
HAL Id: hal-02446427
https://inria.hal.science/hal-02446427

Submitted on 20 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Ontology-Based RDF Integration of Heterogeneous Data
Maxime Buron, François Goasdoué, Ioana Manolescu, Marie-Laure Mugnier

To cite this version:
Maxime Buron, François Goasdoué, Ioana Manolescu, Marie-Laure Mugnier. Ontology-Based RDF
Integration of Heterogeneous Data. EDBT 2020 - 23rd International Conference on Extending
Database Technology, Mar 2020, Copenhagen, Denmark. pp.299-310, �10.5441/002/edbt.2020.27�.
�hal-02446427�

https://inria.hal.science/hal-02446427
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Ontology-Based RDF Integration of Heterogeneous Data
Maxime Buron

1
François Goasdoué

2
Ioana Manolescu

1
Marie-Laure Mugnier

3

1
Inria and LIX (UMR 7161, CNRS and Ecole polytechnique), France

2
Univ. Rennes, CNRS, IRISA, France

3
Univ. Montpellier, LIRMM, Inria, France

ABSTRACT
The proliferation of heterogeneous data sources in many applica-

tion contexts brings an urgent need for expressive and efficient

data integration mechanisms. There are strong advantages to

using RDF graphs as the integration format: being schemaless,

they allow for flexible integration of data from heterogeneous

sources; RDF graphs can be interpreted with the help of an on-

tology, describing application semantics; last but not least, RDF

enables joint querying of the data and the ontology.

To address this need, we formalize RDF Integration Systems (RIS),
Ontology Based-Data Access mediators, that go beyond the state

of the art in the ability to expose, integrate and flexibly query

data from heterogeneous sources through GLAV (global-local-

as-view) mappings. We devise several query answering strategies,
based on an innovative integration of LAV view-based rewriting

and a form of mapping saturation. Our experiments show that

one of these strategies brings strong performance advantages,

resulting from a balanced use of mapping saturation and query

reformulation.

1 INTRODUCTION
The proliferation of digital data sources across all application

domains brings a new urgency to the need for tools which allow

to query heterogeneous data (relational, JSON, key-values, graphs

etc.) in a flexible fashion. Traditional data integration systems

fall into two classes: data warehousing, where all data source

content is materialized in a single centralized source, respectively,

mediation, where data remains in their original stores and all data

can be queried through a single module called mediator. Data
warehousing simplifies query evaluation, but requires potentially

costly maintenance operations when the content of data sources

changes; mediation does not suffer from these drawbacks, but

requires more intricate query evaluation algorithms to distribute

the work between the sources and the mediator.

Below, we classify prior mediator-based approaches according to

two main dimensions, and illustrate this classification in Table 1.

Note that we also include in this table theoretical frameworks

that did not necessarily lead to implementations.

A first dimension concerns the data model and query lan-
guage provided by the mediator to its applications.

(i) The earliest goal of a mediator system was to mimic a single,

integrated database. Thus the mediator supports one data model

and its query language, e.g., relational and SQL, or XML and

XPath/XQuery. More recent polystore systems support side-by-

side different (data model, query language) pairs. These database-

style mediators appear in the row we label DB in Table 1.

(ii) Mediators studied in knowledge representation and manage-

ment research provide a view of the data sources as a set of

classes and relationships, also endowed with a set of semantic

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Mappings

GAV LAV GLAV

M
o
d
e
l

DB [22, 24, 27] [4, 5, 22, 38] [19]

CQ [40, 41, 43] [1, 28, 30, 36] [18]

SPARQL-data [11, 17, 32, 34] [45] [21]

SPARQL [16, 33, 44] this work

Table 1: Outline of the positioning of our work.
constraints, or ontology. In such systems, users formulate con-

junctive (relational) queries; answering them involves not only

evaluation over the data (as done in DB mediators), but also rea-

soning on the data with the help of ontologies. This mediation

approach is also commonly termed Ontology-Based Data Access
(OBDA) [41], with ontologies expressed in Description Logics

(DL, in short). Work following this approach are listed in the row

we label CQ in Table 1.

(iii) RDF [47] is naturally suited as an integration model, thanks

to its flexibility, its wide adoption in the Open Data community,

its close relationship with ontology languages such as RDFS

and OWL, and the presence of its associated standard SPARQL

query language. Accordingly, several mediators from the CQ

group have been extended to support RDF as an integration

model and SPARQL query answering. However, while SPARQL

allows querying the data together with the ontology, e.g., “find the

properties of node n, as well the classes to which the values of

these properties belong”, a DL-based mediation approach shares

with all logic-based query languages, e.g., Datalog, SQL etc., the

inability to do so. RDF mediators which support SPARQL but

limited to querying the data only (not the ontology) appear in

the row we label SPARQL-data in Table 1.

(iv) Recent RDF mediators lift this limitation to support joint

querying of the data and ontology; we list them in the SPARQL
row in Table 1.

A second dimension is how the source (or local) schemas are
connected to the global (integration) schema, using map-
pings [23]. There are three types of mappings, each correspond-

ing to a column in Table 1. The simplest mappings define each

element of the global schema, e.g., each relation (if the global

schema is relational), as a view over the local schemas; this is

known as Global-As-View, or GAV in short. In a GAV system, a

query over the global (virtual) schema is easily transformed into

a query over the local schemas, by unfolding each global schema

relation, i.e., replacing it with its definition. In contrast, Local-

As-View (LAV) mappings define elements of the local schemas

as views over the global one. Query answering in this context

requires rewriting the query with the views describing the local
sources [31]. Global-Local-As-View (GLAV) data integration gen-

eralizes both GAV and LAV. A GLAV mapping pairs a query q1

over one or several local schemas to a query q2 over the global

schema, having the same answer variables. The semantics is that

for each answer of q1, the integration system exposes the data

comprised in a corresponding answer of q2. GLAV maximizes
flexibility, or, equivalently, integration expressive power: unlike
LAV, a GLAV mapping may expose only part of a given source’s

data, and may combine data from several sources; unlike GAV, a

GLAV mapping may include joins or complex expressions over

the global schema.

In this work, we study GLAVmediation supporting SPARQL
queries over the data and the ontology. We pick GLAV for

its highest expressive power, RDF for its wide adoption, and aim

at querying the data and the ontology in order to fully benefit

from the flexibility and expressivity of RDF. As Table 1 shows,

our system is the first capable of integrating multiple data sources
through GLAV mappings, for SPARQL querying over the data and
the ontology; further, it supports heterogeneous data sources (of
different data models). A benefit of our using GLAV is the ability

to support a form of incomplete information, naturally present in

RDF through the so-called blank nodes, in the virtual RDF graph

exposed by the mediator (see Section 3.1).

Our closest competitors only support GAVmappings, even though

some support more expressive ontologies and/or queries [16, 33,

44]. Formal OBDA frameworks based on GLAV mappings have

been defined, e.g., [18], without concretely deployed systems. A

technique for simulating GLAV mappings through GAV ones un-

der certain conditions is suggested in [21], however this solution

has many drawbacks; we defer a detailed discussion to Section 6.

Contributions and novelty The contributions we make in this

work are as follows.

(1). RIS Formalism We formally define RDF Integration Sys-
tems (RIS, in short), OBDA mediators capable of exposing data

from heterogeneous sources of virtually any data model through

GLAV mappings, under the form of an RDF graph endowed with

an RDFS ontology. We formalize the problem of BGP (basic graph

pattern) RDF query answering over the RDF data and ontology

exposed in such systems.

(2). Novel RIS query answering techniquesWe describe sev-

eral RIS query answering methods based on transforming map-
pings into LAV view definitions, and on reducing query answering

to rewriting it using views. Our first method combines known

techniques; the other two methods are novel, and rely on a form

of mapping saturation. We show that a smart decomposition of

reasoning between offline precomputation and query time makes

one of these methods much faster than the others.

The paper is organized as follows. Section 2 recalls a set of prelim-

inary notions we build upon. Then, Section 3 defines our RIS and

formalizes RIS query answering. Section 4 describes RIS query

answering methods. Section 5 presents our experiments, then we

discuss related work and conclude.

2 PRELIMINARIES
We present the basics of the RDF graph data model (Section 2.1),

of RDF entailment used to make explicit the implicit informa-

tion RDF graphs encode (Section 2.2), and how RDF graphs can

be queried using the widely-considered SPARQL Basic Graph

Pattern queries (Section 2.3).

Then, we recall two techniques, namely query reformulation (Sec-
tion 2.4) and view-based query rewriting (Section 2.5), which will

serve as building blocks for our query answering techniques.

2.1 RDF Graphs
We consider three pairwise disjoint sets of values: I of IRIs

(resource identifiers), L of literals (constants) and B of blank

nodes modeling unknown IRIs or literals, a.k.a. labelled nulls [3,
29]. A (well-formed) triple belongs to (I ∪B)×I ×(L ∪I ∪B),
and an RDF graph G is a set of (well-formed) triples. A triple

(s, p, o) states that its subject s has the property p with the object
value o [47]. We denote by Val(G) the set of all values (IRIs, blank
nodes and literals) occurring in an RDF graphG , and by Bl(G) its

Schema triples Notation

Subclass (s, ≺sc , o)
Subproperty (s, ≺sp , o)
Domain typing (s,←↩d , o)
Range typing (s, ↪→r , o)

Data triples Notation

Class fact (s, τ , o)
Property fact (s, p, o) s.t. p < {τ , ≺sc , ≺sp ,←↩d , ↪→r }

Table 2: RDF triples.
set of blank nodes. In triples, we use _:b (possibly with indices)

to denote blank nodes, and quoted strings to denote literals.

Within an RDF graph, we distinguish data triples from schema
ones. The former describe data (either attach a type, or a class,

to a resource, or state the value of a certain data property of

a resource). The latter state ontological constraints using RDF

Schema (RDFS), which relate classes and properties: subclass
(specialization relation between types), subproperty (specializa-

tion of a binary relation), typing of the domain (first attribute)

of a property, respectively, range (typing of the second attribute)
of a property. Table 2 introduces short notations we adopt for

these schema properties.

From now on, we denote by I
rdf

the reserved IRIs from the RDF

standard, e.g., the properties τ , ≺sc , ≺sp , ←↩d , ↪→r shown in

Table 2. The rest of the IRIs are application-dependent classes

and properties, which are said user-defined and denoted by Iuser.

Hence, Iuser = I \I
rdf

.

We will consider RDF graphs with RDFS ontologies made of

schema triples of the four above flavours. More precisely:

Definition 2.1 (RDFS ontology). An ontology triple is a schema

triple whose subject and object are user-defined IRIs from Iuser.

