

+ P(NB′
k

= 2 and r(Xn ∩ Uk) < λt|Nk = 2)
= 1− P(NB′

k
= 2 and r(Xn ∩ Uk) ≥ λt|Nk = 2)

= 1− P(NB′
k

= 2|Nk = 2)P(r(Xn ∩B′k) ≥ λt|NB′
k

= 2)

= 1−
(
P (B′k)
P (Uk)

)2
P(r({Y1, Y2}) ≥ λt)

≤ 1−
(
KCdfmint

d
)2

P(‖Y1 − Y2‖ ≥ 2λt)

≤ 1− C1P(‖Y1 − Y2‖ ≥ 2λt),

where we used [Aam17, Lemma III.23] at the second to last line and Lemma C.1 at the last line.
Let x1, x2 be two antipodal points on B′k. If ‖xi−Yi‖ ≤ (1−λ)t for i = 1, 2, then ‖Y1−Y2‖ ≥ 2λt.
Also, there exists a ball Wi of radius (1− λ)t/2 in B(xi, (1− λ)t) ∩B′k. Therefore,

P(‖Y1 − Y2‖ ≥ 2λt) ≥
(
P (Wi)
P (B′k)

)2

≥

Cdfmin
(

(1−λ)t
2

)d
Cdfmaxtd


2

= C2,

where we used [Aam17, Lemma III.23]. This concludes the proof.

We finally obtain

P(hd(t,Xn) < λt) ≤ E
[
exp

(
−C0

K∑
k=1

1{Nk = 2}
)]

. (C.2)

We use the following theorem to estimate this quantity (see [LL14]):

Proposition C.4. Let Z1, . . . , ZK be Bernoulli random variables. Let 0 < l < L < K be
positive integers. Then,

P
(

K∑
k=1

Zk ≥ L
)
≤ 1(L

l

) ∑
A⊂{1,...,K}
|A|=l

E
[∏
i∈A

Zi

]
, (C.3)

where |A| denotes the cardinality of a set A.

For k = 1, . . . ,K and n > 0, let Zk := 1{Nk 6= 2}, Ik(n) := E
[∏k

l=1 Zl
]
and

p := P(Nk = 2) =
(
n

2

)
K−2

(
1− 1

K

)n−2
. (C.4)
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Assume that K ≥ 17 (this can be ensured by taking t small enough according to Lemma C.1).
Then,

p ≤
1
2
(
n
K

)2 exp(−n/K)(
1− 1

17

)2 ≤ 1/3.

One has, for k ≥ 1 and n ≥ 2,

Ik(n) = P(N1 6= 2, . . . , Nk−1 6= 2)− P(N1 6= 2, . . . , Nk−1 6= 2, Nk = 2)
= Ik−1(n)− P(N1 6= 2, . . . , Nk−1 6= 2|Nk = 2)p
= Ik−1(n)− Ik−1(n− 2)p.

Let, for k ≥ 1 and n ≥ 2,

Rk(n) := Ik(n)
Ik−1(n) and Sk(n) := Ik(n− 2)

Ik(n) , (C.5)

so that Rk(n) = 1− Sk−1(n)p. One has

Ik(n) = P(N1 6= 2, . . . , Nk 6= 2 and X1 6∈
⋃
l≤k

Ul)

+ P(N1 6= 2, . . . , Nk 6= 2 and X1 ∈
⋃
l≤k

Ul)

= Ik(n− 1)
(

1− k

K

)
+ P(N1 6= 2, . . . , Nk 6= 2 and X1 ∈

⋃
l≤k

Ul),

so that (
1− k

K

)
Ik(n− 1) ≤ Ik(n) ≤ Ik(n− 1) + Ik−1(n− 1). (C.6)

Iterating this equation, we obtain(
1− k

K

)2
Ik(n− 2) ≤ Ik(n) ≤ Ik(n− 2) + 2Ik−1(n− 2) + Ik−2(n− 2).

