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It is shown that the edges of a bridgeless graph G can be covered with cycles
such that the sum of the lengths of the cycles is at most |E(G) +
min{$ |E(G)l, ] (V(G)| - D)}

1. INTRODUCTION

1.1. Definitions

All graphs considered are finite, and may contain loops and multiple
edges. Let G be a graph. For S < V(G), we denote by w(S) the set of edges
of G with exactly one end in S. A k-cut of G is a set of the form w(S)
(S € V(G)) with |w(S)|=k. A bridge is a 1-cut. A cycle in a graph is a
connected, 2-regular subgraph. The length of a cycle is the number of edges
it contains. A digon is a cycle of length two. Given the graph G, a cycle
cover of G is a set € of cycles of G such that each edge of G belongs to at
least one cycle of &. The length of € is the sum of the lengths of the cycles
in ¢ and is denoted by /(%). It is clear that a graph admits a cycle cover if

and only if it contains no bridges. Other definitions for graphs can be found
in 2, 3].



1.2. The Main Results

Itai and Rodeh [12] have shown that every connected bridgeless graph G
has a cycle cover of length at most |E(G)| + 2 | V(G)| log | V(G)|. This upper
bound was improved to min{3|E(G) — 6, |E(G) + 6 |V(G)— 7} by ltai,
Lipton, Papadimitriou, and Rodeh in [11]. The main result of this paper is

THEOREM 1. Let G be a bridgeless graph. Then G has a cycle cover F
such that I(%) < 3 |E(G))|.

Although Theorem 1 appears to be stronger than the previous results only
if G has relatively few edges, we shall use Theorem 1 to improve these results
for all graphs. ‘

THEOREM 2. Every bridgeless graph G has a cycle cover of length at
most |E(G)| + 3 (V(G) — 1).

1.3. Relationship with the Chinese Postman Problem

Itai and Rodeh point out in [12] that one may obtain a lower bound for
the length of a shortest cycle cover by considering the Chinese postman
problem. That is, given a connected graph G, find a closed walk which
traverses each edge of G at least once and is as short as possible. An
algorithm for finding such a “postman tour” appears in [7]. The problem is
equivalent to constructing a graph H, such that:

(i) H, is obtained by replacing each edge of G by one or more
parallel edges,

(ii) H, is Eulerian, and
(iii) |E(H,)| is as small as possible.

A cycle cover & for a connected bridgeless graph G easily gives rise to a
graph H satisfying (i) and (ii), and such that (%)= |E(H)|, by replacing
each edge e of G by a number of parallel edges equal to the number of cycles
of % which contain e. Thus (%) > |E(H,)|. Indeed, it would seem at first
sight that the two problems were equivalent, since a cycle decomposition of
H, should give rise to a cycle cover of G. This is not necessarily the case,
however, since it is possible that every cycle decomposition of H,, contains
digons which correspond to single edges in G. (We shall henceforth refer to
such digons of H, as forbidden digons.) For example, if G is a cubic graph,
then every H| satisfying (i)—(iii) is obtained by replacing each edge of some
I-factor of G by 2 parallel edges. Thus if € is a cycle cover of G, then
I(#F)>|E(Hy)|=4%|E(G). If G is the Petersen graph, however, then a
shortest cycle cover of G has length 21 (see [12]), and 3 | E(G)| = 20. On the



other hand one can prove that for planar graphs such a situation cannot
occur.

PrOPOSITION 1. For every connected bridgeless planar graph G, a
shortest cycle cover has length equal to the length of a shortest postman tour.

To prove this (see also [10]) we need some further definitions. Let v be a
vertex of a loopless Eulerian graph H. A transition at v is a pair of edges
incident to v. A set of transitions for v is a partition T(v) of cw({v}) into tran-
sitions. If T(v) is defined for every vertex v of H of degree greater than 2, the
resulting family & of transitions is a transition system for H. The system is
non-separating if the graph obtained from H by deleting any one transition
of & is connected. Note that if H has no cut-vertices, every transition system
for H is non-separating.