An RDFS ontology (or ontology in short) is a set of ontology triples.
Ontology O is the ontology of an RDF graph G if O is the set of

schema triples of G.

Above, ontology triples are not allowed over blank nodes. This is

only to simplify the presentation; we could have allowed them,

and handled them as in [29]. More importantly, we forbid on-

tology triples from altering the common semantics of RDF it-

self. For instance, we do not allow (←↩d , ≺sp , ↪→r), which would

impose that the range of every property shares all the types

of the property’s domain! This second restriction can be seen

as common-sense; it underlies most ontological formalisms, in

particular description logics [8] thus the W3C’s Web Ontology

Language (OWL), Datalog± [15] and existential rules [39], etc.

Example 2.2 (Running example, based on [12]).
Consider the following RDF graph:

Gex = {(:worksFor,←↩d , :Person), (:worksFor, ↪→r , :Org),

(:PubAdmin, ≺sc , :Org), (:Comp, ≺sc , :Org),

(:NatComp, ≺sc , :Comp), (:hiredBy, ≺sp , :worksFor)

(:ceoOf, ≺sp , :worksFor), (:ceoOf, ↪→r , :Comp),

(:p1, :ceoOf, _:bc), (_:bc , τ , :NatComp),

(:p2, :hiredBy, :a), (:a, τ , :PubAdmin)}

The ontology ofGex, i.e., the first eight schema triples, states that

people work for organizations, some of which are public adminis-

trations or companies. Further, national companies are a kind of

companies. Being hired by or being CEO of an organization are

two ways of working for it; in the latter case, this organization is

a company. The facts of Gex, i.e., the four remaining data triples,

state that :p1 is CEO of some unknown company represented

by the blank node _:bc , which is a national company, and :p2 is

hired by the public administration :a.

Rule [48] Entailment rule

R



rdfs5 (p1, ≺sp , p2), (p2, ≺sp , p3) → (p1, ≺sp , p3) 
Rc

rdfs11 (s, ≺sc , o), (o, ≺sc , o1) → (s, ≺sc , o1)

ext1 (p,←↩d , o), (o, ≺sc , o1) → (p,←↩d , o1)

ext2 (p, ↪→r , o), (o, ≺sc , o1) → (p, ↪→r , o1)

ext3 (p, ≺sp , p1), (p1,←↩d , o) → (p,←↩d , o)
ext4 (p, ≺sp , p1), (p1, ↪→r , o) → (p, ↪→r , o)
rdfs2 (p,←↩d , o), (s1, p, o1) → (s1, τ , o)  Ra
rdfs3 (p, ↪→r , o), (s1, p, o1) → (o1, τ , o)
rdfs7 (p1, ≺sp , p2), (s, p1, o) → (s, p2, o)
rdfs9 (s, ≺sc , o), (s1, τ , s) → (s1, τ , o)

Table 3: Sample RDFS entailment rules.

2.2 RDF Entailment Rules
An entailment rule r has the form body(r) → head(r), where
body(r) and head(r) are RDF graphs, respectively called body and
head of the rule r . In this work, we consider the RDFS entail-
ment rules R shown in Table 3, which are the most frequently

used; in the table, all values except RDF reserved IRIs are blank

nodes. For instance, rule rdfs5 reads: whenever in an RDF graph,

a property p1 is a subproperty of a property p2, and further p2

is a subproperty of p3 (body of rdfs5), it follows that p1 is a

subproperty of p3 (head of rdfs5). Similarly, rule rdfs7 states

that if p1 is a subproperty of p2 and a resource s has the value o
for p1, then s also has o as a value for p2. The triples (p1, ≺sp , p3)

and (s, p2, o) in the above examples are called implicit, i.e., they
hold in a graph thanks to the entailment rules, even if they may

not be explicitly present in the graph. Following [12], we view

R as partitioned into two subsets: the rules Rc lead to implicit

schema triples, while rules Ra lead to implicit data triples
1
. The

direct entailment of an RDF graph G with a set of RDF en-

tailment rules R, denoted by CG ,R , is the set of implicit triples

resulting from rule applications that use solely the explicit triples

ofG . For instance, the rule rdfs9 applied to the graphGex, which

comprises (:NatComp, ≺sc , :Comp), (_:bc , τ , :NatComp), leads to

the implicit triple (_:bc , τ , :Comp). This triple belongs toCGex,Ra
(hence also to CGex,R). The saturation of an RDF graph allows

materializing its semantics, by iteratively augmenting it with the

triples it entails using entailment rules, until reaching a fixpoint;

this process is finite [48]. Formally:

Definition 2.3 (RDF graph saturation). LetG be an RDF graph and

R a set of entailment rules. We recursively define a sequence

(Gi)i ∈N of RDF graphs as follows:G0 = G , andGi+1 = Gi∪CGi ,R

for i ≥ 0. The saturation of G w.r.t. R, denoted GR , is Gn for n
the smallest integer such that Gn = Gn+1.

Example 2.4 (Saturation). The saturation ofGex w.r.t. the set R

of RDFS entailment rules shown in Table 3 is attained after the

following two saturation steps:

(Gex)1 =Gex ∪

{(:NatComp, ≺sc , :Org),

(:hiredBy,←↩d , :Person), (:hiredBy, ↪→r , :Org),

(:ceoOf,←↩d , :Person), (:ceoOf, ↪→r , :Org),

(:p1, :worksFor, _:bc), (_:bc , τ , :Comp),

(:p2, :worksFor, :a), (:a, τ , :Org)}

(Gex)2 =(Gex)1 ∪

{(:p1, τ , :Person), (:p2, τ , :Person), (_:bc , τ , :Org)}

2.3 Basic Graph Pattern Queries
A popular RDF query dialect consists of basic graph pattern
queries, or BGPQs, in short. Let V be a set of variable symbols,

1
In the notations Rc and Ra , c and a respectively stand for “constraint triples”

(called schema triples here) and “assertion triples” (data triples).

disjoint from I ∪B∪L . A basic graph pattern (BGP) is a set of

triple patterns (triples in short) belonging to (I ∪B∪V)× (I ∪
V)×(I ∪B∪L ∪V). For a BGP P , we denote by Var(P) the set

of variables occurring in P , by Bl(P) its set of blank nodes, and by
Val(P) its set of values (IRIs, blank nodes, literals and variables).

Definition 2.5 (BGP Queries). A BGP query q is of the form q(x̄) ←
P , where P is a BGP (also denoted by body(q)), and x̄ ⊆ Var(P)

are the answer variables of q.

To ease the presentation, and without loss of generality, we con-

sider BGPQs without blank nodes, as it is well-known that these

can be replaced by non-answer variables [46].

For query answering based on query reformulation (see Section

2.4), it is convenient to slightly generalize BGPQs into partially
instantiated BGPQs [12, 29]. Starting from a BGPQ q, partial
instantiation may replace some variables with values from I ∪
L ∪B, as specified by a substitution σ . Due to σ , and in contrast

with standard BGPQs, some answer variables of the resulting

query qσ can be bound:

Example 2.6 (Partially instantiated BGPQ). Consider the BGPQ
asking for who is working for which kind of company q(x,y) ←
(x, :worksFor, z), (z, τ ,y), (y, ≺sc , :Comp) and the substitutionσ =
{x 7→ :p1}. The corresponding partially instantiated BGPQ is:

q(:p1,y) ← (:p1, :worksFor, z), (z, τ ,y), (y, ≺sc , :Comp). In it, the

first answer variable has been bound to :p1.

For simplicity, below we use the term “query” to designate either

a standard BGPQ or a partially instantiated BPGQ.

The semantics of a BGPQ on an RDF graph is defined through

standard homomorphisms from the query body to the queried

graph. We recall that a homomorphism from a BGP P to an

RDF graph G is a function φ from Val(P) to Val(G) such that

for any triple (s,p,o) ∈ P , the triple (φ(s),φ(p),φ(o)) is in G,
with φ the identity on IRIs and literals. Next, we distinguish

query evaluation, whose result is just based on the explicit

triples of the graph, i.e., on BGP-to-RDF graph homomorphisms,

from query answering that also accounts for the implicit graph

triples, resulting from entailment. Formally:

Definition 2.7 (Evaluation and answering). The answer set to a

BGPQ q on an RDF graphG w.r.t. a set R of RDF entailment rules

is: q(G,R) = {φ(x̄) | φ homomorphism from body(q) to GR }. If
x̄ = ∅,q is a Boolean query, inwhich caseq is false whenq(G,R) =
∅ and true when q(G,R) = {⟨⟩}, i.e., the answer to q is the empty

tuple.

The evaluation of q on G, denoted q(G, ∅) or q(G) in short, is

obtained from homomorphisms from body(q) to G alone (not

GR). It can be seen as a particular case of query answering when

R = ∅.

Example 2.8 (Evaluation and answering). Consider again the BGPQ
q from the preceding example. Its evaluation on Gex is empty

becauseGex has no explicit :worksFor assertion, while its answer

set onGex w.r.t. R is {⟨:p1, :NatComp⟩} because :p1 being CEO of

_:bc , :p1 implicitly works for it, and _:bc is explicitly a company

of the particular type :NatComp.

The above notions and notations naturally extend to unions of
(partially instantiated) BGPQs, or UBGPQs in short.

We end this section by pointing out that many RDF data man-

agement systems use saturation-based query answering, which
directly follows the definition of query answering: an RDF graph

G is first saturated with the set R of entailment rules, so that the

answer set to an incoming query q is obtained through query

evaluation as q(GR).

2.4 Query Reformulation
Reformulation-based query answering is an alternative technique

to the widely adopted saturation-based query answering. It con-

sists in reformulating a query using R, so that evaluating the

reformulated query on G yields the answer set to the original

query on G w.r.t. R. Intuitively, reformulation injects the onto-

logical knowledge into the query, just as saturation injects it

into the RDF graph. We rely here on the very recent algorithm

from [12], which takes into account all the entailment rules from

Table 3. The process is decomposed into two steps according to
the partition of R into Ra and Rc .

(i) The first step reformulates a BGPQ q w.r.t. an RDFS ontologyO
and the set of rulesRc into a UBGPQ, sayQc , which is guaranteed

not to contain ontology triples. Intuitively, this step generates

new BGPQs obtained from q by instantiating variables that query

the ontology with all their possible bindings; for instance, y in

a query triple (y, ≺sc , :Comp) is bound to the IRIs of all explicit

and implicit subclasses of :Comp in O . This step, alone, is sound

and complete w.r.t. Rc for query answering, i.e., for any graphG
with ontology O , q(G,Rc) = Qc (G).
(ii) The second step reformulates Qc w.r.t.O and Ra , and outputs

a UBGPQ, say Qc ,a . This step, alone, is sound and complete

w.r.t. Ra for query answering, i.e., for any graphG with ontology

O , Qc (G,Ra) = Qc ,a (G). Furthermore, a key property is that

q(G,R) = Qc (G,Ra), i.e., only Ra needs to be considered to

answer Qc with respect to the entire set of rules R. This is the

fundamental reason why the sucessive application of these two

reformulation steps leads to a sound and complete reformulation-

based query answering technique: q(G,R) = Qc ,a (G).

