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Abstract—Software architecture is undergoing a transition
from monolithic architectures to microservices to achieve re-
silience, agility and scalability in software development. However,
with microservices it is difficult to diagnose performance issues
due to technology heterogeneity, large number of microservices,
and frequent updates to both software features and infrastruc-
ture. This paper presents MicroRCA, a system to locate root
causes of performance issues in microservices. MicroRCA infers
root causes in real time by correlating application performance
symptoms with corresponding system resource utilization, with-
out any application instrumentation. The root cause localization
is based on an attributed graph that model anomaly propagation
across services and machines. Our experimental evaluation where
common anomalies are injected to a microservice benchmark
running in a Kubernetes cluster shows that MicroRCA locates
root causes well, with 89% precision and 97% mean average
precision, outperforming several state-of-the-art methods.

Index Terms—root cause analysis, performance degradation,
microservices

I. INTRODUCTION

More and more applications are using microservices archi-
tectures (MSA) in domains such as internet of things (IoT) [1],
mobile and cloud [2], to build large-scale systems that are
more resilient, robust and better adapted to dynamic customer
requirements. With MSA, an application is decomposed into
self-contained and independently deployable services with
lightweight intercommunication [3].

To operate microservices reliably and with high uptime,
performance issues must be detected quickly and their root
causes pinpointed. However, it is difficult to achieve this
in microservices systems due to the following challenges:
1) complex dependencies: the number of services can often
be hundreds, or thousands, (e.g., Uber has deployed 4000
microservices [4]). Consequently, the dependencies among
services are much more complex than for traditional dis-
tributed systems. A performance degradation from one service
can propagate widely and cause multiple alarms, making
it difficult to locate the root causes; 2) numerous metrics:
the number of monitoring metrics available is very high.
According to [5], Netflix exposes 2 million metrics and Uber
exposes 500 million metrics. It would cause a significant
overhead if all these metrics were to be used for performance
issue diagnosis; 3) heterogeneous services: technology het-
erogeneity [6], one key benefit of MSA, enables development
teams to use different programming languages and technology

stacks for their services. However, performance anomalies
manifest differently for different technology stacks, making
it hard to detect performance issues and locate root causes;
4) frequent updates: microservices are frequently updated to
meet customers’ requirements, (e.g., Netflix updates thousands
of times per day [7]). This highly dynamic environment
aggravates the difficulty in root cause localization.

To date, many studies have been conducted on root cause
diagnostics in distributed systems, clouds and microservices.
These either require the application to be instrumented
(e.g., [8], [9]) or numerous metrics to be analyzed (e.g.,
[5], [10]). A third class of approaches [11]-[13] avoid these
limitations by building a causality graph and inferring the
causes along the graph based on application-level metrics.
With this approach, potential root causes are commonly ranked
through the correlation between back-end services and front-
end services. However, this may fail to identify faulty services
that have little or no impact on front-end services.

In this paper, we propose a new system, MicroRCA!, to
locate root causes of performance issues in microservices.
MicroRCA is an application-agnostic system designed for
container-based microservices environments. It collects ap-
plication and system levels metrics continuously and detects
anomaly on SLO (Service Level Objective) metrics. Once an
anomaly is detected, MicroRCA constructs an attributed graph
with services and hosts to model the anomaly propagation
among services. This graph does not only include the service
call paths but also include services collocated on the same
(virtual) machines. MicroRCA correlates anomaly symptoms
of communicating services with relevant resource utilization
to infer the potential abnormal services and ranks the potential
root causes. With the correlation of service anomalies and
resource utilization, MicroRCA can identify abnormal non-
compute intensive services that have non-obvious service
anomaly symptoms, and mitigate the effect of false alarms to
root cause localization. We evaluate MicroRCA by injecting
various anomalies to the Sock-shop? microservice benchmark
deployed on Kubernetes running in Google Cloud Engine
(GCE)3. The results show that MicroRCA achieves a good

"MicroRCA stands for Microservices Root Cause Analysis
2Sock-shop - https://microservices-demo.github.io/
3Google Cloud Engine - https://cloud.google.com/compute/



diagnosis result, with 89% in precision and 97% in mean
average precision (MAP), which is higher than several state-
of-the-art methods.

