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Weakly-Hard Real-Time Guarantees for Earliest Deadline
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ROLF ERNST, TU Braunschweig, Germany

The current trend in modeling and analyzing real-time systems is toward tighter yet safe timing constraints.

Many practical real-time systems can de facto sustain a bounded number of deadline-misses, i.e., they have

Weakly-Hard Real-Time (WHRT) constraints rather than hard real-time constraints. Therefore, we strive to

provide tight Deadline Miss Models (DMMs) in complement to tight response time bounds for such systems.

In this work, we bound the distribution of deadline-misses for task sets running on uniprocessors using the

Earliest Deadline First (EDF) scheduling policy. We assume tasks miss their deadlines due to transient overload

resulting from sporadic jobs, e.g., interrupt service routines. We use Typical Worst-Case Analysis (TWCA)

to tackle the problem in this context. Also, we address the sources of pessimism in computing DMMs, and

we discuss the limitations of the proposed analysis. This work is motivated by and validated on a realistic

case study inspired by industrial practice (satellite on-board software) and on a set of synthetic test cases.

The synthetic experiment is dedicated to extensively study the impact of EDF on DMMs by presenting a

comparison between DMMs computed under EDF and Rate Monotonic (RM). The results show the usefulness

of this approach for temporarily overloaded systems when EDF scheduling is considered. They also show that

EDF is especially well for WHRT tasks.
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1 INTRODUCTION
In real-time systems, temporal constraints often expressed as deadlines have to be satisfied to

guarantee the correction of system results. When multiple tasks share one resource in a real-time

system, scheduling is used to resolve the contention between tasks: the operating system follows a

scheduling policy to arbitrate between requests to access the shared resource. If there is a scheduling

policy such that all tasks in a task set meet all deadlines, there is a feasible schedule for the task set.

Earliest Deadline First (EDF) [24] is a scheduling policy which gives the highest priority to those

tasks that are the closest to missing their deadline. EDF scheduling has been proved to be optimal
[13] in the sense of feasibility under certain conditions. If there exists a feasible schedule for a task

set, then EDF scheduling can find a feasible schedule as well. Verifying that a given schedule is

feasible (all tasks in a task set meet all their deadlines), is called schedulability analysis.
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2 Zain A. H. Hammadeh, SophieQuinton, and Rolf Ernst

Safety-critical real-time systems require hard real-time guarantees. That is, schedulability analysis

must guarantee that all deadlines are met, as otherwise the functionality of the system may be

jeopardized. However, many practical embedded real-time systems can de facto sustain a bounded

number of deadline-misses. In control engineering, which is the natural application domain of

real-time computing, papers have been published [10, 16, 32, 41] showing that it is sometimes

possible to guarantee the performance of a control system despite some missed deadlines. Such

systems are calledweakly-hard real-time systems [4]. Formally, aWHRT system is a system in which

the sequence of met and missed deadlines of any consecutive k deadlines is precisely bounded.

Therefore, the guarantees provided by a weakly-hard schedulability analysis must satisfy the

constraints on such sequences. The notation (m,k) – introduced in [19] as (m,k)-firm – is used to

define a constraint which bounds the allowed number of deadline-misses for an individual task

such that there are no more thanm admissible deadline-misses out of any consecutive k deadlines.

There are three main sources of pessimism in a schedulability analysis: (1) tasks do not always

run for their worst-case execution time (wcet) due to not following the worst-case path in the task

control flow graph, and due to the pessimism of the wcet analysis itself, (2) tasks are activated less

often than in the worst-case activation model assumed for schedulability analysis and (3) tasks do

not suffer every time the worst-case blocking. As a result, for many systems, almost all deadlines

are actually met at run-time, even though the analysis cannot exclude some deadlines misses [3].

State-of-the-art regardingWHRT [4, 20, 44] includes several analyses that provide (m,k) guarantees
considering different system models. In this work, we aim to provide (m,k) guarantees for WHRT

systems when EDF scheduling is considered.