Therefore, (
1− k

K

)2
≤ Sk(n)−1 ≤ 1 + 2Rk(n− 2)−1 +Rk(n− 2)−1Rk−1(n− 2)−1. (C.7)

Assume that 2 ≤ k ≤ K(1− (3/2)√p) (with 1− (3/2)√p > 0 for p ≤ 1/3). Then,

Rk−1(n) = 1− Sk−2(n)p ≥ 1− p(
1− k−2

K

)2 ≥ 1−
(2

3

)2
> 0.
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Therefore, by (C.7), if 3 ≤ k ≤ K(1−(3/2)√p), then Sk−1(n)−1 ≤ C3 for some absolute constant
C3 and

Rk(n) = 1− Sk−1(n)p ≤ 1− C−1
3 p. (C.8)

Thus, we have, for 3 ≤ l ≤ K(1− (3/2)√p),

Il(n) =
l∏

k=1
Rk(n) ≤

l∏
k=3

Rk(n) ≤
(
1− C−1

3 p
)l−2

≤ C4 exp(−C−1
3 lp). (C.9)

We are now ready to apply Proposition C.4 to Z1, . . . , ZK for some integers l,K, with 3 ≤ l ≤
K(1− (3/2)√p) < L < K:

P
(

K∑
k=1

1{Nk = 2} ≤ K − L
)

= P
(

K∑
k=1

Zk ≥ L
)
≤
(K
l

)(L
l

)C4 exp(−C−1
3 lp). (C.10)

To conclude, we use the following estimate:

Lemma C.5. There exists an absolute constant µ such that the following holds. Let 0 < p ≤ 1/3
and let K ≥ 17 be an integer satisfying

−Kµp/ log(p) ≥ 1. (C.11)

Then there exists integers l, L such that

2 < K/8 ≤ l ≤ K(1− (3/2)√p) < L ≤ K(1 + µp/ log(p)) < K

and (K
l

)(L
l

) ≤ C5 exp((C−1
3 /16)Kp), (C.12)

for some absolute constant C5.

Before proving Lemma C.5, let us finish the proof. Assume first that K and n are such
that condition (C.11) is satisfied and choose integers l, L as in Lemma C.5 to obtain from (C.10)
that

P
(

K∑
k=1

1{Nk = 2} ≤ −Kµp/ log(p)
)
≤ P

(
K∑
k=1

1{Nk = 2} ≤ K − L
)

≤ C4C5 exp(−(C−1
3 /8)Kp+ (C−1

3 /16)Kp)) ≤ C4C5 exp(−(C−1
3 /16)Kp).
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Therefore,

P(hd(t,Xn) < λt) ≤ E
[
exp

(
−C0

K∑
k=1

1{Nk = 2}
)]

≤ P
(

K∑
k=1

1{Nk = 2} ≤ −Kµp/ log(p)
)

+ exp(C0Kµp/ log(p))

≤ C4C5 exp(−(C−1
3 /16)Kp) + exp(C0Kµp/ log(p))

≤ C6 exp(C7Kp/ log(p)). (C.13)

Note that, should condition (C.11) be not satisfied, then the right-hand side of (C.13) is larger
than C6 exp(−C7/µ). Thus, by replacing C6 by a larger constant if necessary, the right-hand
side of (C.13) is larger than 1 in this case. As the left-hand side of (C.13) is smaller than 1,
we observe that (C.13) holds even if (C.11) is not satisfied. Also, for K ≥ 17, one can easily
check that p ≥ (n/2K)2e−2n/K ≥ (C8nt

d)2 exp(−C8nt
d) for some constant C8. As the function

p ∈ (0, 1) 7→ p/ log(p) is nonincreasing, this concludes the proof.
The only remaining part is to prove Lemma C.5.

Proof of Lemma C.5. We first prove that there exists integers 2 < l < L < K satisfying

K/8 ≤ K(1− (3/2)√p+ µp/ log(p)) ≤ l ≤ K(1− (3/2)√p) and
K(1 + 2µp/ log(p)) ≤ L ≤ K(1 + µp/ log(p)) < K.

(C.14)

Indeed, one has 1−(3/2)√p > 1/8 as p ≤ 1/3, and also, for any κ > 0,√p > −κµp/ log(p) for 0 <
p ≤ 1/3 if µ is sufficiently small with respect to κ. Therefore, K/8 ≤ K(1−(3/2)√p+µp/ log(p))
and K(1− (3/2)√p) < K(1 + 2µp/ log(p)) for µ small enough. The existence of integers L and l
satisfying (C.14) is then ensured by the inequality −Kµp/ log(p) ≥ 1. We now fix such integers
l, L.