In summary, our contributions are threefold:

o« We propose an attributed graph with service and host
nodes to model the anomaly propagation in container-
based microservices environments. Our approach is
purely based on metrics collected at application and
system levels and requires no application instrumentation.

o We provide a method to identify the anomalous services
by correlating service performance symptoms with cor-
responding resource utilization, which adapts well to the
heterogeneity of microservices.

o« We evaluate MicroRCA by locating root causes from
different types of faults and different kinds of faulty
services. On average of 95 test scenarios, it achieves 13%
precision improvement over the baseline methods.

The remainder of this paper is organized as follows. Related
work is discussed in Section II. Section III gives an overview
of the MicroRCA system. Root cause localization procedures
are detailed in Section IV. Section V describes the experimen-
tal evaluation and Section VI concludes the paper.

II. RELATED WORK

In recent years, many solutions have been proposed to
identify root causes in distributed systems, clouds and mi-
croservices. Log-based approaches [14]-[17] build problem
detection and identification models based on logs parsing.
Even though log-based approaches can discovery more in-
formational causes, they are hard to work in real time and
require abnormal information to be hidden in logs. Similarly,
trace-based approaches [8], [9], [18]-[23] gather information
through complete tracing of the execution paths, then identify
root causes through analyzing the deviation of latencies along
the paths, e.g., based on machine learning. These approaches
are very useful to debug distributed systems. However, it is a
daunting task for developers to understand source code well
enough to instrument tracing code.

In addition, there are many metrics-based approaches [5],
[9]-[13], [24], [25], as well as this work. These use metrics
from applications and/or additional infrastructure levels to
construct a causality graph that is used to infer root causes.
Seer [9] and Loud [10] use multiple-level metrics to identify
root causes. Seer identifies the faulty services and which
resource, like CPU overhead, that causes the service perfor-
mance degradation. It is a proactive method which applies
deep learning on a massive amount of data to identify root
causes. This approach requires instrumentation of source code
to get metrics, meanwhile, its performance may decrease
when microservices are frequently updated. Loud identifies
any faulty components that generate metrics. It uses the
causality graph of KPI metrics from the anomaly detection
system directly and locates the faulty components by means
of different graph centrality algorithms. However, it requires
anomaly detection to be performed on all gathered metrics,
which would cause a significant overhead.

MonitorRank [13], Microscope [12] and CloudRanger [11]
identify root causes based on application level metrics only.
MonitorRank considers internal and external factors, and
proposes a pseudo-anomaly clustering algorithm to classify
external factors, then traverses the provided service call graph
with a random walk algorithm to identify anomalous services.
Microscope considers communicating and non-communicating
dependencies between services and constructs a service causal-
ity graph to represent these two types of dependencies. Next,
it traverses the constructed graph from the front-end service
to find the root cause candidates and ranks them based
on the metrics similarity between candidate and front-end
service. CloudRanger constructs an impact graph with causal
analysis and proposes a second-order random walk algorithm
to locate root causes. All of these approaches achieve a good
performance in identifying faulty services that impact a front-
end service. However these methods commonly fail to identify
root causes from backend services of the type that scarcely
impact front-end services. Similar to these works, we also use
a graph model, and localize root causes with an algorithm
similar to random walk. However, we correlate anomalous
performance symptoms with relevant resource utilization to
comprehensively represent services anomaly, which improves
the precision of root cause localization.

III. SYSTEM OVERVIEW

In this section, we briefly introduce MicroRCA and its main
components.

A. MicroRCA Overview

Figure 1 shows the overview of MicroRCA. Data collection
module collects metrics from application and system levels.
The application level metrics continuously, in particular the
response times of microservices, are used to detect perfor-
mance issues, and metrics from both levels are used to locate
root causes. Once anomalies are detected, the cause analysis
engine constructs an attributed graph G with service and host
nodes to represent the anomaly propagation paths. Next, the
engine extracts an anomalous subgraph SG based on detected
anomalies and infers which service is the most likely to cause
the anomalies.