In real-world applications, overload conditions – critical situations in which some deadlines may

be missed – may occur even when the system is properly designed: reasons for this can be changes

in the environment, simultaneous arrivals of asynchronous events, faults of peripheral devices, or

system exceptions [8]. Under overload conditions, experiments in [30] have shown that tasks under

EDF scheduling can miss many deadlines because EDF scheduling assigns the highest priority to

the tasks which are the closest to missing their deadlines [8]. In the extreme case, all tasks in the

system may miss their deadline; this phenomenon is called domino effect. The domino effect can

jeopardize the system functionality as even the most critical tasks miss their deadline. Note that,

the analysis proposed in this paper applies to systems for which the overload is due to reasons that

are known at design time: Neither reliability analysis, nor fault tolerant system design is in the

scope of this paper. Reliability analysis [2] computes the likelihood of missing deadlines due to the

effects of errors, while other solutions aim to design the system such that more errors can occur

without compromising deadlines [22, 28].

In this paper, we are interested in computing (m,k) guarantees for WHRT tasks which may

miss their deadlines due to transient overload resulting from sporadic jobs, e.g., interrupt service

routines, when EDF scheduling is considered, using Typical Worst-Case Analysis (TWCA) [20]. In

TWCA, the lifetime of a resource is partitioned into 1) typical intervals where there is no transient

overload and 2) temporarily overloaded intervals due to the transient overload [37]. TWCA handles

the two types of intervals separately and bounds the impact of the sporadic jobs in terms of

deadline-misses within the temporarily overloaded intervals. TWCA considers arrival curves as

activation models, arbitrary deadlines, and it is applicable so far to uniprocessor systems under fixed

priority preemptive or non-preemptive schedulers. TWCA relies on existing worst-case response

time analyses as a foundation. Therefore, for our extension to EDF, we need to call the worst-case

response time analysis for EDF scheduling. EDF scheduling has been studied widely to find more

efficient schedulability tests [17, 42, 46]. In this paper, we focus instead on worst-case response

time analysis.
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Weakly-Hard Real-Time Guarantees for EDF Scheduling 3

The major contribution in this work is an extension of TWCA as presented in, e.g. [20, 45] to

EDF scheduling to bound the distribution of the system met and missed deadlines in the form of

(m,k ) guarantees. To the best of our knowledge, this is the first attempt to consider EDF in WHRT

systems. We show in this paper that TWCA is extendible to EDF with no need to develop a solution

from scratch. Experimental results show that TWCA is a useful approach to compute guarantees

for WHRT systems when EDF scheduling is considered.

The rest of the paper is organized in 8 sections as follows: In Section 2, we present a perusal of

the related work. Section 3 shows the system model, which is considered in this paper. In Section

4, we call the worst-case response time analysis for EDF scheduling, and we call state-of-the-art

TWCA in Section 5. Section 6 contains the main contribution of the paper, namely the computation

of DMMs. We address the sources of pessimism in computing DMMs in Section 7. In Section 8, we

motivate and validate our analysis on a realistic case study (satellite on-board software), and on a

set of synthetic test cases to extensively test our analysis. Finally, we conclude our work in Section

9.

2 RELATEDWORK
WHRT systems have received quite a lot of attention in the last four years. The term weakly-hard,
though, is quite a bit older than this: it was coined in [4], where a WHRT system is defined as a

system in which tasks can tolerate at mostm deadline-misses out of any consecutive k deadlines.

The notation (m,k) to represent the tolerated bound is even older and originates from the work on

(m,k)-firm systems [19], which addresses the same type of systems. The notation (m,k)-firm was

invested in [36, 38]. Authors took advantage of tolerating deadline-misses to manage overload in

control applications. Their system model considers periodic tasks with fixed priority preemptive

scheduling.

In [4], weakly-hard guarantees are computed for periodic tasks with fixed priorities. [44] extended

[4] to offset-free periodic tasks. That work is proper for systems where only small k matters

and, however, it does not scale beyond 20 tasks and k > 10 because of the complexity of their

proposed MILP [34]. In this work, we consider arrival curves to describe activation models. Also, the

experiments show that TWCA scales beyond 20 tasks and k > 1000 for Fixed Priority Preemptive

(FPP) and EDF.