To prove (C.12), we use the following bound which holds for any 0 < k < K (see [Gal68,
Exercise 5.8]):√

K

8k(K − k) exp (Kϕ(k/K)) ≤
(
K

k

)
≤
√

K

2πk(K − k) exp (Kϕ(k/K)) , (C.15)

where ϕ(x) = −x log x−(1−x) log(1−x) for x ∈ (0, 1). There exists an absolute constant c0 such
that |ϕ′(x)| ≤ −c0 log(1 − x) for x ∈ (1/8, 1). Therefore, as 1/8 ≤ 1 − (3/2)√p + µp/ log(p) ≤
l/K ≤ 1− (3/2)√p,

ϕ(l/K) = ϕ(1− (3/2)√p) + (ϕ(l/K)− ϕ(1− (3/2)√p))
≤ ϕ(1− (3/2)√p) + c0 log((3/2)√p)µp/ log(p)
≤ ϕ(1− (3/2)√p) + c1µp,
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as there exists α > 0 such that (3/2)√p ≥ pα for 0 < p ≤ 1/3. Therefore, using that the function
x ∈ (0, 1) 7→ x−1ϕ(x) is nonincreasing,(K

l

)(L
l

) ≤
√

8K(L− l)
2πL(K − l) exp (Kϕ(l/K)− Lϕ(l/L))

≤
√

8(1− l/L)
2π(1− l/K) exp

(
Kϕ(1− (3/2)√p) + c1µpK

− l1 + 2µp/ log(p)
1− (3/2)√p ϕ

(
1− (3/2)√p

1 + 2µp/ log(p)

))

≤
√

8
2π exp

(
K

(
ϕ(1− (3/2)√p) + c1µp

− (1− (3/2)√p+ µp/ log(p))1 + 2µp/ log(p)
1− (3/2)√p ϕ

(
1− (3/2)√p

1 + 2µp/ log(p)

)))

=
√

8
2π exp (K(Fµ(p) + c1µp))

Let us bound Fµ(p). Write Fµ(p) = ϕ(a)− bϕ(c), so that Fµ(p) = ϕ(a)(1− b)− b(ϕ(c)− ϕ(a)).

• One has, using 1− (3/2)√p ≥ 1/8,

1− b =
1− (3/2)√p− (1− (3/2)√p+ µp/ log(p))(1 + 2µp/ log(p))

1− (3/2)√p

= −3µp/ log(p)− 2(µp/ log(p))2 + 3µp3/2/ log(p)
1− (3/2)√p

≤ −24µp/ log(p),

and also it is clear from the second line that 1− b ≥ 0 if µ is small enough.

• There exists a positive constant c2 such that ϕ(x) ≤ −c2x log(x) for x ∈ (0,
√

3/2).
Therefore, ϕ(a) = ϕ(1 − a) = ϕ((3/2)√p) ≤ −c2

√
p log((3/2)√p). As (3/2)√p ≥ pα

for 0 < p ≤ 1/3, we obtain ϕ(a) ≤ −c2α
√
p log(p) ≤ −c3 log(p) for some absolute constant

c3. We therefore obtain ϕ(a)(1− b) ≤ 24c3µp.

• We have

c− a =
1− (3/2)√p

1 + 2µp/ log(p) − (1− (3/2)√p)

= (1− (3/2)√p) −2µp/ log(p)
1 + 2µp/ log(p) ≤ −4µp/ log(p),
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as 1 + 2µp/ log(p) ≥ 1/2. Also, c ≥ a ≥ 1/8 and |ϕ′(x)| ≤ −c0 log(1− x) for x ∈ (1/8, 1).
Therefore, |ϕ(c)−ϕ(a)| ≤ −c0 log(1− c)|c−a| ≤ 4c0 log(1− c)µp/ log(p). Finally, we have,
if µ is small enough, using that p ∈ (0, 1/3),

1− c =
(3/2)√p+ 2µp/ log(p)

1 + 2µp/ log(p) ≥ (3/8)√p ≥ pβ,

for some β > 0. Therefore, |ϕ(c)− ϕ(a)| ≤ c4µp for some absolute constant c4.

As 0 < b ≤ 8, we finally obtain that there exists an absolute constant c5 such that Fµ(p) ≤ c5µp
for p ∈ (0, 1/3) and µ small enough. The conclusion is obtained by taking µ sufficiently small
with respect to C−1

3 /16.