Example 2.9 (Two-step reformulation). Consider the queryq(x,y) ←
(x, :worksFor, z), (z, τ ,y), (y, ≺sc , :Comp) from the preceding ex-

ample and the ontologyO in Example 2.2. The first reformulation

step instantiates the triple (y, ≺sc , :Comp) on O , leading to:
Qc = q(x, :NatComp) ← (x, :worksFor, z), (z, τ , :NatComp).

Then, Qc is reformulated into Qc ,a =

q(x, :NatComp) ← (x, :worksFor, z), (z, τ , :NatComp) ∪

q(x, :NatComp) ← (x, :hiredby, z), (z, τ , :NatComp) ∪

q(x, :NatComp) ← (x, :ceoOf, z), (z, τ , :NatComp)

by specializing :worksFor according to its subproperties in O . It

can be checked that Qc ,a (Gex) = q(Gex,R) = q(G
R
ex
) =

{⟨:p1, :NatComp⟩}, obtained here from the third BGPQ in Qc ,a .

2.5 Query Rewriting-based Data Integration
We recall now the basics of relational view-based query rewriting

(Section 2.5.1), which has been extensively studied [23, 31]. Then

we present a generalization of the notion of views as mappings

[35] (Section 2.5.2).

2.5.1 View-based (LAV) Data Integration. An integration sys-

tem I is made of a global schema S (a set of relations) and a

setV of views. An instance of I assigns a set of tuples to each

relation of S and to each view ofV . The data stored in a view is

called its extension. Further, to each view V is associated a query

V (x̄) :- ψ (x̄) over the global schema S , specifying how its data fits

into S . Accordingly, this framework is called local-as-view (LAV)

data integration. For instance, let S consist of three relations

Emp(eID, name, dID), Dept(dID, cID, country), Salary(eID,amount),
where eID, dID and cID are respectively identifiers for employees,

departments and companies.

Consider the viewsV1(eID, name, country) :- Emp(eID, name, dID),

Dept(dID, “IBM”, country) providing the names of IBM employ-

ees and where they work, and V2(eID, amount) :- Emp(eID, name,
“R&D”), Salary(eID,amount), which indicates the salaries of em-

ployees in R&Ddepartments. Typically, no single view is expected

to bring all information of a given kind; for instance, V1 brings

some IBM employees, but other views may bring others, e.g., V2,

possibly overlapping with V1; this is called the “Open World

Assumption” (OWA).

In an OWA setting, we are interested in certain answers [31],
i.e., those that are sure to be part of the query result, knowing

the data present in the views. Such answers can be computed by

rewriting a query over S , into one over the viewsV; evaluating

the rewriting over the view extensions produces the answers.

Ideally, a rewriting should be equivalent to the query over S , i.e.,
compute exactly the same answers. However, depending on the

views and queries, such a rewriting may not exist. For instance,

the query q(n,a) :- Emp(e,n,d), Dept(d, c, “France”), Salary(e, a)
does not have an equivalent rewriting using V1 and V2, because

V1 only provides IBM employees working in France, while V2

only has salaries of employees of R&D departments. Amaximally
contained rewriting brings all the query answers that can be ob-

tained through the given set of views; the rewriting may be not be

equivalent to q (but just contained in q). In our example, qr (n,a)
:- V1(e,n, ”France”),V2(e,a) is a maximally contained rewriting

of q; it returns employees of French IBM R&D departments with

their salary, clearly a subset of q answers.

A remarkable result holds for (unions of) conjunctive queries
((U)CQs), conjunctive views (views V such that the associated

query V (x̄) :- ψ (x̄) is a CQ) and rewritings that are UCQs: any
maximally contained rewriting computes exactly the certain an-

swers [2]; we will build upon this result for answering queries in

our RDF integration systems.

2.5.2 GLAV Data Integration. The above setting has been gen-

eralized to views that are not necessarily stored as such, but just

queries over some underlying data source. For instance, assuming

a data source D holds the relations Person(eID, name) and Con-
tract(eID, dID, country) (see Figure 1) with people and their work

contracts at IBM, the view V1 from the above example may be

defined on D by the query VD
1

over the D schema shown in the

figure (note that VD
1

hides the department from system I); VD
1

provides the extension of V1. Similarly, view V2 may be defined

as a query over some data source (or sources).

Global schema S
Emp(eID, name, dID), Dept(dID, cID, country), Salary(eID,amount)

V1 (eID, name, country) :- Emp(eID, name, dID), Dept(dID, “IBM”, country)
VD

1
(eID, name, country) :- Person(eID, name), Contract(eID, dID, country)

Person(eID, name), Contract(eID, dID, country)
Data source D

Figure 1: Example: view V1 as a GLAV mapping.
Query rewriting is unchanged, whether the views are stored or

defined by source queries. In the latter case, to obtain answers,

a view-based rewriting needs to be unfolded, replacing every

occurence of a view symbol V with the body of the source query

defining that view. Executing the resulting query (potentially over

different data sources) computes the answers. This integration

setting, which considers views as intermediaries between sources

and the integration schema, has been called “global-local-as-view”

(GLAV) [26]. An association of a query q1 over the data sources

and another query q2 over the global schema, both with the same

answer variables, e.g., q1 = V
D
1

and q2 = V1 above, is commonly

called a GLAV mapping (denoted q1(x̄) { q2(x̄)).

Historically, two restrictions of GLAV mappings have been in-

vestigated. First, global-as-view (or GAV) mappings define global

schema relations as views over the local schemas. Specifically,

a GAV mapping q1(x̄) { q2(x̄), q2 defines a single element of

the global schema (hence body(q2) is restricted to a single atom

if q2 is a CQ, or a single triple pattern if q2 is a BGPQ) and its

variables are exactly x̄ . Second, local-as-view (LAV) mappings

express elements of the local schema as views over the global

schema, similarly to the views described in Section 2.5.1.

Importantly, unlike GAV mappings, GLAV ones do not require

all variables of q2 to be answer variables (e.g., dID in V1 in

Figure 1); this makes integration more powerful. For example,

suppose that ⟨1,“John Doe”,“France”⟩ is an answer to VD
1

above.

Then,V1 exposes this tuple in the global schema as: Emp(1,“John
Doe",x),Dept(x ,“IBM",”France”), stating that John Doe works for

a department x located in France. Here, x is an existential vari-

able (called “labeled null” in [3]); the GLAV mapping states the
existence of such a department in the global schema, even if its

identifier is unknown (because it is not provided byV1). Therefore,

John Doe is a certain answer to a query asking for all employees

in IBM departments, based on the above GLAV mapping. This

answer cannot be found using GAV mappings.

3 PROBLEM STATEMENT
In this section, we first formalize the notion of RDF integration
system (Section 3.1). Then, we state the associated query answer-

ing problem (Section 3.2), for which Section 4 provides solutions.

3.1 RDF integration system (RIS)
In an RDF integration system (RIS in short), data from heteroge-

neous sources, each of which may have its own data model and

query language, is integrated into an RDF graph, consisting of an

(RDFS) ontology and of data triples derived from the sources by

means of GLAV-style mappings. Mappings allow (i) specifying
the data made available from the sources, and (ii) organizing it
according to the RIS ontology.

Definition 3.1 (RIS mappings and extensions).
A RIS mappingm is of the formm = q1(x̄) { q2(x̄) where q1 and

q2 are two queries with the same answer variables, and q2 is a

BGPQ whose body contains only triples of the forms:

• (s,p, o) where p ∈ Iuser,

• (s, τ ,C) where C ∈ Iuser.

The body ofm is q1 and its head is q2. The extension ofm is the

set of tuples ext(m) = {Vm (δ (v1), . . . , δ (vn)) | ⟨v1, . . . ,vn⟩ ∈
q1(D)}, where q1(D) is the answer set of q1 on the data source D
thatm integrates and δ is a function that maps source values to

RDF values, i.e., IRIs, blank nodes and literals.

Intuitively, m specifies that the result of query q1 on D trans-

formed in RDF, i.e., the extension ofm, is exposed to the RIS as

the result of the (BGP) query q2.

Example 3.2 (Mappings). Consider the two mappings:

m1 with head q2(x) ← (x, :ceoOf,y), (y, τ , :NatComp) and

m2 with head q2(x,y) ← (x, :hiredBy,y), (y, τ , :PubAdmin).

Suppose that the body ofm1 returns ⟨p
D1 ⟩ as its results, and that

the δ function maps the value pD1

1
from the data source D1 to

the IRI :p1. Then, the extension ofm1 is: ext(m1) = {Vm1
(:p1)}.

Further, suppose that the body ofm2 returns ⟨p
D2

2
,aD2 ⟩, and that

δ maps the values pD2

2
,aD2

from the data source D2 to the IRIs

:p2, :a. Then, the extension ofm2 is: ext(m2) = {Vm2
(:p2, :a)}.

Given a set of RIS mappingsM, the extent ofM is the union

of the mappings’ extensions, i.e., E =
⋃
m∈M ext(m), and we

denote by Val(E) the set of values occurring in E. We can now

define the RIS data triples induced by some mappings and an

extent thereof. These are all the data which is exposed (can be
queried) through a RIS.

Definition 3.3 (RIS data triples). Given a setM of RIS mappings

and an extent E ofM, the RIS data triples induced byM and E

form an RDF graph defined as follows:

GM
E
=

⋃
m=q1(x̄){q2(x̄)∈M

{bgp2rdf(body(q2)[x̄←t̄])) | Vm (t̄) ∈ E}

where

• body(q2)[x̄←t̄] is the BGP body(q2) in which the answer vari-

ables x̄ are bound to the values in the tuple Vm (t̄), part of
E;

• bgp2rdf(·) is a function that transforms a BGP into an RDF

graph, by replacing each variable with a fresh blank node.

Observe that, because we use GLAV mappings, RIS data triples

may include fresh blank nodes, as exemplified below; these cor-

respond to the existential variables allowed in GLAV mappings,

as discussed at the end of Section 2.5.2.

