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On the saddlepoint approximation of the
dependence testing bound in memoryless channels

Dadja Anade, Jean-Marie Gorce, Philippe Mary, and Samir M. Perlaza

Abstract—This paper introduces an upper-bound on the
absolute difference between: (a) the cumulative distribution
function (c.d.f.) of the sum of a finite number of independent
and identically distributed (i.i.d) random variables; and (b) a
saddlepoint approximation of such c.d.f. This upperbound is
general and particularly precise in the regime of large deviations.
This result is used to study the dependence testing (DT) bound on
the minimum decoding error probability (DEP) in memoryless
channels. Within this context, the main results include new lower
and upper bounds on the DT bound. As a byproduct, an upper
bound on the absolute difference between the exact value of
the DT bound and its saddlepoint approximation is obtained.
Numerical analysis of these bounds are presented for the case of
the binary symmetric channel and the additive white Gaussian
noise channel, in which the new bounds are observed to be tight.

I. INTRODUCTION

This work focuses on providing an upper bound on the

minimum decoding error probability (DEP) in point-to-point

memoryless channels at a fixed information rate and fixed

transmission duration, e.g., n channel uses. More specifically,

the objective is to provide tight lower and upper bounds

on the dependence testing (DT) bound [1] (Lemma 1 in

Section III). The DT bound is known to be difficult to calculate

as it involves dealing with the tails of cumulative distribution

functions (c.d.f.) of n-dimensional random vectors, which

justifies seeking for an approximation [1]. This difficulty holds

as well for other bounds on the minimum DEP including the

meta-converse bound [1] and the random coding union (RCU)

bound [1], c.f., [2] and [3]. In the light of this observation, this

paper introduces an upper-bound (Theorem 2 in Section IV)

on the absolute value of the difference between: (a) the c.d.f.

of the sum of a finite number of independent and identically

distributed (i.i.d) random variables; and (b) a saddlepoint

approximation [4] of such c.d.f. This result is of the same kind

of the Berry-Esseen theorem (Theorem 1 in Section IV) that

provides an upper bound on the absolute difference between

the c.d.f. of the sum of a finite number of i.i.d random variables

and the c.d.f. of a Gaussian random variable whose mean and

variance are the same as those of the sum [5].

Dadja Anade, Jean-Marie Gorce, and Samir M. Perlaza are with the
Laboratoire CITI, a joint laboratory between the Institut National de
Recherche en Informatique et en Automatique (INRIA), the Université de
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Rennes and the Institut National de Sciences Apliquées (INSA) de Rennes.
(philippe.mary@insa-rennes.fr)

This work was partially funded by the French National Agency for Research
(ANR) under grant ANR-16-CE25-0001.

The Berry-Esseen theorem has played a central role in calcu-

lating upper bounds on the DT bound and lower bounds on

the meta-converse bound, see for instance, [1] and [6]. These

bounds are particularly easy to calculate. Nonetheless, easy

computation comes at the expense of loose upper and lower

bounds, and thus, uncontrolled approximation errors.

On another note, saddlepoint techniques [4] have been exten-

sively used to approximate existing lower and upper bounds on

the minimum DEP. See for instance, [7] and [8] in the case of

the RCU bound and the meta-converse bound. Nonetheless,

the errors induced by saddlepoint approximations are often

neglected due to the fact that calculating them involves a large

number of optimizations and numerical integrations.

Within this context, the main results of this paper include new

lower and upper bounds on the DT bound. As a byproduct,

an upper bound on the absolute difference between the exact

value of the DT bound and its saddlepoint approximation is

obtained. Numerical analysis of these bounds are presented

for the case of the binary symmetric channel (BSC) and the

additive white Gaussian noise (AWGN) channel, in which the

new bounds are observed to be tight and obtained at low

computational cost.