B. Data Collection

MicroRCA is designed to be application-agnostic. It collects
application and system levels metrics from a service mesh [26]
and monitoring system separately and stores them in a time
series database. In container-based microservices, system-level
metrics include container and host resource utilization, as
illustrated by container and host in "Model Overview” in
Figure 1. Application level metrics include response times
between two communicating services, etc.

C. Anomaly Detection

Anomaly detection is the starting point of root cause
localization. MicroRCA leverages the unsupervised learning
algorithm Distance-Based online clustering BIRCH [27] as the
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Figure 1. Overview of MicroRCA main components and root cause localiza-

tion workflow.

anomaly detection method. We use the slow response time of
a microservice as the definition of an anomaly.

D. Cause Analysis Engine

Once anomalies are detected, the cause analysis engine
starts to locate root causes. The engine is composed of three
main procedures: attributed graph construction, anomalous
subgraph extraction, and faulty service localization. The en-
gine constructs an attributed graph to represent the anomaly
propagation through services and hosts. Next, it extracts the
anomalous subgraph and locates the faulty services with a
graph centrality algorithm named Personalized PageRank [28].

IV. RoOT CAUSE LOCALIZATION

In this section, we describe the three procedures to iden-
tify root causes, namely attributed graph construction (Sec-
tion IV-A), anomalous subgraph extraction (Section IV-B) and
faulty services localization (Section IV-C).

A. Attributed Graph Construction

MicroRCA constructs an attributed graph to represent the
anomaly propagation in microservices environments, which is
based on the observation that anomalies propagate not only
among services along the service call paths but also to services
collocated on the same (virtual) machines [29], [30].

Our attributed graph consists of a set of services nodes S' =
{s1, s2, ..., s, } and host nodes H = {hq, ha, ..., h,;, } as shown
in Figure 1. For each service node s;, we add edges to all other
service s; it communicates with, and all hosts hy, it runs on.

We discover the graph nodes and their dynamic relationships
by enumerating and parsing the metrics monitored at applica-
tion and system levels. The graph nodes are interconnected as
follows. When service s; sends requests to service s;, we add
a directed edge from s; to s;. If a containerized service s; is
allocated in host h;, we add a directed edge from s; to h;.

To construct the attributed graph, we use the metrics of
a certain time frame before the anomaly was detected. We
assume all microservices run reliably during this time frame
and the collected metrics can precisely provide relationships

among all communicating services and located hosts. Fig-
ure 2(b) shows an example of a constructed attributed graph
from the initial microservices environment.

B. Anomalous Subgraph Extraction

After constructing the attributed graph, we proceed to ex-
tract the anomalous subgraph based on detected anomalies and
assign anomaly-related attributes to the nodes. An anomalous
subgraph SG is a connected subggraph that represents the
anomaly propagation through services and hosts. Note that
we use the response times between communicating services,
which are the edges between service nodes in the attributed
graph as the anomaly detection targets. Once the response time
of an edge is determined to be an anomaly, we consider the
edge as an anomalous edge and the origin of the edge as an
anomalous node.

To obtain the anomalous subgraph, we first extract the
anomalous service nodes. In Figure 2(a), the response times
between (s1,52), (82,83), (S2,84) are anomalous. Therefore,
we extract the anomalous edges and take the origins of the
edges (s2,s3,s4 in the example), as the anomalous service
nodes. Figure 2(c) depicts the anomalous edges as dashed
lines and anomalous services nodes as shadowed nodes. Next,
we compute the average of anomalous response times for
each anomalous service node, denoted as r{_a, to a node
attribute. Finally, we add nodes and edges that are connected
to anomalous service nodes. Figure 2(c) shows the extracted
anomalous subgraph, where adjacent services nodes s; and ss
and adjacent host nodes h; and hy probably are impacted.

C. Faulty Services Localization

Once an anomalous subgraph is extracted, we start to
locate the most likely faulty services. We firstly compute the
similarity between connected nodes by weighing the subgraph,
then assign anomaly scores to anomalous service nodes, and
finally locate root causes based on a graph centrality algorithm.