C.2 Proof of Theorem 4.6

Upper bound on tλ,d(B) Let A,B be as in the statement of Theorem 4.6. A direct adaptation
of [ALS13, Lemma 5] shows that for any t ≥ 0, hd(B, t) ≤ hd(A, t+γ)+2γ. Therefore, according
to Proposition 4.4, we have for t∗(A) ≤ t+ γ < τ(M),

hd(t, B) ≤ (t+ γ)2

τ(M) + t∗(A)
(

1 + t∗(A)
τ(M)

)
+ 2γ.

Therefore, hd(t, B) < λt if (t+γ)2

τ(M) + t∗(A)
(
1 + t∗(A)

τ(M)

)
+ 2γ < λt. A straightforward compu-

tation shows that this is the case if γ ≤ t∗(A) ≤ λ2τ(M)/24 and if t ∈ [t0, t1] with t0 =
2t∗(A)
λ

(
1 + t∗(A)

τ(M)

)
+ 6γ

λ and t1 = τ(M)λ
2 . Therefore, tλ(B) ≤ 2t∗(A)

λ

(
1 + t∗(A)

τ(M)

)
+ 6γ

λ , as long as
tmax < τ(M)λ/2 and tmax + γ < τ(M).

Lower bound on tλ,d(A) in the noise-free case Assume that ε(A) ≤ τ(M)/78 so that Propo-
sition 3.5 holds. Let q ∈ M with ε(A) = d(q, A). One has q = πM (x) for some x ∈
Convd(t∗(A);A), so that, by Proposition 3.5 and Lemma 3.3,

d(x,A) ≥ d(q, A)− ‖x− q‖ ≥ t∗(A)(
1 + 6 ε(A)

τ(M)

) − t∗(A)2

τ(M)

≥ t∗(A)
(

1− 6 ε(A)
τ(M) −

t∗(A)
τ(M)

)
≥ t∗(A)

(
1− 62t∗(A)

τ(M) −
t∗(A)
τ(M)

)
≥ t∗(A)

(
1− 13 t

∗(A)
τ(M)

)
,

where we used at the last line that ε(A) ≤ 2t∗(A) is ε(A)/τ(M) if sufficiently small by Proposition
3.5. As x ∈ Convd(t∗(A);A), we have,

hd(t∗(A), A) ≥ t∗(A)
(

1− 13 t
∗(A)
τ(M)

)
. (C.16)

37



Therefore, if λ ≤ 1− 13t∗(A)/τ(M) and t∗(A) < tmax, then tλ(A) ≥ t∗(A).

Lower bound on tλ,d(A) in the tubular noise case [ALS13, Lemma 5] yields that for any t ≥ γ,

hd(B, t) ≥ hd(A, t− γ)− 2γ. (C.17)

Plugging in t = t∗(A) + γ, and using (C.16), we obtain

hd(B, t∗(A) + γ) ≥ t∗(A)
(

1− 13 t
∗(A)
τ(M)

)
− 2γ. (C.18)

This quantity is larger than λ(t∗(A) + γ) as long as

13 t
∗(A)
τ(M) ≤ 1− λ− (2 + λ) γ

t∗(A) . (C.19)

If γ ≤ (1 − λ) t
∗(A)

6 and 13 t
∗(A)
τ(M) ≤

1−λ
2 , then (C.19) is satisfied, giving the desired lower bound

on tλ(B) under those two conditions, should t∗(A) + γ be smaller than tmax.

C.3 Proof of Corollaries 4.7 and 4.9

Lemma C.6. Let A ⊂M be a finite set of cardinality n. Then,

ε(A) ≥ cdτ(M)n−1/d. (C.20)

Proof. As M ⊂
⋃
x∈A BM (x, ε(A)), one has Vol(M) ≤ ncdε(A)d. Lemma III.24 and Proposition

III.25 in [Aam17] imply that there exists a constant Cd such that Vol(M) ≥ Cdτ(M)d, thus
leading to the conclusion.

In the following proofs, we let q = (τmin, fmin,+∞, η) ∈ Qd and P ∈ Pdq,n. We write
Xn = {X1, . . . , Xn} a n-sample of law ι#P and let Yn = {Y1, . . . , Yn} be the corresponding
sample on M := M(P ). Also, γ = η(logn/n)2/d and we fix tmax = 1/ log(n).

