
HAL Id: hal-02443773
https://inria.hal.science/hal-02443773v1

Submitted on 17 Jan 2020 (v1), last revised 11 Mar 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Active Learning for Intrusion Detection Systems
Quang-Vinh Dang

To cite this version:
Quang-Vinh Dang. Active Learning for Intrusion Detection Systems. IEEE Research, Innovation and
Vision for the Future, Apr 2020, Ho Chi Minh, Vietnam. �hal-02443773v1�

https://inria.hal.science/hal-02443773v1
https://hal.archives-ouvertes.fr

Active Learning for Intrusion Detection Systems
Quang-Vinh Dang

Data Innovation Lab
Industrial University of Ho Chi Minh City

Ho Chi Minh, Vietnam
dangquangvinh@iuh.edu.vn

Abstract—Intrusion Detection Systems (IDSs) play a vital role
in the modern cyber-security system. The main task of an IDS
is to distinguish between benign and malicious network flows.
Hence, the researchers and practitioners usually utilize the power
of machine learning techniques by considering an IDS as a
binary-classifier. Recent research works demonstrate that an
ensemble learning algorithm like xgboost can achieve almost
perfect classification in the offline configuration. On the other
hand, the performance of a simple and lightweight classification
algorithm like Naive Bayes can be improved significantly if we
can select a proper sub-training set. In this paper, we discuss
the usage of active learning in online configuration to reduce the
labeling cost but maintaining the classification performance. We
evaluate our approach using the popular real-world datasets and
showed that our approach outperformed state-of-the-art results.

Index Terms—cyber-security, intrusion detection systems, ac-
tive learning

I. INTRODUCTION

Intrusion Detection Systems (IDSs) are important compo-
nents of modern information technology systems [1]. In short,
the task of an IDS is to detect and classify any malicious
activities that happen in a computer system that allows the
quick and efficient reactions from the administrators, either
manual or automatic.

By its nature, the core of an IDS is usually a machine
learning classifier. The task of the machine learning algorithm
is, given the information of a network flow, classify the
network flow in one of two classes: benign or malicious. It
is a well-known binary classification problem that has been
studied for a long time in machine learning community. Over
years, the researchers and practitioners have evaluated different
algorithms and techniques to improve the classification perfor-
mance of IDSs [2]. In recent years, along with the emergence
of IoT devices, the requirement for IDSs have been extended
to these environments [3], [4].

Another important research work is to create sharing
datasets to study and evaluate the IDSs. One of very first
efforts is the creation of the dataset KDD’99 [5]. After the
release of KDD’99, the dataset has received several critical
reviews [6]–[8] such as the unrealistic of the distribution of
the network flow. Overtime, the researchers have released other
datasets for IDSs evaluation, such as IDS’12 [9] and IDS’17
[10]. Both datasets are collected from real-world networks
deployed by the Canadian Institute for Cybersecurity.

Recent research study [11] showed a very interesting result.
For the traditional classification task of an IDS, i.e. to classify

benign and malicious network flows, ensemble learning algo-
rithms [12] such as xgboost [13] performed almost perfectly
and achieved the AUC score around 99%. However, the main
concern is that ensemble learning like boosting machines
require a huge computational power, hence it is not practically
to deploy them in IoT devices [3]. The authors of [11] demon-
strated that even in general, a lightweight and simple algorithm
like Naive Bayes cannot compete with ensemble machine
learning algorithms, we still can improve the classification
performance by choosing a proper training dataset while keep
avoiding over-fitting. However, the method to choose the sub-
training set is not discussed comprehensively in the study.

In this paper, we present our approach by using active
learning technique to actively select training sample. Different
from existing active learning algorithms, we rely on the idea
that rare events are more important for learning, particularly
for the Naive Bayes algorithm. We review state-of-the-art
studies in Section II then present our approach in Section III.
We evaluate our idea and show the experimental results in
Section IV and conclude our paper in Section V.

II. LITERATURE REVIEW

A. Intrusion Detection Systems

The researchers and practitioners have deployed many dif-
ferent algorithms and variants as the core of IDSs. In general,
they can be grouped into supervised and unsupervised settings
[11].