Example 3.4. Reusing the mappings from Example 3.2, letM =

{m1,m2} and its extent E = {Vm1
(:p1),Vm2

(:p2, :a)}. The RIS

data triples they lead to are:

GM
E
= {(:p1, :ceoOf, _:bc), (_:bc , τ , :NatComp),

(:p2, :hiredBy, :a), (:a, τ , :PubAdmin)}

In particular, the first and second triples contain the blank node

_:bc , introduced by bgp2rdf instead of the variable y in the head

(query q2) of m1. Importantly, only non-answer variables in

a mapping head lead to blank nodes introduced this way: by

Def. 3.3, answer variables (here x for m1 and x,y for m2) are

replaced with values from Vm (t̄), thus from Val(E).

Finally, we define a RIS as a tuple S = ⟨O,R,M, E⟩ stating that
S allows to access (query), with the reasoning power given by the

set R of RDFS entailment rules, the RDF graph comprising the

ontology O and the data triples induced by the set of mappings

M and their extent E.

3.2 Query answering problem
The problem we consider is answering BGPQs in a RIS. We define

certain answers in a RIS setting as follows:

Definition 3.5 (Certain answer set). The certain answer set of a
BGPQ q on a RIS S = ⟨O,R,M, E⟩ is:

cert(q, S) = {φ(x̄) | φ homomorphism from body(q) to (O∪GM
E
)R }

where φ(x̄) comprises only values from Val(E).

The certain answer set cert(q, S) is thus the subset ofq(O ∪GM
E
,R)

restricted to tuples fully built from source values, i.e., we ex-

clude tuples with blank nodes introduced by the mappings (see

Def. 3.3). Note, however, that blank nodes can be exploited to

answer queries, as shown below.

Example 3.6 (Certain answers). Consider the RIS S made of the

ontology O of Gex in Example 2.2, the set R of entailment rules

shown in Table 3, and the set of mappingsM together with the

extent E from Example 3.4.

Let q(x,y) ← (x, :worksFor,y), (y, τ , :Comp) be the query asking

“who works for which company”, while the query

q′(x) ← (x, :worksFor,y), (y, τ , :Comp) asks “whoworks for some

company”. The only difference between them is that y is an an-

swer variable in q and not in q′. The certain answer set of q is ∅,

M

mapping

saturation

Ma,O

ont. mapping

creation

Ma,O ∪ MORc

(A)

(B)

reformulation

Qc ,a

Qc

q

(1’)

(1)

O

Ra

Rc

rewriting

(2)

(2’)

(2”)

qr

q
REW

(3)

(3’)

mediator

query engine

(4)

(4’)

answers

(5)

Figure 2: Outline of query answering strategies.

while the certain answer set of q′ is {⟨:p1⟩}. This answer results

from the RIS data triples (:p1, :worksFor, _:bc), (_:bc , τ , :Comp),

which are entailed from:

• the GM
E

triples (:p1, :ceoOf, _:bc), (_:bc , τ , :NatComp), with

the blank node _:bc discussed in Example 3.4, and:

• either the O triples (:ceoOf, ≺sp , :worksFor),

(:ceoOf, ↪→r , :Comp) together with the R rules rdfs3,
rdfs7, or the O triples (:ceoOf, ≺sp , :worksFor),

(:NatComp, ≺sc , :Comp) together with the R rules

rdfs3, rdfs9.
The query q has no answer because it requires a value not avail-

able from the source: the company for which :p1 works; the RIS

only knows the existence of such value through the blank node

_:bc begotten by bgp2rdf in its data triples. In contrast, q′ al-
lows finding out that :p1 works for (as CEO of) some (national)

company, even though the mappingm1 (the only one involving

companies) does not expose the company IRI through the RIS.

The problem we study in the next section is:

Problem 1. Given a RIS S , compute the certain answer set of a
BGPQ q on S , i.e., cert(q, S).

4 QUERY ANSWERING IN A RIS
Since we adopt a mediator-style approach, the RIS data triples

GM
E

are not materialised, hence the saturation ofO ∪GM
E

cannot

be computed to answer queries as defined above. Instead, queries

are rewritten in terms of the remote heterogeneous sources, based

on the RIS ontologyO , reasoning power R and mappingsM. We

present three query answering strategies, which differ in how

the ontological reasoning is incorporated: we may have all, some
or no reasoning performed at query time, as outlined in Figure 2.

All reasoning at query time The first strategy will be de-

tailed in Section 4.1. First, it reduces the RIS query answering

problem to standard query evaluation in an RDF data manage-

ment system, by reformulating (step (1) in Figure 2) the query q
based on the RIS ontology O and entailment rules R = Rc ∪ Ra .

The obtained reformulated query Qc ,a thus yields the expected

certain answers when evaluated on the RIS data triples (recall

Section 2.4), provided that answers with blank nodes introduced

by the bgp2rdf function are discarded (recall Section 3.2). Since

these data triples are not materialized, the RDF query evaluation

problem is in turn reduced to relational view-based query answer-
ing, by rewriting Qc ,a using the RIS GLAV mappingsM seen

as LAV views (step (2)). This produces a relational rewriting qr

over the mappings extension (step (3)), whose evaluation with

a mediator query engine provides the desired certain answers

(steps (4) and (5)).

Some reasoning at query time The second strategy (detailed

in Section 4.2) is a main contribution of this paper. First, it re-

duces the RIS query answering problem to saturation-based query
answering by reformulating (step (1’)) the query q based onO and

Rc only (not R = Rc ∪Ra as above). The obtained reformulation

Qc thus yields the expected certain answer set when evaluated

on the RIS data triples saturated withRa (recall Section 2.4), again

provided that the answers with blank nodes introduced by the

bgp2rdf function are discarded (as above). Since these triples are

not materialized in a RIS, hence cannot be saturated with Ra , the

saturation-based query answering problem is in turn reduced

to relational view-based query answering, by rewriting Qc using

the RIS GLAV mappings saturated O and Ra , seen as LAV views.

These saturated mappings, denotedMa,O
, are obtained (step

(A)) from the original ones by adding to their head queries (q2)

all the implicit data triples they model w.r.t. O and Ra . Then,

the partially reformulated query Qc is rewritten usingMa,O

(step (2’)) and the resulting query (step (3)) is evaluated as in

the first strategy (steps (4) and (5)). Importantly, mappings are

saturated offline, and need to be updated only when some map-

ping changes. This limits both the reasoning effort at query time

and the complexity of the reformulated query to rewrite, hence

the rewriting time needed to obtain a rewriting qr over the data

sources, as our experiments show (Section 5).

No reasoning at query time Finally, the third strategy (detailed

in Section 4.3) reduces the RIS query answering problem directly

to view-based query answering. Here, the mappings are saturated

offline as above (step (A)), in order to model all explicit and

implicit RIS data triples. Also, these mappings are complemented

with a set of mappings, notedMORc (step (B)), comprising all the

explicit and implicit RIS schema triples w.r.t.O and R; since only

Rc rules entail new schema triples (Table 3),OR is actually equal

to ORc . This second set of mappings is also computed offline,

and only needs to be updated when the ontology changes. A

query q just needs to be rewritten based on the above mappings

Ma,O ∪MORc seen as LAV views (step (2”)), in order to obtain,

as above, a rewriting q
REW

over the data sources (step(3’), followed

by the evaluation steps (4’) and (5)).

Before going into the technical details of the above strategies, we

introduce a set of simple functions. The bдp2ca function trans-

forms a BGP into a conjunction of atoms with ternary predi-

cate T (standing for “triple”) as follows: bдp2ca({(s1, p1, o1), . . .,

(sn, pn, on)}) = T (s1, p1, o1) ∧ · · · ∧ T (sn, pn, on). The bдpq2cq
function transforms a BGPQ q(x̄) ← body(q) into a CQ q(x̄) ←
bдp2ca(body(q)). Finally, the function ubдpq2ucq function trans-

forms a UBGPQ

⋃n
i=1

qi (x̄i) into a UCQ by applying the above

bдpq2cq function to each of its qi .

4.1 Rewriting Fully-Reformulated Queries
using Mappings as Views: REW-CA

Based on [12], the first step of this strategy, (1) in Figure 2, refor-

mulates a query q w.r.t. O and R = Rc ∪ Ra into a query Qc ,a .

This allows obtaining the certain answers directly from the RIS

data triples, and not from their saturation after they have been

augmented withO (recall Definition 3.5). Indeed, the correctness

of the reformulation ensures that the certain answers of q on

the RIS S correspond precisely to those of Qc ,a asked on S when

disregarding O and R, as formally expressed in the next lemma.

Of course, this still does not provide a concrete solution to ob-

tain the desired certain answers using standard query evaluation,

since the RIS data triples GM
E

are not materialized.

Lemma 4.1. Let S = ⟨O,R,M, E⟩ be a RIS, q be a BGPQ and
Qc ,a its UBGPQ reformulation w.r.t. O,R = Rc ∪ Ra using [12].
Then:

cert(q, S) = cert(Qc ,a, ⟨∅, ∅,M, E⟩)

The proof of this and our following claims can be found in [13].

Recall that the RIS data triples are defined from the mappingsM

by, for every mappingm = q1(x̄) { q2(x̄) ∈ M, (i) evaluating
the mapping body q1(x̄) on the data source to produce its exten-

sion ext(m) ∈ E, and then (ii) instantiating the mapping head

q2(x̄) with its extension. At the same time, this is also how the

instance of a data integration system based on LAV views and

their extensions is defined in a relational setting (Section 2.5.1)!

Based on this analogy, we recast the RIS query answering problem
of the above Lemma, into a relational view-based query answering
one. To this aim, we treat our mappings as LAV views:

Definition 4.2 (Mappings as relational LAV views). Letm = q1(x̄) {
q2(x̄) be a mapping. Its corresponding relational LAV view is:

Vm (x̄) ← bдp2ca(body(q2)).

Example 4.3. The relational LAV views corresponding to the

mappingsm1,m2 from Example 3.2 are:

• Vm1
(x) ← T (x, :ceoOf,y),T (y, τ , :NatComp)

• Vm2
(x,y) ← T (x, :hiredBy,y),T (y, τ , :PubAdmin)

We denote the set of views derived from all the mappingsM by

Views(M). Crucially, the extent E of the mapping setM is also

an extent for the corresponding set of views Views(M).

Based on the above Lemma 4.1, treating mappings and their ex-

tent as relational LAV views and their extent, and seeing (U)BGPQs

as (U)CQs with the help of the functions introduced in the begin-

ning of Section 4, we reduce the RIS query answering problem

to view-based query answering:

Theorem 4.4 (REW-CA correctness). Let S = ⟨O,R,M, E⟩ be a
RIS and q be a BGPQ. Let Qc ,a be the reformulation of q w.r.t. O
and R using [12]. Then:

cert(q, S) = cert(ubдpq2ucq(Qc ,a),Views(M), E)

where cert(ubдpq2ucq(Qc ,a),Views(M), E) denotes the certain
answer set of ubдpq2ucq(Qc ,a) over Views(M) and E.