Proof of Corollary 4.7. By equation (B.9), if t∗(Yn) + γ ≤ tλ,d(Xn) ≤ τ(M)− γ, then

dH( Convd(tλ,d(Xn);Xn),M) ≤ γ + (tλ,d(Xn) + γ)2

τ(M) . (C.21)

This relation holds as long as Conditions 1, 2 and 3 of Theorem 4.6 are satisfied. If γ <
η (logn/n)2/d and τmin > 2tmax/λ, Conditions 1 and 2 are satisfied as long as t∗(Yn) is small
enough with respect to λ, tmax and τmin and n is large enough. Note that the probability
that t∗(Yn) is smaller than tmax up to a constant is smaller than Cd,q exp(−nC ′d,q(logn)−d) by
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Proposition 3.6. Also, by Lemma C.6 and Proposition 3.5, Condition 3 is satisfied as long as n
is large enough. Hence, if S denote the event that Conditions 1, 2 and 3 are satisfied for B = Xn
and A = Yn, then, we have P(S) ≥ 1 − Cd,q exp(−C ′d,q(logn)−d). Therefore, by using (C.21),
the upper bound in Theorem 4.6, Proposition 3.5 and Lemma 3.6 (in that order), we obtain

E[dH( Convd(tλ,d(Xn);Xn),M)] ≤ E[dH( Convd(tλ,d(Xn);Xn),M)1{S}] + (diam(M) + γ)P(Sc)

≤ γ + 1
τmin

E
[(

6 t
∗(Yn)
λ

+
( 6
λ

+ 1
)
γ

)2
1{S}

]
+ Cd,q exp(−nC ′d,q(logn)−d)

≤ γ + 1
τmin

60
λ2E

[
ε(Yn)2

]
+ Cd,q exp(−nC ′d,q(logn)−d)

≤
( logn

n

)2/d
(
η + 1

τmin

121π2

λ2(ωdfmin)2/d

)
if n is large enough.

As there exists a constant Cκ,λ such that(
η + 121π2

λ2(ωdfmin)2/dτmin

)
≤ Cκ,λ

(
η

2 + C(1− κ)
(ωdfmin)2/dτmin

)

for all q ∈ Qd, 1 ≤ d ≤ D, the bound (4.8) follows from Theorem 2.4.

Proof of Corollary 4.9. Recall that we assume that η = 0, so that Xn = Yn. Theorem 3.2 in
[BSW09] states that for A ⊂M , if t < τ(M)/2 and t ≥ 10ε(A), then

∠(Tp(A, t), TpM) ≤ 6 t

τ(M) . (C.22)

Assume that the conditions of Theorem 4.6 are satisfied for Xn. Then, by Proposition 3.5 and
Theorem 4.6,

11tλ,d(Xn) > 11t∗(Xn) ≥ 10ε(Xn) and

11tλ,d(Xn) ≤ 2t∗(Xn)
λ

(
1 + t∗(Xn)

τ(M)

)
≤ λτ(M)

12

(
1 + 1

24

)
<
τ(M)

2 .

Hence, the upper bound in Theorem 4.6, Proposition 3.5 and Lemma 3.6 yield

E[∠(TpM,Tp(Xn, 11tλ(Xn)))] ≤ E[∠(TpM,Tp(Xn, 11tλ(Xn)))1{S}] + P(Sc)

≤ 66Etλ,d(Xn)
τmin

+ Cq,d exp(−C ′q,d(logn)−d) ≤ 136
λ

Eε(Xn)
τmin

+ Cq,d exp(−nC ′d,q(logn)−d)

≤ 136
λ

√
Eε(Xn)2

τmin
+ Cq,d exp(−C ′q,d(logn)−d) ≤ 137

√
2π

λτmin(ωdfmin)1/d

( logn
n

)1/d

if n is large enough.
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D Precise lower bound on the minimax risk

The goal of this section is to show the lower bound in Theorem 2.4. To do so, we adapt the
construction made in [KZ15] so that the lower bound holds with an explicit constant. Let
0 < d < D and q = (τmin, fmin, fmax, η) ∈ Qd(κ). We denote by M(P ) the underlying manifold
of P ∈ P(κ). The lowerbound is based on Le Cam’s lemma:

Lemma D.1. Let P(1), P(2) be two subfamilies of Pdq,n which are ε-separated, in the sense that
dH(M(P (1)),M(P (2))) ≥ 2ε for all P (1) ∈ P(1), P (2) ∈ P(2). Then,

mn(M,Pdq,n) ≥ ε

∣∣∣∣∣∣
 1

#P(1)

∑
P (1)∈P(1)

ι#P
(1)

 ∧
 1

#P(2)

∑
P (2)∈P(2)

ι#P
(2)

∣∣∣∣∣∣ , (D.1)

where |P ∧Q| is the testing affinity between two distributions P and Q and ι : RD × RD → RD
is the addition.