Before the era of deep learning, the researchers [14]–[17]
have proposed to use traditional machine learning methods
such as decision-tree or logistic regression for the problem
of intrusion detection. Feature generation by genetic program-
ming has been considered by [17]. However, the following
studies do not show a significant improvement of automatic
feature generation compared to the manually building ones
[11]. Other popular classification algorithms such as SVM
have been used until recently [18], [19]. However, given
the development of the computational systems and machine
learning algorithms, ensemble learning algorithms like random
forest are preferred [20].

As deep learning attracts a lot of attention since its victory in
ImageNet competition in 2012 [21], the power of deep neural
networks have been utilized in IDS. The authors of [22], [23]
employed multi-layer neural networks and natural language
processing techniques to analyze the behavior of computer
systems. More complicated neural architectures rather than a

Fig. 1. Isolation Forest tries to isolate an instance from others [29]. Harder
an instance to be isolated, more normal it is.

feed-forward network is used to analyze the time-dependence
of the network flows [24].

In the intrusion detection problem, the unsupervised ma-
chine learning algorithms are mostly the anomaly-detection
algorithms [25], [26]. Anomaly-detector tries to distinguish be-
tween normal, or benign flows, with un-normal flows without
explicitly defining what normal is. One of beginning efforts
in using anomaly detection in IDSs belong to the authors of
[27] where the researchers used One-class SVM algorithm for
the discussing problem. Recent surveys such as [28] surveyed
multiple efforts of using anomaly-detection in IDSs.

One of most powerful anomaly-detection algorithms up to
date is Isolation Forest [29], [30]. The Isolation Forest is
visualized in Figure 1. The main idea of Isolation Forest is
that it tries to distinguish a single instance, and more difficult
to distinguish an instance, more normal it is. Isolation Forest
uses decision tree as its base learner.

1) xgboost: As xgboost is the state-of-the-art model in IDS
research [11], we quickly review the algorithm here. In our
model, we use xgboost to predict the performance impact of
the algorithm.

xgboost stands for eXtreme Gradient Boosting [13] is a
ensemble technique that has been introduced as one member
of gradient boosting family [31]. The main idea of gradient
boosting techniques is to build multiple sequential learners
(will be referred as weak learners) where the next learner tries
to correct the error made by the previous one.

Hence, the final boosting model of xgboost will be:

Fm(x) = F0(x) +

M∑
i=1

ρihi(x, ai) (1)

F0(x) is the initial model: F0(x) = argminρ
∑N
i=1 l(yi, ρ),

i.e. F0(x) can be initialized as constant. ρi is the weight value
of the model number i, hi is the base model (decision tree) at
the ith iteration.

xgboost also introduced a new regularization term. The
objective function is usually defined as:

obj(θ) = l(θ) + Ω(θ) (2)

Fig. 2. Active Learning Schema [32].

with l is the loss function (e.g. squared-error
∑

(yi − ŷi)2)
and Ω is regularization term.

In the original version of gbm, no regularization term is
used in the objective function. In contrast, xgb explicitly added
regularization term, and an author of xgb in fact called their
model as “regularized gradient boosting”.

On the other hand, gbm introduced shrinkage as regular-
ization techniques that are being used also by xgb. To use
shrinkage, while updating the model in each iteration:

Fm(X) = Fm−1(X) + ν.ρmh(x; am), 0 < ν ≤ 1 (3)

The idea is, instead of taking the full step toward the
steepest-descent direction, we take only a part of the step
determining by the value of ν.

B. Active Learning

Active Learning is a sub-field of machine learning wherein
the algorithm actively select the next instance for labelling
[32]. Hence, active learning can reduce the requirement of
training size while maintaining the performance of the algo-
rithms by choosing only predictive instance from the pool
for labelling. Active learning is visualized in Figure 2 [32].
Active learning assumes an oracle that can precisely label all
unknown instances. In our setting, the oracle can be considered
as a heavy algorithm like xgboost.

Active learning can employ different strategies to select the
next sample [32]–[34].

Uncertainty-based sampling is probably the first active
learning technique [35]. In this strategy the model pick the
least confidence sample, defined as:

X∗
LC = argmaxX(1− Pθ(ŷ|X)) (4)

wherein:

ŷ = argmaxyPθ(y|X) (5)

Other confidence measures are proposed such as entropy or
margin [34].