A cycle decomposition & of H is compatible with & if no cycle of &
contains a transition of &€ . It is clear that given &, a necessary condition for
the existence of a cycle decomposition which is compatible with & is that &
be non-separating. Fleischner has shown

THEOREM 3 [9]. Let H be a planar loopless Eulerian graph and & be a
non-separating system of transitions for H. Then H has a cycle decom-
position which is compatible with & .

Proof of Proposition 1. It is easy to see that we may assume that G has
no cut-vertices. Let H, be a graph satisfying (i)-(iii). It follows from (iii)
that H, is obtained by replacing each edge of G by at most 2 parallel edges.
Whenever e, and e, are two parallel edges of H, which correspond to a
single edge of G, let {e,,e,} be a transition at v for each vertex v incident
with both e, and e,. This family of transitions can be extended to a system
of transitions & for H,. Since H, has no cut-vertices, & is non-separating.
By Fleischner’s theorem, H, has a cycle decomposition % which is
compatible with £, and hence does not contain any forbidden digons. Thus
Z gives rise to a cycle cover of G of length |E(H,)|.

2. Z,-FLows AND Z,-CYCLES

2.1. Definition

Let k>1 and consider the additive group (Z,)*. A (Z,)"flow of the
graph G is a mapping ¢ from E(G) to (Z,)%, such that: Vv € V(G),
Y ecwiu) #(€) = 0. (The summation and zero symbols refer to the structure
of the group (Z,)*.)



2.2. Elementary properties

(1) If ¢ is a (Z,)"flow of G, for any S<V(G) we have
Zeew(S) ¢(e) =0.

(2) The support of the (Z,)*flow ¢, denoted by o(p), is the set of
edges e € E(G) such that ¢(e) 0.

Then for F < E(G) the following properties are equivalent:
(i) F is the support of some Z,-flow of G.
(ii) Each vertex of G is incident to an even number of edges of F.
(iii) F can be partitioned into cycles of G.
A subset F of E(G) satisfying (i)~(iii) will be called a 2 ,-cycle of G.

(3) It easily follows from (1) (or (2)) that if e is a bridge of G,
#(e) =0 for any (Z,)*flow ¢. A (Z,)"flow ¢ is said to be nowhere-zero if
0(¢) = E(G). Thus if a graph has a nowhere-zero (Z,)*flow, it has no
bridges.

(4) Let ¢ be a (Z,)*flow. Let ¢,,., 4, be Z,flows such that
Ve € E(G): ¢(e) = (¢,(e),-.., (e)). We shall write ¢ = (¢,,..., ¢,). Then ¢ is
nowhere-zero if and only if (Jf.,0(¢;) =E(G). In this case, for every
1€ {I,.., k}, there exists a partition P, = {Cl o, Cii} of 0(4,) into cycles of
G, and Uf_, P; is a cycle cover of G of length i_110(8,)|. This number will
be denoted by I(¢). Conversely, if # = (C,,..,C,} is a cycle cover of G, let
9:(i = 1,..., k) be the unique Z,-flow such that o(¢,) = C;. Then ¢ = (¢,,..., 8,)
is a nowhere-zero (Z,)*-flow and

k
(@)=Y lo(¢:) = )

We conclude that the minimum of /(Z) over the set of cycle covers € of

G is equal to the minimum of /(4) over the set of nowhere-sero (Z,)*flows ¢
of G (k> 1).

Remark. 1f G is bridgeless, G has a cycle cover and hence G has a
newhere-zero (Z,)*-flow for some k > 1 (see the above discussion).

(3) Let 2 =12y 2,) E (Z )%
The (Hamming) weight w(z) of z is the number of nonzero components of z,
that is, w(z) = |{{ € {1,...,k}:z;= 1}]. Let ¢ be a nowhere-zero (Z ,)*-flow of
G. A straightforward counting argument yields /(9) = Deery W(B(e)).