Kumar et al. proposed an analysis in [25] in the context of real-time calculus [11]. The presented

analysis computes the settling time, i.e., the longest time window after the rare event until the

system returns to normal. In addition, the overshoot during the settling time quantifies how many

deadline-misses may then occur. The main difference with TWCA is that [25] considers only one

source of rare events at a time. In [7], some predefined tasks are allowed to miss their deadline

occasionally in uncertain or faulty execution conditions due to soft errors. Dynamic real-time

guarantees were computed to determine if the system can provide full timing guarantees or limited

timing guarantees and to determine the maximum interval length until the systemwill again provide

full timing guarantees. The system model considers sporadic independent tasks in a uniprocessor

system under a fixed-priority scheduling policy.

State-of-the-art TWCA [20] provides WHRT guarantees on the distribution of deadline-misses

in the form of (m,k) for uniprocessor system under fixed priority preemptive or non-preemptive.

In [21], the system model was extended to bound deadline-misses in WHRT systems with task

dependencies. In this work, we present an extension of TWCA [20, 45] to provideWHRT guarantees

for independent tasks when EDF scheduling is considered.

The problem of providing bounds on deadline-misses was also addressed by the probabilistic
real-time analyses where a random variable describes at least one parameter. In [14] and [31],

stochastic analysis of periodic real-time systems was presented. The analysis applies to uniprocessor
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4 Zain A. H. Hammadeh, SophieQuinton, and Rolf Ernst

system under FPP or EDF scheduling. The probability that a task misses its deadline in an infinite

window size was computed. In [9], a probabilistic deadline-miss analysis is presented for periodic

tasks sharing a uniprocessor under fixed priority non-preemptive scheduling policy. The analysis

supports the derivation of the probability that a deadline-miss occurs within time t . In that work,

jobs are discarded as soon as their deadline is missed. In [40], a probabilistic calculus is presented.
Santinelli and Cucu-Grosjean developed in [40] an analysis in terms of sufficient probabilistic

schedulability conditions for task systems with either FPP or EDF scheduling policies. [40] follows

the compositional performance analysis. Therefore, it applies to distributed real-time systems. The

probability of missing a deadline of a periodic or non-periodic task in an infinite window size can

be derived from the proposed analysis. With the same system model used in [7] and based on

probabilistic WCETs, [12] calculates the probability ofm-consecutive deadline-misses of a task in

faulty execution conditions due to soft errors. However, probabilistic deadline guarantees are not

sufficient for real-time systems such as automatic control systems [35]. Instead, a precise bound on

the distribution of the system met and missed deadlines during a time window is necessary and

this can be done using (m,k)-firm model [27].

Establishing an on-line scheduling framework for WHRT systems has been addressed in [3].

Bernat and Cayssials presented an on-line scheduling framework called Bi-Modal Scheduler (BMS).

It is characterized by two modes of operation. Weakly hard constraints are guaranteed to be satisfied

by switching, whenever necessary, from a normal mode to a panic mode for which schedulability

tests exist that guarantee the constraints on the allowed number of deadline-misses. Similarly, [27]

proposed on-line (m,k)-firm enforcement policy for control systems with non-preemptive EDF

scheduling. Establishing an on-line scheduling is out of the scope of this paper.

3 SYSTEMMODEL
We consider a uniprocessor system running a finite set of real-time tasks Z, which compete for

processor time to perform some computations. On a single processor, all durations share a common

time unit, namely the clock cycle. As a consequence, all parameters in this paper have positive

integer values, unless stated otherwise.

Tasks are activated by a timer or the occurrence of some event. Each activation of a task results

in the creation of a job, which corresponds to some computation to be performed. Upon creation, a

job requests access to the processor in order to execute. That access is granted by the scheduler

according to its policy — in our case EDF, such that the job with the earliest deadline is scheduled,
i.e., granted access to the processor. We consider preemptive EDF scheduling, so the execution of a

job may be interrupted by the activation of another job with an earlier deadline.

The timing characteristics of a task are: (1) the instants at which the task is activated; (2) how

much processor time it needs to complete each job; and (3) its relative deadline, i.e., how long after

activation each job must be completed. As a result, tasks are defined as follows.