The other strategy is called Query by Committee [36]. The
core idea of this method is to build a set of models, then
let all the models to predict in all the unknown instances.
The instance that the models disagree most will be chosen to

send to the oracle. The authors of [37] proposed two methods:
Bagging and Boosting to construct the committee. The idea
of bagging and boosting committee is borrowed from the
same terminologies in machine learning. Furthermore, there
are multiple ways to measure the disagreement of voters. Two
popular metrics are K-L divergence and vote entropy.

The third strategy is called Expected Model Change. The
idea of this strategy is to select the instance which might
change the performance of the model most. One example of
the strategy is Expected Gradient Length [38]:

X∗
EGL = argmaxX

∑
i

Pθ(yi|X)|| 5 lθ(L ∪ (Xi, yi))|| (6)

The idea is to check what instance if added will change
the gradient of the learning model the most. Other examples
include Variance Reduction Method [39].

One very important idea in existing active learning methods
is “Informative instances should not only be those which are
uncertain, but also those which are ’representative’ of the
underlying distribution” [32]. Hence, the density-based method
is proposed:

X∗
ID = argmaxX(φAXx(

1

U

U∑
u=1

sim(x, x(u)))β) (7)

The idea of the Equation 7 is avoid selecting some outlier
instance by using the function similarity (sim).

III. OUR APPROACH

We rely on different idea than the density-based active
learning [32]. We recall the Bayesian formula:

P (A|B) =
P (B|A)

P (B)
P (A) (8)

Naive Bayes assume the independence between features
which means:

P (f1, f2, ..fn|BENIGN) =

n∏
1

P (fi|BENIGN) (9)

then assign the prediction as the highest probability class.
From the Equation 9 we can claim that Naive Bayes has a
computational speed advantage compared to other algorithms
as it can be computed very fast.

It is well-known in practice that Naive Bayes algorithm does
not work well with too big dataset [40]. The question is, what
should be the proper dataset for Naive Bayes algorithm?

As we can see from the Bayesian formula, we might expect
the higher change of P (A|B) if we observe a rare event, i.e. if
P (B) is small. This observation contradicts the density-based
idea. Given that we are aiming to improve the perform ace
of Naive Bayes, our idea fits perfectly to the scheme. Hence,
instead of choosing a next instance that is not too far from
the distribution as stated in other studies [32], [34], [41], we

Fig. 3. Active Learning for IDSs

actively choose the instance that is not so common in the
observed data.

We use Isolation Forest to measure the difference of an
instance to the observed distribution. Furthermore, we trained
a xgboost model to predict the performance impact in term of
change in AUC score if we add a particular training instance
into the training dataset.

We visualize our proposal in Figure 3. The threshold for
Isolation Forest score is adapted by the probability of picking
up a single training instance over time.

IV. EXPERIMENTAL RESULTS

A. Dataset

We evaluate our approach using CICIDS’12 dataset [9]. The
dataset is collected in total seven days in 2010 with different
types of attacks [42] from a real-world computer system. We
describe the details number of each type of network flows in
following:

• Monday
– 529918 BENIGN flows.

• Tuesday
– 432074 BENIGN flows.
– 7938 FTP-Patator.
– 5897 SSH-Patator.

• Wednesday
– 440031 BENIGN.
– 231073 DoS Hulk.
– 10293 DoS GoldenEye.
– 5796 DoS slowloris.
– 5499 DoS Slowhttptest.
– 11 Heartbleed.

• Thursday morning
– 168186 BENIGN.
– 1507 Web Attack Brute Force.
– 652 Web Attack XSS.
– 21 Web Attack SQL Injection.

• Thursday afternoon
– 288566 BENIGN.
– 36 Infiltration.

• Friday morning

Fig. 4. Performance of different active learning strategies

– 189067 BENIGN.
– 1966 Bot.

• Friday afternoon 1
– 97718 BENIGN.
– 128027 DDos.

• Friday afternoon 2
– 127537 BENIGN.
– 158930 PortScan.

Each network flow is provided with a list of 78 features. We
might notice that the distribution of the classes is extremely
imbalanced: while the majority of the network flows are
BENIGN, the DDos flows occupied a huge share of the
network but there is very few Heartbleed flows for instance.