II. CHANNEL MODEL

Consider a point-to-point communication in which a trans-

mitter aims at sending information to one receiver through a

noisy memoryless channel. Such a channel can be modeled by

a random transformation

(Xn,Yn, PY |X), (1)

where n ∈ N is the communication duration in channel uses;

X and Y are respectively the channel input and channel output

sets. Given the channel inputs x = (x1, x2, . . ., xn) ∈ Xn,

the outputs y = (y1, y2, . . ., yn) ∈ Yn are observed at the

receiver with probability:

PY |X(y|x) =
n
∏

t=1

PY |X(yt|xt), (2)

where, for all x ∈ X , PY |X=x ∈ △ (Y), with △ (Y) the set of

all possible probability distributions whose support is a subset

of Y . The objective of the communication is to transmit a

message index i, which is a realization of a random variable W
that is uniformly distributed over the set W , {1, 2, . . . ,M},

with 1 < M < ∞. To achieve this objective, the transmitter

uses an (n,M ,λ)-code, where λ ∈ [0, 1].



Definition 1 ((n,M ,λ)-code): Given a tuple (M ,n,λ) ∈
N

2 × [0, 1], an (n,M ,λ)-code for the random transformation

in (1) is a system
{

(

u(1),D(1)

)

,

(

u(2),D(2)

)

, . . . ,

(

u(M),D(M)

)

}

,(3)

where for all (j, ℓ) ∈ W2, with j 6= ℓ:

u(j) = (u1(j), u2(j), . . . , un(j)) ∈ Xn, (4a)

D(j) ∩ D(ℓ) = ∅, (4b)
⋃

j∈W
D(j) ⊆ Yn, and (4c)

1

M

M
∑

i=1

EPY |X=u(i)

[

1{Y /∈D(i)}
]

6 λ. (4d)

To transmit message index i ∈ W , the transmitter uses the

codeword u(i). For all t ∈ { 1,2,. . .,n}, at channel use t, the

transmitter inputs the symbol ut(i) into the channel. Assume

that at the end of channel use t, the receiver observes the

output yt. After n channel uses, the receiver uses the vector

y = (y1,y2,. . .,yn) and determines that the symbol j was

transmitted if y ∈ D(j), with j ∈ W .

Given the (n,M ,λ)-code described by the system in (3), the

DEP of the message index i is EPY |X=u(i)

[

1{Y /∈D(i)}
]

. As a

consequence, the average DEP is

1

M

M
∑

i=1

EPY |X=u(i)

[

1{Y /∈D(i)}
]

.

Note that from (4d), the average DEP of such an (n,M, λ)-
code is upper-bounded by λ. Given a fixed pair (n,M) ∈ N

2,

the minimum λ for which an (n,M ,λ)-code exists is defined

hereunder.

Definition 2: Given a pair (n,M) ∈ N
2, the minimum

average DEP for the random transformation in (1), denoted

by λ∗(n,M), is given by

λ∗(n,M) = min {λ ∈ [0, 1] : ∃(n,M, λ)-code} . (5)

When λ is chosen accordingly with the reliability constraints,

an (n,M, λ)-code is said to transmit at an information rate

R = log2(M)
n bits per channel use.

III. THE DEPENDENCE TESTING BOUND

This section describes an upper bound on λ∗(n,M), for

a fixed pair (n,M) ∈ N
2. Given a probability distribution

PX ∈ △ (Xn), let the random variable ι (X;Y ) satisfy

ι (X;Y ) , ln

(

dPXY

dPXPY

(X,Y )

)

, (6)

where, the function dPXY

dPXPY

: Xn × Yn → R denotes the

Radon-Nikodym derivative of the joint probability measure

PXY with respect to the product of probability measures

PXPY , with PXY = PXPY |X and PY the corresponding

marginal. Let the function T : N
2 × △ (Xn) → R+ be

for all (n,M) ∈ N
2 and for all probability distributions

PX ∈ △ (Xn),

T (n,M,PX)=EPXPY |X

[

1{ι(X;Y )6ln(M−1
2 )}

]

+
M − 1

2
EPXPY

[

1{ι(X;Y )>ln(M−1
2 )}

]

. (7)

Using this notation, the following lemma describes the depen-

dence testing bound.