To obtain a lowerbound on the minimax risk, authors in [KZ15] exhibit two families
of manifolds which are ε-separated, and consider the uniform distributions on them. Those
manifolds are built by considering a base manifold M0 which is locally flat, and by adding small
bumps on the locally flat part. Such a construction leads to distributions having a density equal
roughly to 1/Vol(M0), a constant which might be smaller than fmin. If this is the case, then
the corresponding submodels are not in Pdq,n and we cannot apply Le Cam’s Lemma. Hence, we
consider another base manifold, which is a sphere M0 of radius R slightly larger than τmin, so
that its volume is smaller than 1/fmin (this is possible as fminωdτ

d
min ≤ κ < 1). The two families

are then once again constructed by adding small bumps onM0. We now detail this construction.
Let R, δ > 0 be two parameters to be fixed later. Let M0 ⊂ Rd+1 ⊂ RD be the d-sphere

of radius R, and let A be a maximal subset of M0 of even size, which is 4δ-separated. Note
that, standard packing arguments (and the formula for the volume of a spherical cap) show that
if δ/R is small enough, then the cardinality 2m of A satisfies 2m ≥

(
c0R
δ

)d
for some absolute

constant c0.
Let φ : R→ R be a smooth function such that 0 ≤ φ ≤ 1, φ ≡ 1 on [−1, 1] and φ ≡ 0 on

R\[−2, 2]. For s ∈ {±1}A, we build a diffeomorphism Φε
s by letting for x ∈ RD

Φε
s(x) = x

1 + ε

R

∑
y∈A

s(y)φ
(‖x− y‖

δ

) . (D.2)

Recall that ‖N‖op denotes the operator norm of a linear application N .

Lemma D.2. There exists two absolute constants c1, c2 > 0 such that the following holds.
Assume that δ ≤ R and that c1ε/δ < 1. Then, the function Φε

s : B(0, 3R) → Rd+1 is a
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diffeomorphism on its image, with

sup
x∈B(0,3R)

‖Id−dxΦε
s‖op ≤ c1ε/δ and sup

x∈B(0,3R)

∥∥∥d2
xΦε

s

∥∥∥
op
≤ c2ε/δ

2. (D.3)

Proof. As A is 4δ-separated, at most one term in the sum in (D.2) is non-zero. A computation
gives that the derivative of ΦB is given by, for x ∈ B(0, 3R),

dxΦε
s(h) = h+ h

ε

R

∑
y∈A

s(y)φ
( |x− y|

δ

)
+ x

ε

R

∑
y∈A

1
δ
s(y)φ′

( |x− y|
δ

) 〈x− y, h〉
|x− y|

. (D.4)

Hence,

‖Id−dxΦε
s‖op ≤

ε

R

(
‖φ‖∞ + |x|‖φ

′‖∞
δ

)
≤ ε

R

(
‖φ‖∞ + 3R‖φ

′‖∞
δ

)
≤ c1

ε

δ
,

where c1 = ‖φ‖∞ + 3‖φ′‖∞. A similar computation gives that
∥∥d2

xΦε
s

∥∥
op ≤ c2ε/δ

2 for c2 =
2‖φ′‖∞ + 3/c1(‖φ′‖∞ + ‖φ′′‖∞). We eventually show the injectivity: if Φε

s(x) = Φε
s(x′), then

x and x′ are colinear. Also, if c1ε/δ < 1, one can check using (D.4) that the derivative of the
function r 7→ 〈Φε

s(ru), u〉 for u an unit vector is increasing, proving the injectivity.