We follow the settings of [11] for a fair comparison.

B. Experimental Results

We evaluate Least Confidence strategy against our strategy.
Both strategies started with 5% of the training set as the initial
set. When the network flow arrived the algorithm will decide
to include the particular network flow into the training set or
not. In both cases, a test-set is hold out for evaluation.

In general, our method can achieve the AUC score of 90%
as the highest score, compared to the score of 85% achieved
by the method based on Lease Confidence or PCA [11].

We display the results in Figure 4. We could see that all
the active learning strategies peak their performance when
we select around 10% of the training data, clearly suggested
that there is a proper sub-training size which accounts for
around one tenth of the training samples that actually bring
the predictive power to the machine learning algorithms.
Furthermore, the performance of Naive Bayes drops quickly if
we increase the number of training size (by adaptive threshold
method we described above). Contradict with the common
sense in the machine learning community that we always need
more data, the results showed that we rather need good data.

V. CONCLUSIONS

In this paper we present our proposal to use outlier detection
algorithm as the active learning base learner to improve
the performance of lightweight intrusion detection methods.
The algorithm does not require huge computational power,
hence it is suitable for low-power devices like IoT devices

or smartphones. In the future we will study other methods
to improve the performance of lightweight methods to be
comparable with ensemble methods.

()

REFERENCES

[1] A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne,
“Evaluating computer intrusion detection systems: A survey of common
practices,” ACM Comput. Surv., vol. 48, no. 1, pp. 12:1–12:41, 2015.

[2] Z. He, T. Zhang, and R. B. Lee, “Machine learning based ddos attack
detection from source side in cloud,” in CSCloud. IEEE Computer
Society, 2017, pp. 114–120.

[3] K. Yang, J. Ren, Y. Zhu, and W. Zhang, “Active learning for wireless iot
intrusion detection,” IEEE Wireless Commun., vol. 25, no. 6, pp. 19–25,
2018.

[4] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki,
“Network intrusion detection for iot security based on learning tech-
niques,” IEEE Communications Surveys and Tutorials, vol. 21, no. 3,
pp. 2671–2701, 2019.

[5] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in CISDA. IEEE, 2009, pp.
1–6.

[6] J. McHugh, “Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed
by lincoln laboratory,” ACM Transactions on Information and System
Security (TISSEC), vol. 3, no. 4, pp. 262–294, 2000.

[7] M. V. Mahoney and P. K. Chan, “An analysis of the 1999 darpa/lincoln
laboratory evaluation data for network anomaly detection,” in Interna-
tional Workshop on Recent Advances in Intrusion Detection. Springer,
2003, pp. 220–237.

[8] A. Özgür and H. Erdem, “A review of KDD99 dataset usage in
intrusion detection and machine learning between 2010 and 2015,” PeerJ
PrePrints, vol. 4, p. e1954, 2016.

[9] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Computers & Security, vol. 31, no. 3, pp. 357–374,
2012.

[10] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
in ICISSP. SciTePress, 2018, pp. 108–116.

[11] Q.-V. Dang, “Studying machine learning techniques for intrusion de-
tection systems,” in Future Data and Security Engineering, T. K. Dang,
J. Küng, M. Takizawa, and S. H. Bui, Eds. Cham: Springer International
Publishing, 2019, pp. 411–426.

[12] C. Zhang and Y. Ma, Ensemble machine learning: methods and appli-
cations. Springer, 2012.

[13] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in KDD. ACM, 2016, pp. 785–794.

[14] X. Li and N. Ye, “Decision tree classifiers for computer intrusion
detection,” Journal of Parallel and Distributed Computing Practices,
vol. 4, no. 2, pp. 179–190, 2001.

[15] C. Krügel and T. Toth, “Using decision trees to improve signature-based
intrusion detection,” in RAID, ser. Lecture Notes in Computer Science,
vol. 2820. Springer, 2003, pp. 173–191.

[16] N. B. Amor, S. Benferhat, and Z. Elouedi, “Naive bayes vs decision trees
in intrusion detection systems,” in SAC. ACM, 2004, pp. 420–424.