Lemma 1 (Dependence testing bound [1]): Given a pair

(n,M) ∈ N
2, the following holds for all PX ∈ △ (Xn), with

respect to the random transformation in (1):

λ∗(n,M) 6 T (n,M,PX), (8)

with the function T defined in (7).

Note that the input probability distribution PX in Lemma 1

can be chosen among all possible probability distributions

PX ∈ △ (Xn) to minimize the right-hand side of (8),

which improves the bound. Note also that with some lost of

optimality, the optimization domain can be constrained to the

set of probability distributions for which for all x ∈ Xn,

PX(x) =

n
∏

t=1

PX(xt), (9)

with PX ∈ △ (X ). Hence, subject to (2), the random variable

ι(X;Y ) in (8) can be written as the sum of the i.i.d. random

variables, i.e.,

ι(X;Y ) =
n
∑

t=1

ι(Xt;Yt). (10)

This observation motivates the study of the c.d.f. of random

variables consisting of the sum of a finite number of i.i.d.

random variables.

IV. SUMS OF INDEPENDENT AND IDENTICALLY

DISTRIBUTED RANDOM VARIABLES

Let Y be a real-valued random variable with probability

distribution PY and moment generating function ϕY . Let the

functions µY : R → R, VY : R → R, and ξY : R → R be

such that for all t ∈ R,

µY (t),EPY

[

Y exp(tY )

ϕY (t)

]

, (11)

VY (t),EPY

[ |Y − µY (t)|2 exp(t Y )

ϕY (t)

]

, and (12)

ξY (t),EPY

[ |Y − µY (t)|3 exp(t Y )

ϕY (t)

]

. (13)

Let also the function ζY : R2× N → R be defined such that

for all (θ, a, n) ∈ R
2 × N,

ζY (θ, a, n) = 1{θ>0}+ (14)

(−1)1{θ>0}exp

(

1

2
n θ2 VY (θ)+nln(ϕY (θ))−θa

)

Q
(

|θ|
√

nVY(θ)
)

,

where Q : R → [0, 1] is the complementary c.d.f. of the

standard Gaussian distribution. The following theorem, known

as the Berry-Esseen theorem [5], introduces an upper-bound



on the absolute value of the difference between: (a) the c.d.f.

of the sum of a finite number of i.i.d. random variables; and

(b) the c.d.f. of a particular Gaussian random variable.

Theorem 1 (Berry-Esseen [5]): Let Y1, Y2, . . ., Yn be i.i.d

random variables with probability distribution PY . Let also Zn

be a Gaussian random variable with mean nµY (0), variance

nVY (0) and c.d.f. denoted by FZn
. Then, the c.d.f. of the

random variable Xn = Y1 + Y2 + . . . + Yn, denoted by

FXn
, satisfies

sup
a∈R

|FXn
(a)− FZn

(a)| 6 min

(

1,
c ξY (0)

√

n(VY (0))3

)

, (15)

where c = 0.476 and the functions µY , VY and ξY are defined

in (11), (12) and (13).

The choice of c = 0.476 in Theorem 1 is justified in [9].

Intuitively, Theorem 1 states that for all a ∈ R, the value

of FXn
(a) can be “approximated” by the value FZn

(a) up

to an “approximation error” of at most
c ξY (0)√
n(VY (0))3

. From this

perspective, the main drawback of Theorem 1 is that the upper

bound on the “approximation error” |FXn
(a)− FZn

(a)| does

not depend on the exact value of a. More importantly, for

some values of a and n, the right-hand side of (15), i.e., the

bound on the “approximation error” resulting from Theorem 1,

might be particularly big, which leads to irrelevant results.

The following theorem attempts to overcome this drawback.

Theorem 2: Let Y1, Y2, . . ., Yn be i.i.d. random variables

with probability distribution PY and moment generating func-

tion ϕY . Let also FXn
be the c.d.f. of the random variable

Xn = Y1 + Y2 + . . . + Yn. Hence, for all a ∈ int CXn
, with

CXn
denoting the convex hull of suppPXn

and int CXn
the

interior of CXn
, it holds that

|FXn
(a)− ζY (θ

⋆, a, n)|

6 exp (nln (ϕY (θ
⋆))− θ⋆ a)min

(

1,
2 c ξY (θ

⋆)

(VY (θ⋆))
3/2 √

n

)

,(16)

where c = 0.476, θ⋆ is the unique solution in θ to

nµY (θ) = a, (17)

and the functions µY , VY , ξY , and ζY are defined in

(11), (12), (13) and (14), respectively.