Anomalous Subgraph Weighing: Edge weights repre-
sent similarity between pairs of nodes. Similar to previous
work [10]-[13], we use the Pearson correlation function to
measure similarity, henceforth denoted as corr(i, j). In par-
ticular, weights are computed in following three ways:

o Weight of an anomalous edge w®. From anomalous sub-
graph extraction (Section IV-B), we get a list of anoma-
lous edges. To each anomalous edge, we assign a constant
value o € (0,1], which denote the anomaly detection
confidence. If the real anomalies are correctly detected,
we would set o higher, and vice versa. In Figure 2(d),
WEIgNtS W(s, s5)s W(ss,s5)s W(ss,s,) ATE assigned a.

o Weight between an anomalous service node and a normal
service node w™. The weight is assigned the correlation
between two response times: the response time between
an anomalous service node and a normal service node,
and the average anomalous response time r{_a of an
anomalous service node. In Figure 2(d), the weight
W(s,,s5) Detween the normal service node s; and the
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Figure 2. MicroRCA root cause localization procedures.

anomalous node s3 is the correlation between the re-
sponse time 7t(,, s,) between sy and s3, and the response
time 7, s,y Which is the average anomalous response
time of s3.

o Weight between an anomalous service node and a nor-
mal host node w". We use the maximum correlation
coefficient between the average anomalous response time
rt_a of an anomalous service node, and the host resource
utilization metrics Uj, including CPU, memory, I/O, net-
work, to represent the similarity between service anomaly
symptoms and the corresponding resource utilization.
Given that the response time of both normal and abnormal
services have strong correlations with the host resource
utilization, we take the average of in-edge weights w;,
as a factor of the similarity. Thus, wfj between service
node ¢ and host node j can be formulated as:

i max

corr(ug,rt_a(i)) - wr(e
pmax corr(u, ri_a(i)) - wi(i)

(1

To summarize, the weight w;; between node ¢ and node
j is given by Equation 2, where rt_a(¢) denotes the average
anomalous response time of anomalous service node ¢. Fig-
ure 2(d) shows these three types of weights along the edges.

a, if rt(; ;) is anomalous,

corr(rt(; j),rt_a(j)), if i € S and normal,

2

Wiy =

corr(rt( ;),rt_a(i)), if j € S and normal,

as per Equation 1 if 7 € H and normal.

The procedure of anomalous subgraph weighing is pre-
sented in Algorithm 1. In this algorithm, we iterate over the
anomalous nodes and compute the weights for in-edges in lines
L1-L8 and for out-edges in lines L9-L15.

Assigning Service Anomaly Score: We calculate anomaly
scores for anomalous service nodes and assign them to a node
attribute, denoted as AS € [0, 1].

To quantify the anomaly, we take an average weight of
service node w(s;) that indicates the impact to linked nodes.
Furthermore, In container-based microservices, we assume
container resource utilization is correlated with service per-
formance. We thus complement the service anomaly with
the maximum correlation coefficient between the average
anomalous response time rt_a of the anomalous service node,

Algorithm 1: Anomalous Subgraph Weighing

Input: Anomalous subgraph SG, anomalous edges,
anomalous nodes, anomaly response time rt_a,
host metrics Uy, response times of edges rt

Output: Weighted SG

1 for node v; in anomaly nodes do

2 for edge e;; in in-edges of v; do

3 if rt(; 5) in anomalous edges then

4 Assign o to w;; ;

5 else

6 Assign corr(rt_a(j), 7t ;) to wi;

7 end

8 end

9 for edge eji, in out-edges of v; do

10 if node vy, is service node then

u Assign corr(rt_a(j), rt( k) t0 wjk ;

12 else

13 Assign
avg(win(j)) X mazx(corr(rt_a(j), Un(k)))
to wjg

14 end

15 end

16 end
17 return Weighted SG

and its container resource utilization U,. To summarize, given
anomalous service node s;, the anomaly score AS(s;) is
defined as:

AS(s5) = w(s;)

max

. corr(ug,rt_a(s;
o X (uk,7t_a(s;))

3)

Localizing Faulty Services: We locate the faulty services
from the anomalous subgraph with a graph centrality algo-
rithm - Personalized PageRank [28], which proved a good
performance in capturing anomaly propagation in previous
work [10], [11], [13], [29]. In Personalized PageRank, the
Personalized PageRank vector (PPV) v is regarded as the root
cause score for each node. To compute PPV, we first define
P as the transition probability matrix, where Pj; = s~ if
node 4 links to node j, and P;; = 0 otherwise. A preference
vector u denotes the preference of nodes, which we assign




Table I
HARDWARE AND SOFTWARE CONFIGURATION USED IN EXPERIMENTS.