Importantly, this provides an effective solution to RIS query

answering problem by using state-of-the-art view-based query

rewriting techniques [31], in particular for step (2) in Figure 2.

Example 4.5 (REW-CA query answering). Consider again the RIS

in Example 3.6 and the query q(x,y) ← (x,y, z), (z, τ , t), (y, ≺sp
, :worksFor), (t, ≺sc , :Comp), (x, :worksFor,a), (a, τ , :PubAdmin)

asking “who works for some public administration, and what

working relationship he/she has with some company”. Its UBGPQ

reformulation, seen as a UCQ, is shown in Figure 3. Its maximally-

contained rewriting based on the views obtained from the RIS

mappings is: qr (x, :ceoOf) ← Vm1
(x),Vm2

(x,y), obtained from

the second CQ in the above union. This becomes clear when the

views are replaced by their bodies:q(x, :ceoOf) ← T (x, :ceoOf,y1),

T (y1, τ , :NatComp),T (x, :hiredBy,y2),T (y2, τ , :PubAdmin). Note

Qc ,a = q(x, :ceoOf) ← T (x, :ceoOf, z),T (z, τ , :NatComp),

T (x, :worksFor,a),T (a, τ , :PubAdmin)

∪ q(x, :ceoOf) ← T (x, :ceoOf, z),T (z, τ , :NatComp),

T (x, :hiredBy,a),T (a, τ , :PubAdmin)

∪ q(x, :ceoOf) ← T (x, :ceoOf, z),T (z, τ , :NatComp),

T (x, :ceoOf,a),T (a, τ , :PubAdmin)

∪ q(x, :hiredBy) ←T (x, :hiredBy, z),T (z, τ , :NatComp),

T (x, :worksFor,a),T (a, τ , :PubAdmin)

∪ q(x, :hiredBy) ←T (x, :hiredBy, z),T (z, τ , :NatComp),

T (x, :hiredBy,a),T (a, τ , :PubAdmin)

∪ q(x, :hiredBy) ←T (x, :hiredBy, z),T (z, τ , :NatComp),

T (x, :ceoOf,a),T (a, τ , :PubAdmin)

Figure 3: Sample reformulation for Example 4.5.

that the other CQs cannot be rewritten given the available views.

With the current RIS, this rewriting yields an empty certain

answer set to q, i.e., cert(q, S) = ∅, because the extent of the map-

pings, hence of the views, is: E = {Vm1
(:p1),Vm2

(:p2, :a)}. How-

ever, if we addVm2
(:p1, :a) to E, then cert(q, S) = {⟨:p1, :ceoOf⟩}.

4.2 Rewriting Partially-Reformulated
Queries using Saturated Mappings as
Views: REW-C

In constrast with the REW-CA strategy that performs all the rea-
soning w.r.t. O and R = Rc ∪ Ra at query time, our second

strategy called REW-C splits the reasoning work between offline

preprocessing and query time.

The first step of this strategy, labeled (1’) in Figure 2, reformulates

a query q using [12], but solely w.r.t. O,Rc , producing a UBGPQ

denoted Qc . From the correctness of this reformulation step, and

the fact that only Ra needs to be considered to answer Qc with

respect to the entire set of rules R (recall Section 2.4), the certain

answer set of q asked on the RIS S is exactly the certain answer

set of Qc asked on S when disregarding Rc . Formally:

Lemma 4.6. Let S = ⟨O,R,M, E⟩ be a RIS, q be a BGPQ and Qc
its reformulation w.r.t. O,Rc [12]. Then:

cert(q, S) = cert(Qc , ⟨O,Ra,M, E⟩)

In other words, the desired answer set could be obtained by evalu-

atingQc on the RIS data triplesG
M
E

saturated byRa . Again, since

the RIS data triples are not materialized, this does not provide a

concrete solution. To account for the impact of the ontology O
and the entailment rules R on these “virtual” data triples, we rely

on BGPQ saturation [25]: given a BGPQ q,O and R, the saturation
qR,O is q augmented with all the triples q implicitly asks for, given
the ontology O and the rules R. BGPQ saturation is exemplified

below:

Example 4.7 (BGPQ saturation). Consider the ontology O ofGex

and the query q(x) ← (x, :hiredBy,y), (y, τ , :NatComp) asking

who has been hired by a national company. Its saturationw.r.t.Ra,O

is: qRa ,O (x) ← body(q), (x, :worksFor,y), (x, τ , :Person),

(y, τ , :Comp), (y, τ , :Org).

We use BGPQ saturation to saturate the RIS mapping heads

w.r.t.Ra,O , so that the saturatedmappings together with E model

the saturated RIS data triples w.r.t. Ra,O . To compute qRa ,O we

(1) saturate body(q) ∪O using Ra , then (2) add to the body of q
all triples thus inferred.

Definition 4.8 (Mappings saturation). The saturation of a setM

of RIS mappings w.r.t. entailment rules Ra and ontology O is:

Ma,O =
⋃

m∈M

{q1(x̄) { qRa ,O
2

(x̄) | m = q1(x̄) { q2(x̄)}

We saturate mappings offline, and just need to update them when

O or the mapping heads change.

Example 4.9 (Saturated mappings). Consider the RIS of Exam-

ple 3.6, the mapping heads inMa,O
are (added implicit triples

are in blue):

m1 : qRa ,O
2

(x) ← (x, :ceoOf,y), (y, τ , :NatComp)

(x, :worksFor,y), (y, τ , :Comp)

(x, τ :Person), (y, τ , :Org)

m2 : qRa ,O
2

(x,y) ←(x, :hiredBy,y), (y, τ , :PubAdmin)

(x, :worksFor,y), (y, τ , :Org)

(x, τ , :Person)

From the above Lemma and the use of saturated RIS mappings

instead of the original ones, we show:

Lemma 4.10. Let S = ⟨O,R,M, E⟩ be a RIS, q be a BGPQ and Qc
its reformulation w.r.t. O,Rc [12]. Then:

cert(q, S) = cert(Qc , ⟨∅, ∅,M
a,O , E⟩)

This result allows solving the RIS query answering problem by

relational view-based query rewriting (step (2’) in Figure 2):

Theorem 4.11 (REW-C correctness). Let S = ⟨O,R,M, E⟩ be a
RIS, q be a BGPQ and Qc its reformulation w.r.t. O,Rc .Then:

cert(q, S) = cert(ubдpq2ucq(Qc),Views(Ma,O), E)

Example 4.12 (REW-CA). Consider again the RIS in Example 3.6

and the query q of Example 4.5. Its reformulation Qc w.r.t.O,Rc ,
seen as a UCQ, is:

q(x, :ceoOf) ← T (x, :ceoOf, z),T (z, τ , :NatComp),

T (x, :worksFor,a),T (a, τ , :PubAdmin)

∪ q(x, :hiredBy) ←T (x, :hiredBy, z),T (z, τ , :NatComp),

T (x, :worksFor,a),T (a, τ , :PubAdmin)

This reformulation is therefore rewritten using the RIS views as:

qr (x, :ceoOf) ← Vm1
(x),Vm2

(x,y). It is obtained from the first

CQ in the above; the second one has no rewriting based on the

available RIS views.We remark that this rewriting is equivalent to

the one obtained in Example 4.5, hence yields the same answers.

4.3 Rewriting Queries using Saturated
Mappings and Ontology Mappings as
Views: REW

This strategy does not reason at query time at all. Instead, it

rewrites a query q based on the saturated RIS mappingsMa,O

as above, and on a specific set of ontology mappings we build to

model the saturated RIS ontology as a data source:
Definition 4.13 (Ontology mappings). The set of ontology map-
pings for a RIS ontology O is:

MOc =
⋃

x ∈{≺sc ,≺sp ,←↩d ,↪→r }

{mx | mx = q1(s, o) { q2(s, o)}

with q2(s, o) ← (s, x, o). The extension of an ontology mapping

mx is ext(mx) = {Vmx (s, o) | (s, x, o) ∈ ORc }. The extent of
MOc is denoted EOc .

We compute ontology mappings offline, and only need to up-

date them when the ontology changes. The ontology mapping

extensions EOc store all the explicit and implicit RIS ontology

triples (recall from Section 2.2 that only Rc lead to such triples).

Importantly, this leads to the observation that a query triple that

refers to the ontology (schema) can be evaluated on the ontology

mapping extensions alone. Formally:

q(x, :ceoOf) ← Vm1
(x),Vm≺sp (:ceoOf, :worksFor),

Vm≺sc (:NatComp, :Comp),Vm2
(x,a)

∪ q(x, :ceoOf) ← Vm1
(x),Vm≺sp (:ceoOf, :worksFor),

Vm≺sc (:Comp, :Comp),Vm2
(x,a)

∪ q(x, :ceoOf) ← Vm1
(x),Vm≺sp (:ceoOf, :worksFor),

Vm≺sc (:Org, :Comp),Vm2
(x,a)

∪ q(x, :worksFor) ←Vm1
(x),Vm≺sp (:worksFor, :worksFor),

Vm≺sc (:NatComp, :Comp),Vm2
(x,a)

∪ q(x, :worksFor) ←Vm1
(x),Vm≺sp (:worksFor, :worksFor),

Vm≺sc (:Comp, :Comp),Vm2
(x,a)

∪ q(x, :worksFor) ←Vm1
(x),Vm≺sp (:worksFor, :worksFor),

Vm≺sc (:Org, :Comp),Vm2
(x,a)

∪ q(x, :hiredBy) ← Vm2
(x, z),Vm≺sp (:hiredBy, :worksFor),

Vm≺sc (:PubAdmin, :Comp),Vm2
(x,a)

∪ q(x, :hiredBy) ← Vm2
(x, z),Vm≺sp (:hiredBy, :worksFor),

Vm≺sc (:Org, :Comp),Vm2
(x,a)

∪ q(x, :worksFor) ←Vm2
(x, z),Vm≺sp (:worksFor, :worksFor),

Vm≺sc (:PubAdmin, :Comp),Vm2
(x,a)

∪ q(x, :worksFor) ←Vm2
(x, z),Vm≺sp (:worksFor, :worksFor),

Vm≺sc (:Org, :Comp),Vm2
(x,a)

∪
⋃

r∈{≺sc ,≺sp ,←↩d ,↪→r }q(x, r) ← Vmr (x, z),Vm2
(v, z),

Vm≺sp (r, :worksFor),

Vm≺sc (:PubAdmin, :Comp),

Vm2
(x,a)

∪ q(x, r) ←Vmr (x, z),Vm2(v ,z),

Vm≺sp (r, :worksFor),

Vm≺sc (:Org, :Comp),

Vm2
(x,a)

Figure 4: Sample rewriting for Example 4.17.