Definition 3.1. A task τi ∈ Z is defined by:

(1) an activation model defined using arrival curves, see Definition 3.2;

(2) an upper bound on its execution time Ci ;

(3) and a relative deadline Di .

Note that we make no assumptions w.r.t deadlines, i.e., we consider so-called arbitrary deadlines.

Definition 3.2. Arrival curves are functions η+i , η
−
i : N→ N that bound the number of activations

of a task τi , such that η+i (∆) (respectively η
−
i (∆)) upper (respectively lower) bounds the number of

activations of τi that may occur within any time interval of length ∆. We sometimes use pseudo-

inverse representations of arrival curves, namely δ−i , δ
+
i : N → N, such that δ−i (k ) (respectively
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δ+i (k )) lower (respectively upper) bounds the length of any time interval containing k activations

of τi .

Note that two versions of arrival curves have been defined [39], depending on whether the

considered time intervals are right-open or closed. While the analysis for FPP uses right-open

intervals, the analysis for EDF scheduling is based on closed intervals. In the rest of the paper,

we use the notations introduced above for right-open intervals, and the notations η̃+i (∆), η̃
−
i (∆)

1

whenever closed intervals are considered in bounding the number of jobs of τi .
A job ℓ of τi is activated at act ℓi , and it completes execution at endℓi . For each job we define an

absolute deadline dℓi such that: dℓi = act ℓi +Di . The response time Rℓ
i of a job is the duration between

its activation and its completion: Rℓ
i = endℓi − act

ℓ
i . A deadline-miss occurs if the response time of

a job exceeds the relative deadline of its corresponding task. The worst-case response time R+i of a

task τi is then the maximum response time among all possible jobs of τi .

Definition 3.3 (Utilization). The computation of utilization of a task τi requires the evaluation a

limit for time approaching infinity.

Ui = lim

∆t→∞

η+i (∆t ) . Ci

∆t
(1)

the resource utilization is then:

U =
∑
τi ∈Z

Ui (2)

This is a generalization of the standard definition of utilization for periodic tasks.

3.1 Problem formulation
We are interested in systems that are temporarily overloaded: Such systems may suffer transient

overload situations and even miss deadlines, but their utilization U is smaller than or equal to 1.

Systems that do not satisfy this condition consistently need more computation resources than they

have.

When a transient overload causes a deadline-miss, it is said to be an active fault, and the deadline-
miss is an error. The error may cause a failure, i.e., the system delivers an incorrect service [1]. If

the error causes no failure, it is said to be tolerable.

Definition 3.4. A task τi tolerates — without error handling— at mostm deadline-misses out of

any k consecutive jobs, and no failure will be triggered unless τi missesm + 1 deadlines out of any
k consecutive jobs wherem ⩾ 0 and k ⩾m.

In other words, missingm deadlines out of any k consecutive jobs will never cause a failure.

The definition of hard real-time systems can be derived by saying it is a system in whichm = 0

for all tasks. A real-time system whose tasks can tolerate few deadline-misses out of a sequence of

jobs is known as a weakly-hard real-time system.

Definition 3.5 (WHRT task). A WHRT task is a task that tolerates a precisely bounded number of

deadline-misses in a sequence of k jobs
2
.

Definition 3.6 (WHRT system). A WHRT system is a system that comprises at least one WHRT

task.

Depending on the new constraints, we redefine the schedulability of a task.

1δ−i , δ
+
i are the pseudo-inverse of η̃+i , η̃

−
i as well.

2
For the sake of brevity, we call such a sequence of k jobs a k -sequence.
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6 Zain A. H. Hammadeh, SophieQuinton, and Rolf Ernst

Definition 3.7 ((m,k)-Schedulability). A WHRT task is said to be schedulable if it meets its (m,k)
constraint.

TWCA applies to systems that are temporarily overloaded due to rare sporadic jobs, e.g., from

interrupt service routines or recovery tasks
3
. In this paper, as in, e.g. [22], we assume that the task

set is partitioned into so-called overload tasks, which are considered responsible for the overload

situation, and typical tasks, which represent the nominal behavior of the system. The set of overload

tasks (respectively typical tasks) is denoted O (respectively T ).