Hardware Configuration

Component Master node ‘Worker node(x4) Workload generator
Operating System | Container-Optimized OS | Container-Optimized OS 18.04.2 LTS
vCPU(s) 1 4 6
Memory(GB) 3.75 15 12
Software Version
Kubernetes Istio Prometheus Node-exporter
1.14.1 1.1.5 2.3.1 v0.15.2

the value of anomaly scores of the nodes in our method.
This way, the anomaly-related service nodes are visited more
frequently when the random teleportation occurs. Formally,
the personalized PageRank equation [28] is defined as:

v=(1-c¢)Pv+cu 4)

where ¢ € (0, 1) is the teleportation probability, indicating that
each step jumps back to a random node with probability c,
and with probability 1 — ¢ continues forth along the graph.
Typically ¢ = 0.15 [28]. After ranking, we removed the
host nodes from the ranked list as MicroRCA is designed
to locate faulty services. As the link between service nodes
in the anomalous subgraph represents the service call-callee
relationship, we need to reverse the edges before running the
localization algorithm. We give an example of the ranked list
of root causes in Figure 2(e).

V. EXPERIMENTAL EVALUATION

In this section, we present the experimental setup, exper-
imental results, a comparison with state-of-the-art methods,
and discuss the characteristics of our approach.

A. Experimental Setup

Testbed: We evaluate MicroRCA in a testbed established
in Google Cloud Engine (GCE) where we set up a Kubernetes
cluster, deploy the monitoring system and service mesh, and
run the benchmark named Sock-shop?. There are four worker
nodes and one master node in the cluster, three of the worker
nodes are dedicated to microservices and one for data collec-
tion. In addition, one server outside of the cluster runs the
workload generator. Table I describes the detail configuration
of the hardware and software in the testbed.

Benchmark: Sock-shop? is a microservice demo applica-
tion that simulates an e-commerce website that sells socks.
It is a widely used microservice benchmark designed to
aid demonstration and testing of microservices and cloud-
native technologies. Sock-shop consists of 13 microservices,
which are implemented in heterogeneous technologies and
intercommunicate using REST over HTTP. In particular, front-
end serves as the entry point for user requests; catalogue
provides a sock catalogue and product information; carts holds
shopping carts; user provides the user authentication and store
user accounts, including paymenet cards and addresses; orders
places orders from carts after user log-in through the user
service, then process the payment and shipping from the pay-
ment and shipping services separately. To each microservice,

Table II
REQUEST RATES SENT TO MICROSERVICES.
Microservices front-end | catalogue | user | carts | orders
Concurrent users 100 100 100 100 100
Request rate(/s) 200 300 50 50 20
Table III
THE DETAIL OF INJECTED FAULTS.
Microservices front-end | catalogue user carts orders payment | shipping
Latency(ms) 200 200 200 200 200 200 200
CPU Hog(vepu™%) - 2%95 2795 2%95 2%95 2499 2795
Memory Leak(vm*MB) 261024 | 2%1024 | 1%2048 | 1%2048 | 21024 | 2%1024

we limit the CPU resource to 1vCPU and memory to 1GB.
The replication factor of each microservice is set with 1.

Workload Generator: We develop a workload generator
using Locust?, a distributed, open-source load testing tool that
simulates concurrent users in an application. The workload is
selected to reflect real user behavior, e.g., more requests are
sent to the entry points front-end and catalogue, and fewer
to the shopping carts, user and orders services. We distribute
requests to front-end, orders, catalogue, user, carts with five
locust slaves, and provision 500 users that in total generate
about 600 queries per second to sock-shop. The request rate
of each microservice is listed in Table II.

Data Collection: We use the istio® service mesh, which in
term uses Prometheus®, to collect service-level and container-
level metrics and node-exporter’ to collect host-level metrics.
Prometheus is configured to collect metrics every 5 seconds
and sends the collected data to MicroRCA. In service-level,
we collect response time between each pair of services. In both
container-level and host-level, we collect CPU usage, memory
usage, and the size of total sent bytes.