Lemma 4.14. Let S = ⟨O,R,M, E⟩ be a RIS and q be a BGPQ.
Then:

cert(q, S) = cert(q, ⟨O,Ra,MOc ∪M, EOc ∪ E⟩)

This lemma effectively “pushes” Rc reasoning in the set of map-

pings (to which we addMOc) and the extent (to which we add

EOc). Next, we rely (as we did for REW-CA) on mappings satu-

ration with O,Ra to also push Ra reasoning in the mappings,

leading to:

Lemma 4.15. Let S = ⟨O,R,M, E⟩ be a RIS and q be a BGPQ.
Then:

cert(q, S) = cert(q, ⟨∅, ∅,MOc ∪Ma,O , EOc ∪ E⟩)

This allows to reduce RIS query answering to relational view-

based query rewriting (step (2”) in Figure 2):

Theorem 4.16 (REW correctness). Let S = ⟨O,R,M, E⟩ be a
RIS and q be a BGPQ. Then:

cert(q, S) = cert(bдpq2cq(q),Views(MOc ∪Ma,O), EOc ∪ E)

Example 4.17 (REW). Consider again the RIS in Example 3.6 and

the query q of Example 4.5 seen as a CQ:

q(x,y) ←T (x,y, z),T (z, τ , t),T (y, ≺sp , :worksFor),

T (t, ≺sc , :Comp),T (x, :worksFor,a),
T (a, τ , :PubAdmin)

Its maximally-contained rewriting q
REW

based on the views ob-

tained from the RIS saturated mappings and ontology mappings

appears in Figure 4. This rewriting is much larger than the ones

of the two preceding techniques: this is due to the ontology map-

pings. If we assume that E also containsVm2
(:p1, :a), as we did in

Example 4.5, we obtain again cert(q, S) = {⟨:p1, :ceoOf⟩}, which

results from the evaluation of the first CQ in the UCQ rewriting;

the other CQs yield empty results because some required ≺sc
or ≺sp contraints are not found in the views built from the RIS

ontology mappings.

How do our strategies compare? Since they are all correct,

they lead to the same RIS certain answer set, however they do

not necessarily compute the same view-based rewritings. Indeed,

REW considers the additional setMOc of ontology mappings.

Hence, for queries over the ontology, i.e., featuring in a property

position ≺sc , ≺sp ,←↩d , ↪→r , or a variable, a REW rewriting is

larger than a REW-CA or REW-C rewriting and, to be answered,

requires the additional ontology source. In contrast, REW-CA

and REW-C yield logically equivalent rewritings; we minimize

them both to avoid possible redundancies, thus they become

identical (up to variable renaming). Hence, REW-CA and REW-C

do not differ in how these rewritings are evaluated. Instead, they

differ in how the rewritings are computed, or, equivalently, on the
distribution of the reasoning effort on the data and mappings, across
various query answering stages. As our experiments show, given

the computational complexity of view-based query rewriting [42],

this difference has a significant impact on their performance.

5 EXPERIMENTAL EVALUATION
We now describe our experiments with RIS query answering.

In addition to our strategies based on query rewriting, we in-

clude in our comparison a simple alternative strategy, based
on materialization and denoted MAT. Offline (before answer-

ing queries), this strategy materializes the RIS data triples and

saturates them with the rule set R. The materialization is stored

and saturated in an RDF data management system (RDFDB,
in short). Then, MAT query answering amounts to query eval-

uation on the saturated materialization. Therefore, MAT query

answering can be seen as a lower bound for query answering

through other strategies.

5.1 Experimental settings
Software Our platform is developed in Java 1.8, as follows.

Our RDFDB is OntoSQL
2
, a Java platform providing efficient RDF

storage, saturation, and query evaluation on top of an RDBMS [14,

29], relying on Postgres v9.6. To save space, OntoSQL encodes

IRIs and literals into integers, and a dictionary table which allows

going from one to the other. It stores all resources of a certain

type in a one-attribute table, and all (subject, object) pairs for

each property (including RDFS schema properties) in a table; the

tables are indexed. OntoSQL is used in the MAT strategy, and it

also provides the RDF query reformulation algorithm [12].

We rely on the Graal engine [9] for view-based query rewrit-
ing. Graal is a Java toolkit dedicated to query answering algo-

rithms in knowledge bases with existential rules (a.k.a. tuple-

generating dependencies). Since the relational view Vm (x̄) ←
bдp2ca(body(q2)) corresponding to a GLAV mappingm (recall

Def. 4.2) can be seen as a specific existential rule of the form

Vm (x̄) → bдp2ca(body(q2)), the query reformulation algorithm

of Graal can be used to rewrite the UCQ translation of a BGPQ

with respect to a set of RISmappings. To execute queries against
heterogeneous data sources, we use Tatooine [4, 10], a Java-
based mediator (or polystore) system, capable both of pushing

queries in underlying data sources and (unlike other polystores,

e.g., [24]) of evaluating joins within the mediator engine. Query

rewritings produced by Graal are unfolded into queries on the

2
https://ontosql.inria.fr

data sources (using theq1 parts of the mappings, see Section 2.5.2)

and passed to Tatooine. We implemented the RIS query answer-

ing methods described here in Java 1.8 on top of these tools.

HardwareWe used servers with 2,7 GHz Intel Core i7 processors

and 160 GB of RAM, running CentOs Linux 7.5.

5.2 Experimental scenarios
RDF Integration Systems (RIS) used Our first interest was

to study scalability of RIS query answering, in particular in the

relational setting studied in many prior works. To achieve this,

we used the BSBM benchmark relational data generator
3
to build

databases consisting of 10 relations named producer, product,

offer, review etc. Using two different benchmark scale factors, we

obtained a data source DS1 of 154.054 tuples across the relations,

respectively, DS2 of 7.843.660 tuples; both are stored in Postgres.

We used two RDFS ontologies O1 respectively O2, containing,

first, subclass hierarchies of 151 (resp. 2011) product types, which

come with DS1, respectively, DS2. To O1 and O2, we add a nat-

ural RDFS ontology for BSBM composed of 26 classes and 36

properties, used in 40 subclass, 32 subproperty, 42 domain and

16 range statements.

Relational-sources RIS We devised two setsM1,M2 of 307,

respectively, 3863 mappings, which expose the relational data

from DS1, respectively, DS2 as RDF graphs. The relatively high

number of mappings is because: (i) each product type (of which

there are many, and their number scales up with the BSBM data

size) appears in the head of a mapping, enabling fine-grained

and high-coverage exposure of the data in the integration graph;

(ii) we also generated more complex GLAV mappings, partially

exposing the results of join queries over the BSBM data; interest-

ingly, these mappings expose incomplete knowledge, in the style

of Example 3.4.

The mapping sets lead to theRIS graphs of 2.0 ·10
6
, respectively,

108 · 10
6
triples. Their saturated versions comprise respectively

3.4 · 10
6
and 185 · 10

6
triples. Our first two RIS are thus: S1 =

⟨O1,R,M1, E1⟩ and S2 = ⟨O2,R,M2, E2⟩, where Ei for i in
{1, 2} are the extents resulting from DSi andMi .

Heterogeneous-sources RIS Second, going beyond relational-

sources OBDA [16, 17, 44], our architecture extends to hetero-
geneous data sources. For that, we converted a third (33%) of

DS1,DS2 into JSON documents, and stored them into MongoDB,

leading to the JSON data sources denoted DSj ,1,DSj ,2; the rela-
tional sources DSr ,1,DSr2

store the remaining (relational) data.

Conceptually, for i in {1, 2}, the extension based on DSr ,i and
extension based on DSj ,i form a partition of Ei . We devise a

set of JSON-to-RDF mappings to expose DSj ,1 and DSj ,2 into

RDF, and denoteM3 the set of mappings exposing DSr ,1 and

DSj ,1, together, as an RDF graph; similarly, the mappingsM4

expose DSr ,2 and DSj ,2 as RDF. Our last two RIS are thus: S3 =

⟨O1,R,M3, E3⟩ and S4 = ⟨O2,R,M4, E4⟩, where E3 is the ex-

tent ofM3 based on DSr ,1 and DSj ,1, while E4 is the extent of

M4 based on DSr ,2 and DSj ,2. The RIS data and ontology triples
of S1 and S3 are identical; thus, the difference between these two
RIS is only due to the heterogeneity of their underlying data sources.
The same holds for S2 and S4.

Queries We devised a set of 28 BGP queries having from 1 to

11 triple patterns (5.5 on average), of varied selectivity (they re-

turn between 2 and 330 · 10
3
results in S1 and S3 and between 2

and 4.4 · 10
6
results in S2 and S4); 6 among them query the data

and the ontology (recall Example 2.6), a capability which most

3
https://downloads.sourceforge.net/project/bsbmtools/bsbmtools/

bsbmtools-0.2

https://ontosql.inria.fr
https://downloads.sourceforge.net/project/bsbmtools/bsbmtools/bsbmtools-0.2
https://downloads.sourceforge.net/project/bsbmtools/bsbmtools/bsbmtools-0.2

RIS Q01 Q01a Q01b Q02 Q02a Q02b Q02c Q03 Q04 Q07 Q07a Q09 Q10 Q13

all NTRI 5 5 5 6 6 6 6 5 2 3 3 1 3 4

S1, S3 |Qc ,a | 7 21 175 21 49 147 1225 525 1 5 19 7 670 28

S1, S3 NANS 1272 4376 22738 16 56 174 1342 19 91 2 3 5617 9 13190

S2, S4 |Qc ,a | 21 175 1407 63 147 525 1225 4375 1 5 19 7 9350 84

S2, S4 NANS 15514 111793 863729 124 598 1058 1570 5 4487 2 3 299902 10 167760

RIS Q13a Q13b Q14 Q16 Q19 Q19a Q20 Q20a Q20b Q20c Q21 Q22 Q22a Q23

all NTRI 4 4 3 4 9 9 11 11 11 11 3 4 4 7

S1, S3 |Qc ,a | 84 700 1 25 63 147 21 63 525 1225 670 2 40 192

S1, S3 NANS 43157 330142 56200 8114 2015 3515 0 236 2312 7564 1085 28 434 25803

S2, S4 |Qc ,a | 5628 5628 1 201 525 1225 63 525 1225 4221 9350 40 520 192

S2, S4 NANS 4416946 10049829 2998948 249004 39826 60834 904 7818 10486 51988 37176 1528 18588 1329887

Table 4: Characteristics of the queries used in our experiments.