[17] G. Stein, B. Chen, A. S. Wu, and K. A. Hua, “Decision tree classifier
for network intrusion detection with ga-based feature selection,” in ACM
Southeast Regional Conference (2). ACM, 2005, pp. 136–141.

[18] R. R. Reddy, Y. Ramadevi, and K. V. N. Sunitha, “Effective discriminant
function for intrusion detection using SVM,” in ICACCI. IEEE, 2016,
pp. 1148–1153.

[19] D. Bhamare, T. Salman, M. Samaka, A. Erbad, and R. Jain, “Feasi-
bility of supervised machine learning for cloud security,” CoRR, vol.
abs/1810.09878, 2018.

[20] P. A. A. Resende and A. C. Drummond, “A survey of random forest
based methods for intrusion detection systems,” ACM Comput. Surv.,
vol. 51, no. 3, pp. 48:1–48:36, 2018.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1106–
1114.

[22] A. A. Diro and N. Chilamkurti, “Distributed attack detection scheme
using deep learning approach for internet of things,” Future Generation
Comp. Syst., vol. 82, pp. 761–768, 2018.

[23] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-
Nemrat, and S. Venkatraman, “Deep learning approach for intelligent
intrusion detection system,” IEEE Access, vol. 7, pp. 41 525–41 550,
2019.

[24] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,
“HAST-IDS: learning hierarchical spatial-temporal features using deep
neural networks to improve intrusion detection,” IEEE Access, vol. 6,
pp. 1792–1806, 2018.

[25] S. D. D. Antón, S. Sinha, and H. D. Schotten, “Anomaly-based intrusion
detection in industrial data with SVM and random forests,” in SoftCOM.
IEEE, 2019, pp. 1–6.

[26] Z. Chiba, N. Abghour, K. Moussaid, A. E. Omri, and M. Rida, “In-
telligent and improved self-adaptive anomaly based intrusion detection
system for networks,” IJCNIS, vol. 11, no. 2, 2019.

[27] E. Eskin, “Anomaly detection over noisy data using learned probability
distributions,” in ICML. Morgan Kaufmann, 2000, pp. 255–262.

[28] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly
detection: Methods, systems and tools,” IEEE Communications Surveys
and Tutorials, vol. 16, no. 1, pp. 303–336, 2014.

[29] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation forest,” in ICDM. IEEE
Computer Society, 2008, pp. 413–422.

[30] Q. Dang, “Outlier detection on network flow analysis,” CoRR, vol.
abs/1808.02024, 2018.

[31] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[32] B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2009.

[33] A. Ziai, “Active learning for network intrusion detection,” CoRR, vol.
abs/1904.01555, 2019.

[34] G. M. Alqaralleh, M. A. Alshraideh, and A. Alrodan, “A comparison
study between different sampling strategies for intrusion detection
system of active learning model,” JCS, vol. 14, no. 8, pp. 1155–1173,
2018.

[35] D. D. Lewis and W. A. Gale, “A sequential algorithm for training text
classifiers,” in SIGIR. ACM/Springer, 1994, pp. 3–12.

[36] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by committee,” in
COLT. ACM, 1992, pp. 287–294.

[37] N. Abe and H. Mamitsuka, “Query learning strategies using boosting
and bagging,” in ICML. Morgan Kaufmann, 1998, pp. 1–9.

[38] B. Settles, M. Craven, and S. Ray, “Multiple-instance active learning,”
in NIPS. Curran Associates, Inc., 2007, pp. 1289–1296.

[39] J. O’Neill, S. J. Delany, and B. M. Namee, “Model-free and model-based
active learning for regression,” in UKCI, ser. Advances in Intelligent
Systems and Computing, vol. 513. Springer, 2016, pp. 375–386.

[40] A. Burkov, Machine Learning Engineering. LeanPub, 2019.
[41] R. K. Deka, D. K. Bhattacharyya, and J. K. Kalita, “Active learning to

detect ddos attack using ranked features,” Computer Communications,
vol. 145, pp. 203–222, 2019.

[42] Q. Dang and J. François, “Utilizing attack enumerations to study
SDN/NFV vulnerabilities,” in NetSoft. IEEE, 2018, pp. 356–361.