Faults Injection: Our method is applicable to any type
of anomaly that manifests itself as increased microservice
response time. In this evaluation, we inject three types of
faults commonly used in the evaluation of the state-of-the-
art approaches [10], [12], [31] to sock-shop microservices to
simulate the performance issue. (1) Latency, we use the #c 8
to delay the network packets; (2) CPU hog, we use stress-ng
9 a tool to load and stress compute system, to exhaust CPU
resources. As microservice payment is non-compute intensive
whose CPU usage is only 50mHz, we exhaust its CPU heavily
with 99% usage. (3) Memory leak: we use stress-ng to allocate
memory continuously. As microservice carts and orders are
CPU and memory intensive services, and memory leak causes
CPU overhead [27], we only provision 1 virtual machine. The
details of the injected faults are described in Table III.

To inject performance issues in microservices, we customize
the existing sock-shop docker images with installing above
faults injection tools. Each fault lasts 1 minute. To increase

4Locust - https://locust.io/

SIstio - https://istio.io/

SPrometheus - https://prometheus.io/

"Node-exporter - https:/github.com/prometheus/node. zporter
8tc - https://linux.die.net/man/8/tc

9stress-ng - https://kernel.ubuntu.com/ cking/stress-ng/



the generality, we repeat the injection process 5 times for each
fault. This produces a total of 95 experiment cases.

Baseline Methods: We compare MicroRCA with some
baseline methods as follows:

o Random selection(RS): Random selection is a way that an
operating team use without specific domain knowledge
of the system. Every time, the operating team randomly
selects one microservice from the uninvestigated mi-
croservices to investigate until they find the root cause.

e MonitorRank [13]: MonitorRank uses a customized ran-
dom walk algorithm to identify the root cause. It is similar
with personalized PageRank[28] we adopt in MicroRCA.
As we only consider the internal faults in microservices,
we do not implement the pseudo-anomaly clustering
algorithm to identify the external factors. To implement
MonitorRank, we use their customized random walker al-
gorithm to identify root causes in the extracted anomalous
subgraph .

e Microscope [12]: Microscope is another graph-based
method to identify faulty services in microservices en-
vironment and it also takes sock-shop as the benchmark.
To implement Microscope, we construct the services
causality graph with paring the service-level metrics, then
use their cause inference, which traverses the causality
graph with the detected anomalous services nodes, to
locate root causes.

The anomaly detection methods in MonitorRank and Mi-
croscope fail to detect anomalies, especially for non-obvious
anomalies, like payment service. As we in our experiments
aim to compare the root cause localization performance, we
thus use the same results from our anomaly detection module.

Evaluation Metrics: To quantify the performance of each
algorithm on a set of anomalies A, we use following metrics:

e Precision at top k denotes the probability that the top &

results given by an algorithm include the real root cause,
denoted as PRQFk. A higher PRQEL score, especially
for small values of k, represents the algorithm correctly
identifies the root cause, Let R[i] be the rank of each
cause and v,.. be the set of root causes. More formally,
PRQE is defined on a set of given anomalies A as:

1 ik (Rl € vre)
PRQk = — i<k
A 2 minto o)

e Mean Average Precision (MAP) quantifies the overall
performance of an algorithm, where N is the number of
microservices:

MAP = ﬁ > Y PRk ©)

a€A1<k<N

B. Experimental Results

Figure 3 shows the results of our proposed root cause
localization method for different types of faults and sock-shop
microservices. We observe that all services achieve a MAP
in the range of 80%-100% and an average PR@1 over 80%
except shipping and payment.