2.3. The Double-Cover Conjecture

A cycle double-cover of G is a cycle cover @ of G such that each edge
appears in exactly two cycles of Z. The double-cover conjecture asserts that



every bridgeless graph has a cycle double cover [17, Conjecture 3.3]. We
shall denote by D, (k> 2) the subset of (Z,)" consisting of the elements of
weight 2. It is easy to show (see the above discussion in 2.2(4)) that G has a
cycle double-cover iff it has a (Z,)"-flow with all edge-values in D, for some
k> 2 (such a flow will be called a D,-flow).

Remark. If a graph has a D,-flow it has a D,.-flow for every k' > k.
Hence the double-cover conjecture can be formulated as follows:

For every bridgeless graph G, there exists a k> 2 such that G
has a D flow. (DCC)

This conjecture is clearly related to the shortest cycle cover problem. In fact
Itai and Rodeh rediscover an equivalent form of the (DCC) in [12,
Problem (ii)].

We have the following result:

ProposiTion 2. If G has a D,-flow (k > 2), it has a cycle cover € with
I(#) < (2(k — D/E)E(G)

Proof. Let ¢=1(¢,,...,0,) be a D, flow of G. Clearly I[(¢)=
2 eer(e) WP(e)) =2 |E(G)|.
On the other hand, /(¢)=>'%_,|0(¢;,). We may assume without loss of
generality that Vi € {1,.., k — 1}, |0(¢,)| > |o(¢,)]. Consider now the (Z,)* -
flow ¢' = (4,,..., §,_,). It is clearly nowhere-zero. Moreover

—1 2(k—1)

e Gk B
I8) = 1) ~ |0(6,)| < —— 1($) ==—

|E(G)).

This completes the proof.

2.4. Some Consequences of Proposition 2

(1) For k=2 the situation is quite simple. If G has a D,-flow, it has a
cycle cover € with (%) =|E(G)|, i.e., E(G) can be partitioned into cycles,
and conversely.

(2) For k=3, we obtain that if G has a D;flow it has a cycle cover
Z with [(Z) < 1 |E(G)|.

We may now use the following easy result:

ProprosiTioN 3. A graph has a D,-flow iff it has a nowhere-zero (Z,)’-

Slow. .

Proof. If ¢ =(8,, ¢,,0,) is a Dy-flow, then ¢' = (¢, ¢,) is a nowhere-



zero (Z,)*flow. Conversely, if ¢’ = (¢,, d,) is a nowhere-zero (Z,)*flow,
0= (91,0, 0, +¢,)is a D ;-flow.

Now, applying Propositions 2 and 3 together with some known results on the
existence of nowhere-zero (Z,)*flows, we obtain

CoROLLARY 1. Every bridgeless planar graph G has a cycle cover #
with I(Z) < § | E(G)|.

Progf. Use the four color theorem [1; 13, Proposition 3].

COROLLARY 2. Let G be a cubic 3-edge-colorable graph. The length of a
shortest cycle cover of G is equal to * |E(G).

Proof.  As already seen in Subsection 1.3, the length of a shortest cycle
cover of G is at least 3 |E(G)|. The equality follows from Propositions 2, 3
and [13, Proposition 2].

COROLLARY 3. Every bridgeless graph G without 3-cuts has a cycle
cover € with (7)< 1| E(G)|.

Proof.  Use [13, Proposition 10].

(3) For k=4, we shall use the following observation:

PROPOSITION 4. If a graph has a D,flow, it has a D-flow.

Proof. Let ¢ =(¢,, ¢, d;, ¢,,) be a D,-flow. Then it is easy to check that
0" = (4, + 0, 6, +6;, 6, +4,) is a D,-flow. Hence this case reduces to the
previous one.