Therefore, from [Fed59, Theorem 14.19], we infer that M ε
s := Φε

s(M) is a manifold with
reach larger than

τ(M ε
s ) ≥ Rmin

(
1− c1ε/δ,

(1− c1ε/δ)2

1 + c1ε/δ +Rc2ε/δ2

)
. (D.5)

Denote by JΦε
s the Jacobian of Φs

ε. Then, the volume of M ε
s is smaller than

Vol(M ε
s ) =

∫
M0

JΦε
s(x)dx = ωdR

d +
∑
y∈A

∫
BM0 (y,2δ)

(JΦε
s(x)− 1)dx

≤ ωdRd + 2mCdc1
ε

δ
Vol(BM0(y, 2δ)) ≤ ωdRd

(
1 + Cdc1

ε

δ

)
, (D.6)

where we used that det(N) − 1 ≤ Cd ‖N − Id‖op for some constant Cd if N is a matrix of size
d with operator norm smaller than 1, the fact that 2mVol(BM0(y, 2δ)) ≤ Vol(M0), and Lemma
D.2.

Let R = τmin + 1
2

(
1

(ωdfmin)1/d − τmin
)
and δ =

√
Rεν where ν is chosen so that R >

τmin(1 + c2/ν
2), say ν2 = 2c2τmin

R−τmin
. Then, if ε/δ is small enough, we have Vol(M ε

s ) ≤ 1/fmin and
τ(M ε

s ) ≥ τmin by (D.6) and (D.5). We define the familyM(1) of manifolds M ε
s where s contains

exactly m signs +1 (and m signs −1). The family M(2) is defined likewise by considering M ε
s

where s contains exactly m+ 1 or m− 1 signs +1. We then let P(1) be the set of distributions
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ε

ε

γ
Mε+γ
s′ ∈ M2

Mε
s ∈ M1

M0

Figure 5 – An element P (1) ∈ P(1) has its first marginal supported on the blue manifold M ε
s

(lower bump), whereas an element P (2) ∈ P(2) is such that P (2)
1 is supported on the red manifold

M ε+γ
s′ (upper bump) and ι#P (2) is the uniform distribution on the dotted manifold.

(Qεs, δ0) where Qεs is the uniform distribution on a manifold of M ε
s ∈ M(1), so that P(1) is a

subset of Pdq,n. We then define P(2) as follows: let X ∼ Qεs where Qεs is the uniform distribution
on a manifold of M ε

s ∈M(2). Then, we have X = Φε
s(V ) for some V ∈M0, and we let

Y = Φε+γ
s (V ), Z = X − Y.

An element of P(2) is then given by the law of the couple (Y,Z). Note that for P (2) ∈ P(2),
ι#P

(2) is the uniform distribution on a manifold of M(2). Also, M(P (2)) is equal to M ε+γ
s =

Φε+γ
s ◦ (Φε

s)−1(M ε
s ) for some M ε

s ∈ M(2). By (D.6) and (D.5), its reach is also larger than
τmin, and its volume is smaller than 1/fmin if (ε + γ)/δ is small enough. Note also that |Z| =
|Φε
s(V )− Φε+γ

s (V )| ≤ |V |γ/R ≤ γ. Hence, P(2) is indeed a subset of Pdq,n.

By construction, the two families P(1), P(2) are (2ε+γ)-separated (see Figure 5). Hence,
we can apply Le Cam’s lemma. The exact same computations than in [KZ15, Section 3] show
that the testing affinity between P(1) and P(2) converge to 1 as long as 4m = n/ logn. Thus, Le
Cam’s Lemma (D.1) yields

lim inf
n

mn(M,Pdq,n)(
logn
n

)2/d ≥ lim inf
n

(
(m/4)2/dε+ η

2

)
. (D.7)

As 2m ≥ (c0R/δ)d, we therefore have

lim inf
n

mn(M,Pdq,n)(
logn
n

)2/d ≥ c2
0

82/d
R2

δ2 ε+ η

2 = c2
0

82/d
R

ν2 + η

2

= c2
0

82/d
R(R− τmin)

2c2τmin
+ η

2 ≥
c3

(ωdfmin)1/dτmin

( 1
(ωdfmin)1/d − τmin

)
+ η

2 ,

for some absolute constant c3, where we used that R−τmin = 1
2

(
1

(ωdfmin)1/d − τmin
)
by definition

and that R ≥ 1
2(ωdfmin)−1/d. As τmin ≤ κ/(ωdfmin)1/d, we obtain the conclusion.
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