B. Butzin, F. Golatowski, and D. Timmermann, Microservices approach for the internet of things, 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp.1-6, 2016.

P. D. Francesco, I. Malavolta, and P. Lago, Research on architecting microservices: Trends, focus, and potential for industrial adoption, 2017 IEEE International Conference on Software Architecture (ICSA, pp.21-30, 2017.

S. Newman, Building Microservices, 2015.

, How Uber Is Monitoring 4,000 Microservices with Its Open Sourced Prometheus Platform, 2019.

J. Thalheim, A. Rodrigues, I. E. Akkus, P. Bhatotia, R. Chen et al., Sieve: Actionable insights from monitored metrics in distributed systems, pp.14-27, 2017.

N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi et al., Microservices: Yesterday, today, and tomorrow, Present and Ulterior Software Engineering, pp.195-216, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01631455

, Why Netflix, Amazon, and Apple Care About Microservices, 2019.

R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, X-trace: A pervasive network tracing framework, NSDI'07, pp.20-20, 2007.

Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He et al., Seer: Leveraging big data to navigate the complexity of performance debugging in cloud microservices, ASPLOS '19, pp.19-33, 2019.

L. Mariani, C. Monni, M. Pezzé, O. Riganelli, and R. Xin, Localizing faults in cloud systems, in ICST, pp.262-273, 2018.

P. Wang, J. Xu, M. Ma, W. Lin, D. Pan et al., Cloudranger: Root cause identification for cloud native systems, in CCGRID, pp.492-502, 2018.

J. Lin, P. Chen, and Z. Zheng, Microscope: Pinpoint performance issues with causal graphs in micro-service environments, pp.3-20, 2018.

M. Kim, R. Sumbaly, and S. Shah, Root cause detection in a service-oriented architecture, SIGMETRICS Perform, vol.41, pp.93-104, 2013.

J. Xu, P. Chen, L. Yang, F. Meng, and P. Wang, Logdc: Problem diagnosis for declartively-deployed cloud applications with log, 2017 IEEE 14th International Conference on e-Business Engineering, pp.282-287, 2017.

T. Jia, P. Chen, L. Yang, Y. Li, F. Meng et al., An approach for anomaly diagnosis based on hybrid graph model with logs for distributed services, 2017 IEEE International Conference on Web Services, pp.25-32, 2017.

I. Weber, C. Li, L. Bass, X. Xu, and L. Zhu, Discovering and visualizing operations processes with pod-discovery and pod-viz, 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pp.537-544, 2015.

J. Tan, E. Xinghao-pan, S. Marinelli, R. Kavulya, P. Gandhi et al., Kahuna: Problem diagnosis for mapreduce-based cloud computing environments, 2010 IEEE Network Operations and Management Symposium -NOMS 2010, pp.112-119, 2010.

X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji et al., Fault analysis and debugging of microservice systems: Industrial survey, benchmark system, and empirical study, IEEE Transactions on Software Engineering, pp.1-1, 2018.

M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, The mystery machine: End-to-end performance analysis of large-scale internet services, OSDI'14, pp.217-231, 2014.

H. Mi, H. Wang, Y. Zhou, M. R. Lyu, and H. Cai, Toward fine-grained, unsupervised, scalable performance diagnosis for production cloud computing systems, IEEE Transactions on Parallel and Distributed Systems, vol.24, issue.6, pp.1245-1255, 2013.

M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer, Failure diagnosis using decision trees, International Conference on Autonomic Computing, pp.36-43, 2004.

P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, Using magpie for request extraction and workload modelling, OSDI'04, pp.18-18, 2004.

M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, Pinpoint: Problem determination in large, dynamic internet services, Proceedings International Conference on Dependable Systems and Networks, pp.595-604, 2002.

P. Chen, Y. Qi, and D. Hou, Causeinfer: Automated end-toend performance diagnosis with hierarchical causality graph in cloud environment, IEEE Transactions on Services Computing, vol.12, issue.2, pp.214-230, 2019.

B. Sharma, P. Jayachandran, A. Verma, and C. R. Das, Cloudpd: Problem determination and diagnosis in shared dynamic clouds, 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp.1-12, 2013.

, What's a service mesh? And why do I need one?, 2019.

A. Gulenko, F. Schmidt, A. Acker, M. Wallschläger, O. Kao et al., Detecting anomalous behavior of black-box services modeled with distance-based online clustering, 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp.912-915, 2018.

G. Jeh and J. Widom, Scaling personalized web search, WWW '03, pp.271-279, 2003.

J. Weng, J. H. Wang, J. Yang, and Y. Yang, Root cause analysis of anomalies of multitier services in public clouds, IEEE/ACM Transactions on Networking, vol.26, issue.4, pp.1646-1659, 2018.

O. Ibidunmoye, F. Hernández-rodriguez, and E. Elmroth, Performance anomaly detection and bottleneck identification, ACM Comput. Surv, vol.48, issue.1, p.35, 2015.

H. Kang, H. Chen, and G. Jiang, Peerwatch: A fault detection and diagnosis tool for virtualized consolidation systems, ICAC '10, pp.119-128, 2010.