(4) For k=35, we have nothing but a conjecture which has been
proposed by several authors [4, 16], and which is stronger than the double-
cover conjecture. '

Conjecture. Every bridgeless graph has a D,-flow.
By Proposition 1, this implies the following:

Conjecture. Every bridgeless graph G has a cycle cover % with
(Z) <3 |E(G).

(5) For k=6, the existence of a D flow in G implies that G has a
cycle cover € with /(%) < § |E(G)|.
We shall show (by different methods) that this last property holds for every
bridgeless graph G.



3. THE MaAIN RESULT

3.1. Introduction

The following result is proved in [13].

8-FLow THEOREM. FEvery bridgeless graph has a nowhere-zero (Z,)*-

Sflow.

Using this result only, one can prove that every bridgeless graph G has a
cycle cover % with (%)< |E(G). We now present the proof of
Theorem 1. It uses a refinement of an alternative proof for the 8-flow
Theorem (the idea is indicated in [13, Sect. V].

3.2. LEMMA. Every bridgeless graph G has a Z,cycle C such that
|C| > % |E(G)| and C intersects every 3-cut of G.

Proof. It is clear that to prove the lemma, it is enough to prove it for
loopless 2-edge-connected graphs. Let G be such a graph, and let v € V(G).
A splitting of G at v is the graph G’ obtained by replacing v by two distinct
vertices v’ and v"”, each edge of G with end vertices v, x (x € V(G) — {v})
being replaced by an edge with end vertices v/, x or v”, x in such a way that
v’ has degree 2 in G'. A splitting of G is any graph obtained from G by a
succession of vertex-splittings. It follows from a result of Fleischner [8] (see
also Mader [14]) that G has a 2-edge-connected splitting G’ which has no
vertices of degree greater than three. Note that identifying edges of G’ with
edges of G in the obvious way, every Z,-cycle of G’ is a Z,-cycle of G, and
every 3-cut of G is a 3-cut of G’. We conclude that:

(1) To prove the lemina it is enough to prove it for loopless 2-edge-
connected graphs with no vertex of degree greater than three.

Let G be such a graph. If G has no vertices of degree 3, the result is clear.
Otherwise there exists a cubic 2-edge-connected graph H such that G can be
obtained from H by replacing each edge e of H by a simple path P, of length
S(e)> 1. For FC E(H) we shall denote by f(F) the sum Y, .f(e). It
follows from a result of Edmonds |6] that there exists an integer k> | and a
family (M,,..., M3;) of 3k perfect matchings of H (not necessarily distinct)
such that every edge of H appears in exactly & of the Ms.

Let K be a 3-cut of H. For every perfect matching M of H, E(H) — M is a
2-factor of H and hence a Z,-cycle. Hence |K N (E(H) — M)| is even, so that
|K M M| equals 1 or 3. Now each one of the 3 edges of K appears in exactly
k of the M/s (i=1,..,3k), so that >'}* |KNM,| =3k It follows that
VIE Ly 3K | KO M| = .

Finally we note that >'!% f(M,)=kf(E(H)). Hence there exists



i € {1,.., 3k} with f(M,) < 3f(E(H)). Then F=E(H)— M, is a Z,-cycle of
H which intersects every 3-cut of H and such that f(F) > § f(E(H)). Let C
be the subset of edges of G equal to (J,. P.. Clearly C is a Z,-cycle of G
and |C|=f(F)>3f(E(H))=}|E(G)|. Moreover, no 3-cut of G contains
two edges of a single path P,, e € E(H) (the remaining edge of the 3-cut
would be a bridge). Hence every 3-cut of G is obtained by considering some
3-cut {e,,e,,e;} of H and choosing exactly one edge from each of
P, ,P,,P,. It follows that C intersects every 3-cut of G. This completes the
proof. -

3.3. A Consequence of the Lemma

PROPOSITION 5. FEvery connected bridgeless graph G has a postman tour
of length at most 3 |E(G)).