Proof: The proof of Theorem 2 is presented in [10].

The relevance of Theorem 2 is that given a pair (a, n) ∈ R×N,

the value FXn
(a) can be “approximated” by ζY (θ

⋆, a, n)
up to an “approximation error” that is not bigger than

exp
(

nln (ϕY (θ
⋆)) −θ⋆ a

)

min
(

1,
2 c ξY (θ⋆)

(VY (θ⋆))3/2
√
n

)

. Note that

this upper-bound depends not only on a but also on θ⋆, which

is chosen to satisfy (17). The motivation of this choice is

thoroughly discussed in [10].

Note that in [4], the function ζY in (14) is referred to as

the saddlepoint approximation of FXn
in (16). Nonetheless,

from the results in [4], it is often difficult to study the

“approximation error”.

An interesting observation from Theorem 2 is that the max-

imum of exp (nln (ϕY (θ
⋆))− θ⋆ a) is one and it is reached

when a = nEPY
[Y ] = EPXn

[Xn]. In this case, θ⋆ = 0, and

thus, the “approximation error” obtained from Theorem 2 is

bigger than the one obtained using Theorem 1. In a nutshell,

for values of a in the vicinity of nEPY
[Y ] = EPXn

[Xn], it is

more interesting to use Theorem 1 instead of Theorem 2.

Alternatively, given that nln (ϕY (θ
⋆))− θ⋆a is a non-positive

and concave function of a, when |a− nEPY
[Y ]| =

∣

∣a−
EPXn

[Xn]
∣

∣ > γ, with γ sufficiently large, it follows that

exp (nln (ϕY (θ
⋆))− θ⋆ a) < min

(

1,
c ξY (0)

√

n(VY (0))3

)

. (18)

Hence, in this case, the right-hand side of (16) is always

smaller than the right-hand side of (15). This implies that in

the regime of large deviations, it is more interesting to use

Theorem 2 instead of Theorem 1.

V. ON THE CALCULATION OF THE DEPENDENCE TESTING

BOUND

This section focuses on providing upper and lower bounds

on the function T in (7), for some given values (n,M) ∈ N
2

and a given distribution PX ∈ △ (Xn). These bounds become

significantly relevant when the exact value of T (n,M,PX)
cannot be calculated with respect to the random transformation

in (1). In such a case, providing upper and lower bounds on

T (n,M,PX) helps in approximating its exact value subject

to an error sufficiently small such that the approximation is

relevant.

A. Existing Results

For all PX ∈ △ (X ), let µ(PX) , EPXPY |X
[ι(X;Y )]

denote the first moment; σ(PX) , EPXPY |X

[

(

ι(X;Y ) −
µ(PX)

)2
]

denote the second central moment; and ξ(PX) ,

EPXPY |X

[

∣

∣ι(X;Y ) −µ(PX)
∣

∣

3
]

denote the third absolute

central moment of the random variable ι(X;Y ). Using this

notation, consider the functions D : N2 ×△ (X ) → R+ and

N : N2×△ (X ) → R+ such that for all (n,M) ∈ N
2 and for

all PX ∈ △ (X ),

D(n,M,PX) = max

(

0, α(n,M,PX)− c ξ(PX)

σ(PX)
3
2
√
n

)

and(19)

N(n,M,PX) =

min

(

1,α (n,M,PX)+
3 c ξ(PX)

σ(PX)
3
2
√
n
+

2ln (2)

σ(PX)
1
2

√
2nπ

)

, (20)

where, c = 0.476 and

α (n,M,PX),Q

(

nµ(PX)− ln
(

M−1
2

)

√

nσ(PX)

)

. (21)

Using this notation, the following theorem introduces a lower

bound and an upper bound on T in (7).