Table IV

PERFORMANCE OF MICRORCA.
microservics | front-end | orders | catalogue | user | carts shipping payment | average
name
Latency
PR@1 1.0 1.0 1.0 0.6 1.0 0.6 1.0 0.89
PR@3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MAP 1.0 1.0 1.0 0.91 1.0 0.89 1.0 0.97
CPU Hog
PR@1 - 1.0 1.0 1.0 0.8 1.0 0.6 0.9
PR@3 - 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MAP - 1.0 1.0 1.0 0.94 1.0 0.89 0.97
Memory Leak
PR@1 - 1.0 0.8 1.0 1.0 0.8 0.8 0.9
PR@3 - 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MAP - 1.0 0.97 1.0 1.0 0.94 0.94 0.975

The average precision of shipping and payment that is lower
than other services is likely for three reasons. First, payment is
a non-compute intensive service, even though we exhaust the
resource of CPU and memory, its response time is scarcely
impacted. Second, there are few requests to shipping and
payment and they do not request any other services, which
makes the response time increase less obviously than other
faulty services. Third, in order to detect anomalies in their
experimental cases, we use a small threshold in anomaly
detection module, which causes more false alarms.

Table IV demonstrates the performance of MicroRCA in
different types of faults and microservices. It shows that
MicroRCA can achieve almost 90% in terms of PR@1 and
effectively locate all root causes in the top three faulty services.

C. Comparisons

To evaluate the performance of MicroRCA further, we apply
it and the baseline methods on all experimental cases.

We compare the overall performance of all methods and
their performances in identifying different types of faults.
Table V shows the performance, in terms of PR@1, PR@3
and MAP, for all methods. We can observe that MicroRCA
outperforms the baseline methods in overall. In particular,
MicroRCA achieves a precision of 89% and MAP of 97%,
which are at least 13% and 15% higher than the baseline
methods separately. In general, Microscope performs well in
CPU hog and memory leak when the anomalies are detected
correctly but worse in fault latency when more false alarms
are detected. However, MicroRCA performs well in all types
of faults, and achieves average improvement of 24% in MAP
comparing to MonitorRank and Microscope.

Next, we compare the performance of each method on
different microservices. Figure 4 shows the comparison results,
in terms of PR@1, PR@3 and MAP, on different services. We
can see that MonitorRank performs well in identify dominating
nodes which have large degrees, like microservice orders.
However it fails to identify leaf nodes, like microservice pay-
ment. This is because MonitorRank calculates the similarity
based on the correlation between front-end services and back-
end services. The anomaly of microservice payment decreases
the correlation during propagation and thus the root cause
localization fails. On the contrary, Microscope performs better
in identifying leaf nodes, such as the microservice payment,
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Figure 3. The result of PR@1 and MAP.

Table V
PERFORMANCE OF EACH ALGORITHM.

Table VI
THE OVERHEAD OF MICRORCA.

but worse in identify dominating node, like microservice
orders. This is because Microscope traverses the graph based
on the detected anomalies and put the anomalous child nodes
into a list of potential causes, which makes it fail to identify the
dominating nodes when alarms are reported from child nodes.
Comparing to MonitorRank and Microscope, MicroRCA gen-
erally has a good performance for all the services, no matter
dominating nodes or leaf nodes.

Finally, we compare the root cause localization performance
of each method against the anomaly detection results to eval-
uvate their sensitivity to the performance of anomaly detection.
We compute the Fl-score of each experimental case and
count the number of different ranks of all experiment cases
to different Fl-scores. Fl-score is computed as the harmonic
mean of precision and recall: 2 x 1%%' In our
experiment, we only inject one fault to one microservice,
which means only one root cause in a case. Thus in each case,
the recall is 1 if the root cause is in the ranked list, otherwise 0.
Precision is the number of detected root causes divided by the
number of detected anomalies. As RS(random selection) is not
related to anomaly detection results, we analyze MonitorRank,
Microscope and our MicroRCA only.

Figure 5 shows the number of different ranks against F1-
score for MonotorRank, Microscope and MicroRCA sepa-
rately. To show the results compactly, we set rank with 10,
which is higher than the total number of microservices, when
the root cause is failed to locate. We can see all of them have
a good performance when the faulty services are correctly de-
tected. However, when false alarms are frequent, Microscope
cannot identify root causes in some cases; MonitorRank can
identify root causes, but root causes are always low-ranked;

Metric | RS ‘ MonitorRank ‘ Microscope | MicroRCA ‘ Improvement to Improvement to Modules Cost
MonitorRank (% Micros %

— onitorRank (%) | Microscope(%) Data collection 0.6 vCPU and 1511MB RAM
PR@1 | 021 041 0.79 0.89 118 13.3 Anomaly Detection 0.01s (8 cores)
PR@3 | 046 0.65 0.86 1.0 532 15.9 Attributed Graph Construction 3.3s (8 cores)