Proof. Let C be a Z,-cycle of G with |C| > }|E(G)|. Replace every edge
of E(G)— C by two parallel edges. This yields an Eulerian graph /7 with
|E(H) < 5|E(G).

Remark. Propositions 5 and 1 together give another proof of Corollary 1
which does not rely on the four color theorem.

3.4. Proof of Theorem 1

Let G be a bridgeless graph with |E(G)| = m. By the lemma, there exists a
Z,-flow ¢, of G such that |o(d,)| > 2m/3 and o(¢,) intersects every 3-cut of
G. For each edge e of 0(¢,), add to G an edge e’ parallel to e (i.e., with the
same pair of ends). We obtain a new bridgeless graph G’ which contains G
as a subgraph. Moreover it is clear that G’ has no 3-cuts. By Proposition 10
of [13], G’ has a nowhere-zero (Z,)*-flow ¢’ = (43, ¢3).

Fore€ E(G)and i € {2, 3} let ¢,(e) = ¢(e) if e € 0(9,) and ¢,(e) = ¢;(e) +
gi(e') if e € 6(¢,). This defines two Z,-flows ¢,, ¢, of G. Since ¢’ = (45, ¢})
is nowhere-zero, the (Z,)*-flow (¢,,¢;) of G takes nonzero values on
E(G)—o(d,). It follows that (¢,, ¢,, @;) is a nowhere-zero (Z,)’-flow of G.

Consider the vector space [GF(2)]’ (over GF(2)) of the 3-tuples
X =10,50,50;) (0 € GF(2), I = 1,2, 3) Toevery elemient x =1{a;; a5, &) of
this space we associate the flow ¢, =2, _, ¢;. In particular,

¢(1,0,0):¢19 ¢(0,1,0) =0y, and ¢(0,0,1):¢3-

It is easy to show that for every basis {x,, x,,x,} of [GF(2)]’, 0y, 0y, Px)
is a nowhere-zero (Z,)*-flow of G. Denote by X the set [GF(2)]* — {(0,0, 0)}
and by X’ the set X — {(1,0,0)}. One can easily check that each edge
appears in exactly 4 of the g(¢,) (x € X), and hence 2.y |0(¢,)| = 4m. Then
M ey 0(0) = 4m —|o(p)| < 4m—§ m=- m. Let .2 be the set of bases of



[GF(2)]° which do not contain the vector (I,0,0). Every vector of X’
appears in exactly 8 elements of %. Hence X 5(Z.cz|0(4,))=
8 Zyex: |0(4,) < 80m/3. Since |.2| = 16, there exists B € .2 with

1 80m Sm

X€EB

Then the supports of the Z,-flows ¢, for x € B will give a cycle cover € with
() < 5m/3. This completes the proof.

3.5. 4-Covers

We observe that using the seven Z,-cycles o(¢,) (x € [GF(2)]’ —
{(0, 0, 0)}) defined in the above proof it is possible to obtain a cycle cover
such that every edge appears in exactly 4 cycles of &. Calling such a cycle
cover a cycle 4-cover, we have

ProrosITION 6. FEvery bridgeless graph has a cycle 4-cover.

4, Proor or THEOREM 2

Let G be a bridgeless graph. We may assume G is connected . Let H be a
subset of E(G) such that the graph (V(G), H) is 2-edge-connected and
minimal with this property. It is easy to show, using [5, 15], that |H|<
2| ¥(G)| — 2. By Theorem 1, (V(G), H) has a cycle cover %, with (%)) <}
|H|. Let F = E(G)— H, and consider a spanning tree 7 contained in H. For
every e in F, there is a unique Z,-flow ¢, such that e € o(¢,) € T U {e}. Let
0 =2,.r0,. Then clearly F S a(g) < TU F. Let %, be a cycle decomposition
of a(¢). Now &, U %, is a cycle cover € of G, with

(Z)=1#) + (7)) =1F)+ 0@ <3 |H|+|TUF|.
Since |TUF|=|T|+|F|=|V(G)—1+|E(G)—|H| we have (%)<

|E(G)|+|V(G)| — 1 + § |H|<|E(G) + 1 (V(G) —1). This completes the
proof.