Theorem 3: Given a pair (n,M) ∈ N
2, for all input

distributions PX ∈ △ (Xn) subject to (9), the following holds

with respect to the random transformation in (1),

D(n,M,PX) 6 T (n,M,PX) 6 N(n,M,PX), (22)

where the functions T , D and N are defined in (7), (19)

and (20), respectively.



The proof of Theorem 3 is presented in [2]. Essentially, it

consists in using Theorem 1 for independently upper and

lower bounding the terms EPXPY |X

[

1{ι(X;Y )6ln(M−1
2 )}

]

and EPXPY

[

1{ι(X;Y )>ln(M−1
2 )}

]

in (7). In [2], the function

α(n,M,PX) in (21) is often referred to as an “approximation”

of T (n,M,PX). Nonetheless, as shown in the following

section, the “approximation error” is such that it often leads

to irrelevant results for small values of n.

B. New Results

Given a distribution PX ∈ △ (X ), the moment generating

function of ι(X;Y ) is

ϕ(PX , θ) , EPXPY |X
[exp (θ ι(X;Y ))] , (23)

with θ ∈ R. For all PX ∈ △ (X ) and for all θ ∈ R, consider

the following functions:

µ(PX , θ) , EPXPY |X

[

ι(X;Y ) exp (θ ι(X;Y ))

ϕ(PX , θ)

]

,

V (PX , θ) , EPXPY |X

[

|ι(X;Y )−µ(PX , θ)|2exp (θι(X;Y ))

ϕ(PX , θ)

]

,

and

ξ(PX , θ) , EPXPY |X

[

|ι(X;Y )−µ(PX , θ)|3 exp (θι(X;Y ))

ϕ(PX , θ)

]

.

Using this notation consider the functions β1 : N
2 × R ×

△ (X ) → R+ and β2 : N2 × R ×△ (X ) → R+ respectively

defined in (26) and (27) in the top of next page. Consider also

the following functions:

G1(n,M, θ, PX) = β1(n,M, θ, PX)

− 2c ξ(PX , θ)

V (PX , θ)3/2
√
n
exp

(

nln (ϕ(PX , θ))− θln

(

M − 1

2

)

)

,

G2(n,M, θ, PX) = β2(n,M, θ, PX)

− 2c ξ(PX , θ)

V (PX , θ)3/2
√
n
exp

(

nln (ϕ(PX , θ))−(θ+1)ln

(

M − 1

2

)

)

and

G(n,M, θ, PX) = max (0, G1(n,M, θ, PX))

+
M − 1

2
max (0, G2(n,M, θ, PX)) . (24)

The following theorem introduces a new lower bound and a

new upper bound on T in (7).

Theorem 4: Given a pair (n,M) ∈ N
2, for all input

distributions PX ∈ △ (Xn) subject to (9), the following holds

with respect to the random transformation in (1),

G(n,M, θ, PX) 6 T (n,M,PX) 6 S(n,M, θ, PX) (28)

where, θ is the unique solution in t to

nµ(PX , t) = ln

(

M − 1

2

)

, (29)

and the functions T , G and S are defined in (7), (24) and (25),

with c = 0.476.

Proof: The proof of Theorem 4 is presented in [10]. In a

nutshell, the proof consists in using Theorem 2 for indepen-

dently bounding the terms EPXPY |X

[

1{ι(X;Y )6ln(M−1
2 )}

]

and EPXPY

[

1{ι(X;Y )>ln(M−1
2 )}

]

in (8).

The function

β(n,M, θ, PX)=β1(n,M,θ,PX)+
M−1

2
β2(n,M,θ,PX), (30)

with β1 in (26) and β2 in (27), is referred to as a saddlepoint

approximation of the function T in (7).

In the following section, the approximations on the function

T in (7) obtained by using both Theorem 3 and Theorem 4

are compared in the context of two canonical communications

channels: the BSC and the AWGN channel.

