E. Achtert, Hierarchical Subspace Clustering, 2007.

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic subspace clustering of high dimensional data, Data Mining and Knowledge Discovery, vol.11, issue.1, pp.5-33, 2005.

M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander, Optics: ordering points to identify the clustering structure, ACM Sigmod record, vol.28, pp.49-60, 1999.

M. F. Balcan, Y. Liang, and P. Gupta, Robust hierarchical clustering, The Journal of Machine Learning Research, vol.15, issue.1, pp.3831-3871, 2014.

H. J. Bandelt and A. W. Dress, Weak hierarchies associated with similarity measures-an additive clustering technique, Bulletin of mathematical biology, vol.51, issue.1, pp.133-166, 1989.

J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms, 2013.

P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. Pietra, and J. C. Lai, Class-based ngram models of natural language, Computational linguistics, vol.18, issue.4, pp.467-479, 1992.

R. J. Campello, D. Moulavi, A. Zimek, and J. Sander, Hierarchical density estimates for data clustering, visualization, and outlier detection, ACM Transactions on Knowledge Discovery from Data (TKDD), vol.10, issue.1, p.5, 2015.

D. Chavalarias and J. P. Cointet, Phylomemetic patterns in science evolution -the rise and fall of scientific fields, PloS one, vol.8, issue.2, p.54847, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02651589

H. Chen, G. Guo, Y. Huang, and T. Huang, A spatial overlapping based similarity measure applied to hierarchical clustering, Fuzzy Systems and Knowledge Discovery. FSKD'08, vol.2, pp.371-375, 2008.

V. Cohen-addad, V. Kanade, F. Mallmann-trenn, and C. Mathieu, Hierarchical clustering: Objective functions and algorithms, Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.378-397, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02169539

M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi, Uncovering hierarchical and overlapping communities with a local-first approach, ACM Trans. Knowl. Discov. Data, vol.9, issue.1, pp.1-6, 2014.

L. Derczynski and S. Chester, Generalised brown clustering and roll-up feature generation, pp.1533-1539, 2016.

L. Dias, M. Gerlach, J. Scharloth, and E. G. Altmann, Using text analysis to quantify the similarity and evolution of scientific disciplines, Royal Society open science, vol.5, issue.1, p.171545, 2018.

E. Diday, Une représentation visuelle des classes empiétantes: les pyramides, 1984.

R. Diestel, Graph theory, Grad. Texts in Math, vol.101, 2005.

M. Ester, H. P. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, In: Kdd, vol.96, pp.226-231, 1996.

K. Florek, J. Lukaszewicz, J. Perkal, H. Steinhaus, and S. Zubrzycki, Sur la liaison et la division des points d'un ensemble fini, Colloquium Mathematicae, vol.2, pp.282-285, 1951.

E. B. Fowlkes and C. L. Mallows, A method for comparing two hierarchical clusterings, Journal of the American statistical association, vol.78, issue.383, pp.553-569, 1983.

O. Levy, Y. Goldberg, and I. Dagan, Improving distributional similarity with lessons learned from word embeddings, Transactions of the Association for Computational Linguistics, vol.3, pp.211-225, 2015.

L. Mcinnes and J. Healy, Accelerated hierarchical density based clustering, 2017 IEEE International Conference on, pp.33-42, 2017.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, Advances in neural information processing systems, pp.3111-3119, 2013.

M. E. Newman and M. Girvan, Finding and evaluating community structure in networks, Physical review E, vol.69, issue.2, p.26113, 2004.

G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society, nature, vol.435, issue.7043, p.814, 2005.

J. Qu, Q. Jiang, F. Weng, and Z. Hong, A hierarchical clustering based on overlap similarity measure, Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, vol.3, pp.905-910, 2007.

H. Shen, X. Cheng, K. Cai, and M. B. Hu, Detect overlapping and hierarchical community structure in networks, Physica A: Statistical Mechanics and its Applications, vol.388, issue.8, pp.1706-1712, 2009.

R. Sibson, Slink: an optimally efficient algorithm for the single-link cluster method, The computer journal, vol.16, issue.1, pp.30-34, 1973.

J. H. Ward, Hierarchical grouping to optimize an objective function, Journal of the American statistical association, vol.58, issue.301, pp.236-244, 1963.

J. Yang and J. Leskovec, Overlapping community detection at scale: a nonnegative matrix factorization approach, Proceedings of the sixth ACM international conference on Web search and data mining, pp.587-596, 2013.

X. Zhou, Y. Liu, J. Wang, and C. Li, A density based link clustering algorithm for overlapping community detection in networks, Physica A: Statistical Mechanics and its Applications, vol.486, pp.65-78, 2017.