5. VERTEX CvcLE COVERS

Given a graph G, a vertex cycle cover of G is a set of cycles Z of G such
that each vertex of G belongs to at least one cycle of .

PrOPOSITION 7. Let G be a graph such that each vertex of G lies in a
cycle. Then G has a vertex cycle cover € such that (%) < (| V(G)| — 1).



Proof.  We may assume that G is 2-edge-connected. Let H be a critically
2-edge-connected spanning subgraph of G, so that |E(H)| < 2| V(G)| — 2. By
Theorem 1, H has a cycle cover @ such that [(¥) < 3 |E(H)|. Clearly ¥ is a
vertex cycle cover of G and /(%) < L (|V(G)|— 1).

6. COVERING OF THE VERTICES OF A STRONG DIGRAPH WITH CIRCUITS

In this section, circuit means “directed circuit.” Let f(2p)=p? +p and

S+ D=@+ 1)

PROPOSITION 8. For any strong digraph D with n vertices, there exists a
vertex circuit cover ¥ such that (%) <[ (n).

Proof.  Let k be the length of the longest circuit of D and let C, be such a
longest circuit. We can cover the vertices of D with C, and for each vertex
not in Cy with a circuit of length at most k. Therefore we can cover with
(n — k + 1) circuits of length at most k. This yields a vertex circuit cover @
with [(Z) < k(n — k 4 1). But it is known that max, k(n — k + 1) =f(n).

The result is best possible in the sense that there exists a strong digraph D
of order n such that for any covering family %, (%) > f(n). Consider the
digraph D consisting of a directed circuit of length & = [n/2] in which we
have replaced one vertex by a stable set of (n — k + 1) vertices (see Fig. 1).
Each vertex p; belongs to the unique circuit C,= (x,,¥;, Xy X5 ))-
Therefore to cover all the y; we need to use all the circuits C;. But X /(C;) =

k(n—k+ 1)=[n/2] (|n/2] + 1) =f(n).

FiGure I.



7. OPEN PROBLEMS

7.1.

In view of Theorem 1, the main problem is to find the infimum p of the set
of numbers r with the property that every bridgeless graph G has a cycle
cover & with I(Z) < r|E(G)|. All we know is that { <p< 3. The lower
bound { is given by the Petersen graph (see subsection 1.3). In fact, by
combining several Petersen graphs together as in Fig. 2, we obtain an infinite
family of graphs G whose shortest cycle cover & satisfies /(%) =  |E(G).
We note further that both the Blanusa snarks on 18 vertices, the flower snark
on 20 vertices, and both the Loupekhine snarks on 22 vertices, have cycle
covers of length § |E(G)).

7.2.

A problem related to Theorem 2 is proposed by Itai and Rodeh [12, Open
Problem (i)]. Does every bridgeless graph G have a cycle cover € with
(@) <|E(G)| +|V(G)|— 1?7 They prove this for graphs with two edge
disjoint spanning trees. By Theorem 1, the result is true for graphs G with
|E(G)| <3 (IV(G)|—1) (e.g., subdivisions of cubic graphs containing at
least three vertices of degree 2).

By Proposition 1 and using the obvious property that a shortest postman
tour of G has length at most |E(G)| + | V(G)| — 1 it follows that the result is
also true for planar graphs. On the other hand, it can be checked that if G is

the complete bipartite graph K, 5, the length of a shortest cycle cover is
|E(G)] + | V(G)] — 3.

3.

Finally we propose the following conjecture

Every 2-connected graph G has a vertex cycle cover of length at
most 2 | V(G)| — 2.

Note that this conjecture would be best possible because of the complete
bipartite graph K, , (n odd).

G
KK

VR KA

FIGURE 2,
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