VI. EXAMPLES

A. Binary Symmetric Channel

Consider a BSC with cross-over probability δ = 0.11. The

focus is on the analysis of the upper bound on the DEP

(Definition 2) at an information rate R = 0.32 bits per channel

use. In Figure 1, the function T in (7) is approximated by using

Theorem 3 and Theorem 4. The approximation obtained by

using the former, i.e., α
(

n, 2nR, PX

)

in (21), is plotted in

black diamonds, whereas the corresponding lower and upper

bounds, i.e., D
(

n, 2nR, PX

)

in (19) and N
(

n, 2nR, PX

)

in

(20), are respectively plotted in red circles and blue squares.

On the other hand, the approximation obtained by using the

new result, i.e., β
(

n, 2nR, θ, PX

)

in (30), is plotted in black

stars, whereas the corresponding upper and lower bounds, i.e.,

S
(

n, 2nR, θ, PX

)

in (25) and G
(

n, 2nR, θ, PX

)

in (24), are

plotted in blue upward-pointing triangles and red downward-

pointing triangles. In all cases, PX is the uniform distribution

and θ is chosen to be the unique solution in t of the equality

in (29).

B. Additive White Gaussian Noise Channel

Consider a real-valued AWGN channel with discrete chan-

nel inputs, X = {−1, 1}, and signal to noise ratio SNR = 1.

The focus is on the analysis of the upper bound on the DEP

(Definition 2) at an information rate R = 0.39 bits per channel

use. In Figure 2, the function T in (7) is approximated by using

Theorem 3 and Theorem 4. In all cases, PX is the uniform

distribution and θ is chosen to be the unique solution in t of

the equality in (29). The plots follow the same code of colors

and markers as in Figure 1.

C. Discussion

Let θ be the unique solution in t to (29). Note that the

approximation of the function T in (7) by the function α
in (21) might lead to erroneous conclusions. For instance,

the exact value of T (n,M,PX) is between S (n,M, θ, PX)
and G (n,M, θ, PX) (Theorem 4), nonetheless, in the case

of the BSC in Figure 1, when n > 1000 channel uses, it

holds that α (n,M,PX) < G (n,M, θ, PX). In this case,

approximating T by α is too optimistic. Note also that the

lower bound D (n,M,PX) obtained from Theorem 3 is non-

positive in this case, and thus, does not appear in Figure 1 and

Figure 2. On the other hand, the upper bound N (n,M,PX) is



S(n,M, θ, PX) =min

(

1, β (n,M, θ, PX) +
4c ξ(PX , θ)

(V (PX , θ))
3/2 √

n
exp

(

nln (ϕ(PX , θ))− θln

(

M − 1

2

))

)

. (25)

β1(n,M, θ, PX)=1{θ>0} + (−1)1{θ>0} exp

(

nln (ϕ(PX , θ))− θln

(

M − 1

2

)

+
1

2
θ2nV (PX , θ)

)

Q
(

√

nV (PX , θ)|θ|
)

.(26)

β2(n,M, θ, PX)=1{θ6−1}+(−1)1{θ6−1} exp

(

nln (ϕ(PX , θ))−(θ+1)ln

(

M−1

2

)

+
1

2
(θ+1)2nV (PX , θ)

)

Q
(

√

nV (PX , θ)|θ+1|
)

.(27)
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Fig. 1: Approximation of the function T in (7) as a function of

the blocklength n for the case of a binary symmetric channel

with cross-over probability δ = 0.11 at information rate R =
0.32 bits per channel use, PX the uniform distribution and θ
chosen to be the unique solution in t of the equality in (29).

several orders of magnitude far away from the approximation

α (n,M,PX). From this perspective, a proper analysis on the

dependence testing bound (Lemma 1) based on Theorem 3

does not lead to relevant conclusions.

Finally, note that in the case of the BSC, the function T in

(7) can be calculated exactly and thus, it is plotted in Figure 1

in magenta asterisks. Therein, it can be observed that both

the saddlepoint approximation β and the function T overlap.

These observations are in line with those reported in [7],

in which the saddlepoint approximation of the RCU bound

and the meta-converse bound are both shown to be precise

approximations.
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