Figure 5: Query answering times on the smaller RIS S1

(top, relational sources) and S3 (bottom, heterogeneous
sources).

competitor systems lack (see Section 6). Table 4 reports three

query properties impacting query answering performance: the

number of induced triples (NTRI), the number of BGPQ refor-

mulations on the ontology (|Qc ,a |, ranging from 1 to 1225; this

strongly determines the performance of answering such large

union queries, recall Example 4.5), and its number of answers

(NANS) on the two RIS groups (S1, S3 and S2, S4). To further study

the impact of the ontology on query evaluation complexity, we

created query families denoted QX ,QXa etc. by replacing the

classes and properties appearing in QX with their super classes

or super properties in the ontology. In such a family, QX is the
most selective, and queries are sorted in the increasing order of their
number of reformulations.
Our ontologies, mappings, queries, and experimental details are

available online
4
.

5.3 Query answering performance
REW inefficiencyWe have conducted experiments

4
using our

six queries on ontological triples showing, as in Example 4.17

and Figure 4, an explosion of the size of the rewriting (number

of CQs), compared to the rewriting produced by the two other

approaches. On queries (also) over the ontology, as explained in

4
Experiment web site: https://gitlab.inria.fr/mburon/org/blob/master/projects/

het2onto-benchmark/bsbm/

Figure 6: Query answering times on the larger RIS S2

(top, relational sources) and S4 (bottom, heterogeneous
sources).

Section 4.3, we noted that the size of the rewriting produced by

REW is larger (by a multiplicative factor of 29 to 74 in S1 and

S3, and of 33 to 969 in S2 and S4) than the rewritings of the two

other strategies, which led to an explosion of the time spent

minimizing the rewriting, and made REW overall unfeasible; the

details of these tests can be found online
4
. On queries that do not

carry over the ontology, REW produces the same rewritings as the

other methods. Thus, we do not report further REW performance

below.

Query answering time comparison Figure 5 depicts the query

answering times, on the smaller RIS, of REW-CA, REW-C andMAT.

The size of (number of BGPQs in) the reformulation of each query
w.r.t. R, |Qc ,a | appears in parentheses after the query name, in the
labels along the x axis. Given that S1, S3 have the same RIS data

triples, theMAT strategy coincides among these two RIS. Figure 6

shows the corresponding times for the largest RIS S2 and S4; the

same observations apply. Note the logarithmic time axes.

A first observation is that our query set is quite diverse; their
answering times range from a few to more than 10

5
ms.

As expected, query answering in MAT is the fastest in most cases,
since it has no reasoning work to do at query answering time.

However, it required, for S1, S3, 1.2 · 10
5
ms to build the material-

ization and 1.49 · 10
5
ms more to saturate it, whereas for S2, S4,

these times are 14h46 (5.31 · 10
7
ms), respectively, 1h28 (5.28 · 10

6

https://gitlab.inria.fr/mburon/org/blob/master/projects/het2onto-benchmark/bsbm/
https://gitlab.inria.fr/mburon/org/blob/master/projects/het2onto-benchmark/bsbm/

ms). Not only these are orders of magnitude more than all query
answering times; recall also that materializingGM

E
requires main-

taining it when the underlying data changes, and its saturation

(GM
E
∪O)R needs a second level of maintenance. Thus, MAT is

not practical when data sources change. We were surprised to see

REW-C and REW-CA somehow faster thanMAT for queriesQ09 and

Q14. Answering these queries throughMATwithin OntoSQL leads

to producing many results that involve mapping-generated blank
nodes, tuples which should not appear in our certain answers,

as per Definition 3.5. We remove such tuples in post-processing

mode, which leads to a performance overhead for MAT. REW-C

and REW-CA, in contrast, are answered by evaluating rewritings,

and do not have to apply such a result pruning. It remains to be

seen if this pruning could be pushed in an RDFDB; note that not

all answers including blank nodes should be pruned, only those

whose blank nodes are due to mappings.

In each scenario, we observe that REW-C is faster or takes as

long as REW-CA. Since the two approaches produce the same

rewritings, the difference is due to steps before the step (3) in

Figure 2. It turns out it is due to the rewriting time, which in turn

strongly depends on the size of the reformulation it receives as

input. In REW-C, the reformulations w.r.t. Rc are of size 1 (no

union, just one BGP) for queries on data triples only, and never

exceed 64 in S1 and S3 and 200 in S2 and S4, whereas, in REW-CA

the reformulation sizes are much larger. REW-C is most often

faster than REW-CA, by up to two orders of magnitude e.g., for

Q02a , Q19 and Q20a on S2, the latter two on S4 etc. One order

of magnitude speed-up is noticeable even on the smaller RIS

S1, S3 (Figure 5) for Q02a . As a consequence, REW-C completes

successfully in all scenarios we study, whereas REW-CA fails to

complete for many queries with timeout set to 10min (missing

yellow bars in Figure 6), in close correlation with the increased

number of reformulations.

Scaling in the data size As stated in Section 5.2, there is a

scale factor of about 50 between S1, S3 on one hand, and S2, S4

on the other. Figures 5 and 6 show that the query answering

times generally grow by less than 50, when moving from S1 to

S2, and from S3 to S4. This is mostly due to the good scalability

of PostgreSQL (in the all-relational RIS), Tatooine (itself building

on PostgreSQL and MongoDB, in the heterogeneous RIS), and

OntoSQL (for MAT). As discussed above, computation steps we

implemented outside these systems are strongly impacted by

the mappings, ontology and query; intelligently distributing the

reasoning effort, as REW-C does, avoids the heavy performance

penalties that from which REW-CA and REW sometimes suffer.

Impact of heterogeneity REW-CA and REW-C incur a (modest)

overhead when combining data from PostgreSQL and MongoDB

(heterogeneous RIS) w.r.t. the relational-sources RIS. Part of this

is due to the cost of marshalling data across system boundaries;

the rest is due to imperfect optimization within Tatooine. Overall,

the comparison demonstrates that RIS query answering is feasible

and quite efficient even on heterogeneous data sources.

5.4 Experiment conclusion
In a settingwhere the data, ontology andmappings do not change,

MAT is an efficient and robust query answering technique, at a

rather high cost to materialize and saturate the RIS instance. In

contrast, in a dynamic setting, REW-C smartly combines partial
reformulation and view-based query rewriting to efficiently com-
pute query answers. The changes it requires when the ontology

and mappings change (basically re-saturating mapping heads)

are light and likely to be very fast. Thus, we conclude that REW-C

is the best query answering strategy for dynamic RIS.

6 RELATEDWORK AND CONCLUSION
Ontologies have been used to integrate relational or heteroge-

neous data sources in mediators [49] with LAV views based on de-

scription logics [1, 37] or their combination with Datalog [28, 30].

Semantics have been used at the integration level since e.g., [20]

for SGML and soon after for RDF [6, 7]; data is considered rep-

resented and stored in a flexible object-oriented model, thus no

mappings are used.

Our work follows the OBDA paradigm introduced in [41]. This

paradigm was conceived to enhance access to relational data by

mappings to an ontology expressed in a dialect of the DL-Lite

description logic family (typically DL-LiteR underpinning the

OWL 2 QL profile of the W3C ontological language OWL 2). Ma-

ture DL-based systems include Mastro
5
[17] and Ontop

6
[16, 43].

Another notable OBDA system, namely Ultrawrap
OBDA

[44], is

based on an extension of RDFS to inverse and transitive proper-

ties. All these systems rely on GAV mappings.

Compared to these, ourmain novelty is to handle GLAVmappings

and provide query answering algorithms for the resulting novel

RIS setting. Note that formal OBDA frameworks with GLAV

mappings have long been defined, e.g., in [18], but not put into

practice. Regarding the other components of OBDA, we consider

a simpler ontological language than existing OBDA systems, but

support BGPQs on both data and ontological triples, a feature

hardly found in these systems (an exception is [33]).

As explained in the introduction, GLAV mappings maximize the

expressive power of the integration system. In particular, they

allow to expose a form of incomplete information (recall Exam-

ple 3.6). To some extent, GLAV mappings may be simulated by

GAV mappings provided with so-called Skolem functions on an-

swer variables, as suggested for instance in [21]. To illustrate,

consider the GLAV mapping m1 = q1(x̄) { q2(x̄) with head

q2(x) ← (x, :ceoOf,y), (y, τ , :NatComp) from Example 3.2. The

non-answer variable y could be replaced by a Skolem function

f (x), which would yield two GAV mappings, namely m11
=

q1(x̄) { q21
(x̄) andm12

= q1(x̄) { q22
(x̄), with respective head

q21
(x̄) ← (x, :ceoOf, f (x)) and q22

(x̄) ← (f (x), τ , :NatComp).

Note that Skolem functions would have to produce syntactically

correct RDF values in a materialization scenario. Still in a mate-

rialisation scenario, query answering would require some post-

processing to prevent the values built by the Skolem functions

to be accepted as answers, while in a query rewriting sceSkolem-

nario functional values would also have to be dealt with in a

special way, which in particular prevents to use off-the-shelf

view-based query rewriting algorithms. Hence, value invention

would be simulated here at the price of technically more com-

plex mappings and processing. Second, the break-up of GLAV

mappings into several GAV mappings would lead to higher con-

ceptual complexity since intrinsically connected triples, as those

associated with (x, :ceoOf,y) and (y, τ , :NatComp) in the exam-

ple, could not be exposed together by a single mapping. Last but

not least, query rewriting would be considerably slowed down

andwould produce highly redundant rewritings, as demonstrated

in the seminal paper [42].

Our mapping saturation (Definition 4.8) is inspired by a query

saturation technique introduced in [25] to compute least general

generalizations of BGPQs under RDFS background knowledge.

5
http://obdasystems.com/mastro/

6
https://ontop.inf.unibz.it/

http://obdasystems.com/mastro/
https://ontop.inf.unibz.it/

It can be seen as a generalization to GLAV mappings of the T -

mapping technique introduced in [43] (and further developed in

[44]) to optimize query rewriting in a classical OBDA context.