0.58 0.73 0.85 0.9 33. 14, N N
MAP ! 7 ! 4 Root Cause Localization 0.03 (8 cores)
Latency
PR@1 0.17 0.23 0.66 0.89 287 34.8 . . . . .
Ry Toas 66 071 o G 03 MicroRCA identifies the root cause correctly both in scenarios
MAP | 0.58 0.73 07 097 329 386 with high and low F1-score.In particular, MicroRCA identifies
CPU Hog . _ .
orar |03 r o o5 % T 13 'out.of .18 faults in top 1 when Fl-score is less than 0.4,
PR@3 [ 05 0.67 0.93 1.0 493 7.5 which is higher than the other two methods.
MAP 0.61 0.77 0.92 0.97 26 54
Memory Leak D. Discussion
PR@1 0.23 0.43 0.87 0.9 109 35
PRO3 | 037 063 097 10 387 3 Here we discuss the overhead and sensitivity of our pro-
MAP 0.57 0.68 0.95 0.98 44.1 32

posed MicroRCA system.

Overhead: The overhead of MicroRCA on the microser-
vices system is mostly caused by the data collection module,
which collects the application-level and system-level metrics
continuously. Table VI shows the overhead of data collection
and the execution time of modules in MicroRCA. We can
see that the execution time of MicroRCA is short enough to
run in real-time given a data collection interval of 5 seconds.
However the overhead of the data collection module is a
little high. In the future, we would like to explore lightweight
monitoring tools to reduce this overhead.

Sensitivity: To evaluate the sensitivity of MicroRCA to
the anomaly detection confidence(c), which is assigned to
the anomalous edges in weighing anomalous subgraph (sec-
tion IV-C). We analyze the performance of MicroRCA with
different values of «. Figure 6 shows the performance of
MicroRCA, in terms of overall PR@k(k=1,2,3) and MAP
of different types of faults over all the test cases, when «
ranges from 0.15 to 1.0. We can see that the performance of
MicroRCA changes with the weight assigned to the anomalous
nodes. PR@]1 increases to the maximum when o = 0.55 and
drops when o > 0.7; PR@3 is always 1 when « is less
than 0.55, and drops after that. MAP of all type of faults are
relatively stable. and keeps over 96%. In this case, we choose
0.55 as the weight of anomalous edges where the PR@1 and
PR@3 are the maximum. In practise, as different anomaly
detection methods have different performances, we need to
tune the anomaly detection confidence(«) according to the
anomaly detection module.

Furthermore, we analyze the sensitivity to anomaly detec-
tion results with different thresholds in anomaly detection
module. Figure 7 shows the MAP of MicroRCA and other
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two baseline methods in solid lines and F1-score in dash line
when threshold ranges from 0.01 to 0.1. Note that we set «
to the constant 0.55 when MicroRCA regularly performs well.
We can see that the three methods share the similar pattern
with Fl-score, and MicroRCA performs well in a range from
0.02 to 0.065, which is wider than other two methods. As all
three methods performs well when threshold is 0.045, we use
it in the anomaly detection module for all above analysis.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new application-agnostic
system, MicroRCA, for root cause localization of performance
anomalies in container-based microservices. It constructs an
attributed graph model and correlates service anomalous per-
formance symptoms with corresponding resource utilization to
infer the anomalous microservices. Experimental evaluations
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Figure 7. Performance against anomaly detection threshold.

with a microservice benchmark show that MicroRCA achieves
89% in precision and 97% in mean average precision (MAP).
In particular, our method improves the precision in identifying
root causes from both dominating services with large degrees
and leaf services with non-obvious anomaly symptoms, where
the state-of-the-art methods fall short.

As the involved tools (Kubernetes, Istio, etc) are not de-
signed to operate with sub-second monitoring intervals, this
adds a limitation to how fast anomalies can be detected
with our approach, rendering our system unable to identify
anomalous services for which the anomalies propagate faster
than our monitoring interval. In the future, we would like to
improve our system to overcome this limication. Furthermore,
we would like to study the automatic remediation methods for
performance degradations in microservices environments.
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