The T -mapping technique consists of completing the original

set of GAV mappings with new ones, encapsulating informa-

tion inferred from the DL ontology. For instance, given a GAV

mappingm = q1(x) { q2(x) ← C(x) with C a class, and a DL

constraint specifying that C is a subclass of D, a new mapping

m′ = q1(x) { q′
2
(x) ← D(x) is created by composingm and the

DL constraint. On this example, we would saturate the head of

m into q2(x) ← C(x) ∧ D(x), which is semantically equivalent

to adding the mappingm′. However, when mappings are GLAV

and not GAV, one cannot simply add new mappings. For instance,

consider the GLAV mapping m1 = q1(x̄) { q2(x̄) with head

q2(x) ← (x, :ceoOf,y), (y, τ , :NatComp); given the entailment

rule rdfs9 and the ontological triple (:NatComp, ≺sc , :Comp),

the saturation adds the triple (y, τ , :Comp) to the body of q2; cre-

ating instead a new mapping of the formm′
1
= q1(x̄) { q′

2
(x̄)

with head q′
2
(x) ← (y, τ , :Comp) would be unsatisfactory as y in

m′
1
should correspond to the same object as y inm1.

Our mapping saturation technique could be extended to more

general entailment rules, in which the head of the rules may

include blank nodes that are not in their body, possibly shared

by several triples. This is part of our future research agenda.

Acknowledgements: Thiswork is supported by the Inria Project
Lab iCoda and the ANR project CQFD (ANR-18-CE23-0003).

REFERENCES
[1] Nada Abdallah, François Goasdoué, and Marie-Christine Rousset. 2009. DL-

LITER in the Light of Propositional Logic for Decentralized Data Management.

In IJCAI.
[2] Serge Abiteboul and Oliver M. Duschka. 1998. Complexity of Answering

Queries Using Materialized Views. ACM Press.

[3] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of
Databases. Addison-Wesley.

[4] Rana Alotaibi, Damian Bursztyn, Alin Deutsch, Ioana Manolescu, and Stamatis

Zampetakis. 2019. Towards Scalable Hybrid Stores: Constraint-Based Rewrit-

ing to the Rescue. In SIGMOD. https://hal.inria.fr/hal-02070827

[5] BerndAmann, Catriel Beeri, Irini Fundulaki, andMichel Scholl. 2002. Querying

XML Sources Using an Ontology-Based Mediator. In CoopIS. Springer Berlin
Heidelberg.

[6] Bernd Amann and Irini Fundulaki. 1999. Integrating Ontologies and Thesauri

to Build RDF Schemas. In ECDL.
[7] Bernd Amann, Irini Fundulaki, and Michel Scholl. 2000. Integrating ontologies

and thesauri for RDF schema creation and metadata querying. Int. J. on Digital
Libraries 3, 3 (2000).

[8] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider (Eds.). 2003. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press.

[9] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, Swan Rocher, and

Clément Sipieter. 2015. Graal: A Toolkit for Query Answering with Existential

Rules. In RuleML.
[10] Raphaël Bonaque, Tien Duc Cao, Bogdan Cautis, François Goasdoué, Javier

Letelier, Ioana Manolescu, Oscar Mendoza, Swen Ribeiro, Xavier Tannier, and

Michaël Thomazo. 2016. Mixed-instance querying: a lightweight integration

architecture for data journalism. In VLDB. https://hal.inria.fr/hal-01321201

[11] Elena Botoeva, Diego Calvanese, Benjamin Cogrel, Julien Corman, and Guohui

Xiao. 2018. A Generalized Framework for Ontology-Based Data Access. In

AI*IA.
[12] Maxime Buron, François Goasdoué, Ioana Manolescu, and Marie-Laure Mug-

nier. 2019. Reformulation-Based Query Answering for RDF Graphs with RDFS

Ontologies. In ESWC.
[13] Maxime Buron, François Goasdoué, Ioana Manolescu, and Marie-Laure Mug-

nier. 2018. Rewriting-Based Query Answering for Semantic Data Integration

Systems. In BDA (informal publication only). https://hal.archives-ouvertes.fr/

hal-01927282

[14] Damian Bursztyn, François Goasdoué, and Ioana Manolescu. 2015. Optimizing

Reformulation-based Query Answering in RDF. In EDBT.
[15] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2009. A general Datalog-

based framework for tractable query answering over ontologies. In PODS.
[16] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov,

Davide Lanti, Martin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. 2017.

Ontop: Answering SPARQL queries over relational databases. Semantic Web
8, 3 (2017).

[17] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-

erini, Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi,

and Domenico Fabio Savo. 2011. The MASTRO system for ontology-based

data access. Semantic Web 2, 1 (2011).
[18] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-

erini, Riccardo Rosati, and Marco Ruzzi. 2009. Using OWL in Data Integra-

tion. In Semantic Web Information Management – A Model-Based Perspective.
Springer.

[19] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.

Vardi. 2012. Query Processing under GLAV Mappings for Relational and

Graph Databases. PVLDB 6, 2 (2012).

[20] Vassilis Christophides, Martin Doerr, and Irini Fundulaki. 1997. A Semantic

Network Approach to Semi-Structured Documents Repositories. In ECDL.
[21] Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella Poggi,

and Riccardo Rosati. 2018. Using Ontologies for Semantic Data Integration.

In A Comprehensive Guide Through the Italian Database Research Over the Last
25 Years. Vol. 31. Springer, Cham.

[22] A. Deutsch and V. Tannen. 2003. MARS: A System for Publishing XML from

Mixed and Redundant Storage.. In VLDB.
[23] AnHai Doan, Alon Halevy, and Zachary G. Ives. 2012. Principles of Data

Integration. Morgan Kaufmann, Waltham, MA.

[24] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner, S.

Madden, D. Maier, T. Mattson, and S. B. Zdonik. 2015. The BigDAWG Polystore

System. SIGMOD 44, 2 (2015).

[25] Sara El Hassad, François Goasdoué, and Hélène Jaudoin. 2017. Learning

Commonalities in SPARQL. In ISWC.
[26] Marc Friedman, Alon Y. Levy, and Todd D. Millstein. 1999. Navigational Plans

for Data Integration. In I3 workshop@IJCAI.
[27] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand Rajara-

man, Yehoshua Sagiv, Jeffrey D. Ullman, Vasilis Vassalos, and Jennifer Widom.

1997. The TSIMMIS Approach to Mediation: Data Models and Languages. J.
Intell. Inf. Syst. 8, 2 (1997).

[28] François Goasdoué, Véronique Lattès, and Marie-Christine Rousset. 2000. The

Use of CARIN Language and Algorithms for Information Integration: The

PICSEL System. Int. J. Cooperative Inf. Syst. 9, 4 (2000).
[29] François Goasdoué, Ioana Manolescu, and Alexandra Roatis. 2013. Efficient

query answering against dynamic RDF databases. In EDBT.
[30] François Goasdoué and Marie-Christine Rousset. 2004. Answering queries

using views: A KRDB perspective for the semantic Web. ACM TOIT 4, 3

(2004).

[31] Alon Y. Halevy. 2001. Answering Queries Using Views: A Survey. The VLDB
Journal 10, 4 (Dec. 2001).

[32] Dag Hovland, Roman Kontchakov, Martin G. Skjæveland, Arild Waaler, and

Michael Zakharyaschev. 2017. Ontology-Based Data Access to Slegge. In

ISWC.
[33] Roman Kontchakov, Martin Rezk, Mariano Rodríguez-Muro, Guohui Xiao, and

Michael Zakharyaschev. 2014. Answering SPARQL Queries over Databases

under OWL 2 QL Entailment Regime. In ISWC.
[34] Davide Lanti, Guohui Xiao, and Diego Calvanese. 2017. Cost-Driven Ontology-

Based Data Access. In ISWC.
[35] Maurizio Lenzerini. 2002. Data Integration: A Theoretical Perspective. In

PODS.
[36] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. 1996. Querying Hetero-

geneous Information Sources Using Source Descriptions. In VLDB.
[37] Alon Y. Levy, Divesh Srivastava, and Thomas Kirk. 1995. Data Model and

Query Evaluation in Global Information Systems. J. Intell. Inf. Syst. 5, 2 (1995).
[38] Ioana Manolescu, Daniela Florescu, and Donald Kossmann. 2001. Answering

XML Queries on Heterogeneous Data Sources. In VLDB.
[39] Marie-Laure Mugnier. 2011. Ontological Query Answering with Existential

Rules. In RR.
[40] Floriana Di Pinto, Domenico Lembo, Maurizio Lenzerini, Riccardo Mancini,

Antonella Poggi, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.

2013. Optimizing query rewriting in ontology-based data access. In EDBT.
[41] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo,

Maurizio Lenzerini, and Riccardo Rosati. 2008. Linking Data to Ontologies. J.
Data Semantics 10 (2008).

[42] Rachel Pottinger and Alon Y. Halevy. 2001. MiniCon: A scalable algorithm for

answering queries using views. VLDB J. 10 (2001).
[43] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev.

2013. Ontology-Based Data Access: Ontop of Databases. In ISWC.
[44] Juan F. Sequeda, Marcelo Arenas, and Daniel P. Miranker. 2014. OBDA: Query

Rewriting or Materialization? In Practice, Both!. In ISWC.
[45] Grégory Smits, Olivier Pivert, Hélène Jaudoin, and François Paulus. 2014.

AGGREGO SEARCH: Interactive Keyword Query Construction. In EDBT.
[46] W3C. 2013. SPARQL 1.1 Query Language. https://www.w3.org/TR/

sparql11-query/

[47] W3C. 2014. RDF 1.1 Concepts and Abstract Syntax. https://www.w3.org/TR/

rdf11-concepts/

[48] W3C. 2014. RDF 1.1 Semantics. https://www.w3.org/TR/rdf11-mt/

#rdfs-entailment

[49] Gio Wiederhold. 1992. Mediators in the Architecture of Future Information

Systems. IEEE Computer 25, 3 (1992).

https://hal.inria.fr/hal-02070827
https://hal.inria.fr/hal-01321201
https://hal.archives-ouvertes.fr/hal-01927282
https://hal.archives-ouvertes.fr/hal-01927282
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-mt/#rdfs-entailment
https://www.w3.org/TR/rdf11-mt/#rdfs-entailment

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 RDF Graphs
	2.2 RDF Entailment Rules
	2.3 Basic Graph Pattern Queries
	2.4 Query Reformulation
	2.5 Query Rewriting-based Data Integration

	3 Problem Statement
	3.1 RDF integration system (RIS)
	3.2 Query answering problem

	4 Query Answering in a RIS
	4.1 Rewriting Fully-Reformulated Queries using Mappings as Views: REW-CA
	4.2 Rewriting Partially-Reformulated Queries using Saturated Mappings as Views: REW-C
	4.3 Rewriting Queries using Saturated Mappings and Ontology Mappings as Views: REW

	5 Experimental evaluation
	5.1 Experimental settings
	5.2 Experimental scenarios
	5.3 Query answering performance
	5.4 Experiment conclusion

	6 Related work and conclusion
	References