In this work, we assume that the scheduler is deadline-miss agnostic, i.e., it schedules tasks and
lets them run to completion even if they have missed their deadline. Deadline-miss active schedulers

(which may, e.g., kill the running job if it misses its deadline, or drop the next job/jobs) are out of

the scope of this paper. Such schedulers can help schedule systems with utilization larger than 1,

but are much more difficult to analyze and implement.

Definition 3.8. A deadline miss model (DMM) for a task τi is a function dmmi : N→ N such that

out of any sequence of k consecutive jobs of τi , at most dmmi (k ) may miss their deadline.

We can now formally define our problem: Given a task setZ defined as explained in this section,

assuming it executes on a uniprocessor system scheduled with EDF scheduling, our objective is to

compute a deadline miss model for each task τi ∈ T .

notation description

Z Task set

T Typical task set

O Overload task set

Ui Utilization of τi
U Total utilization of the system

Ci Worst-case execution time of τi
Di Relative deadline of τi
Rℓ
i Response time of job ℓ of τi

R+i Worst-case response time of τi
dℓi Absolute deadline of job ℓ of τi
D Set of absolute deadlines of tasks when they are released synchronously at t = 0

δ−i (n) Minimum distance between n jobs of τi
δ+i (n) Maximum distance between n jobs of τi
η+i (∆) Maximum number of jobs of task τi within a right-open time interval ∆
η̃+i (∆) Maximum number of jobs of task τi within a closed time interval ∆
L Length of the synchronous busy-window in EDF

db fi Demand bound function of τi
BW +

i Length of the worst-case level-i busy-window of τi in FPP

Ni Upper bound on the number of deadline-misses that τi may miss within one busy-window

Ωs→i
k Upper bound on the number of sporadic jobs of τs

that may interfere with any busy-window containing jobs of the k-sequence.
c̄ Combination of sporadic overload tasks

C̃ Set of unschedulable combinations

dmmi (k ) Maximum number of deadline-misses that τi may miss out of k consecutive jobs

Table 1. Table of notations

3
Note that the results presented in this paper directly apply to the analysis of communication resources by replacing the

terms task and processor with message and bus, respectively.
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Weakly-Hard Real-Time Guarantees for EDF Scheduling 7

TWCA relies on existing worst-case response time analyses as a foundation. Therefore, we call

in the next section the worst-case response time analysis for EDF scheduling.

4 EDF RESPONSE TIME ANALYSIS
4.1 EDF scheduling policy

τ1

τ2

τ3

L = 14

Activation Termination Deadline Execution

Fig. 1. The synchronous busy-window under EDF scheduling policy. The black upward arrow indicates Di .

EDF is a dynamic priority scheduling algorithm, i.e., a task priority is changed regularly upon

the strategy followed in the scheduling policy. In EDF, the task with the closest absolute deadline

gets the resource. We consider a preemptive EDF scheduling, so the execution of a task may be

interrupted by a job of another task with an earlier absolute deadline. In addition, EDF assigns

the highest priority to the job with a missed deadline to complete execution. Therefore, it is a

deadline-miss agnostic scheduler. Note that offset is not considered in this section.

4.2 Worst-case response time analysis
It is sufficient for hard real-time systems to test the schedulability with no need for computing

the response time. In this case, a sufficient and necessary schedulability test can be satisfactory.

In this work, we are interested in computing the response time and in the schedulability test as

well. However, finding the worst-case response time of a task is not trivial when EDF scheduling

is considered. We relay in this paper on Spuri’s work presented in [42]. The exactness of Spuri’s

analysis has been preserved while the efficiency was the subject of later works, e.g., [6, 18, 43].

In this section, we show how to compute the worst-case response time R+i for a given task τi and
the length of the longest busy-window [42].

Definition 4.1. A busy-window [t1, t2[ is a time interval such that for any t ∈ [t1, t2[, the resource
is busy (i.e., some task is scheduled) at t .

Of all the possible busy-windows, the synchronous busy-window plays a key role for response

time analysis, see Figure 1.

Definition 4.2. The synchronous busy-window forZ is a busy-window [t1, t2[ in which all tasks

are activated synchronously at t1 and then according to the maximum arrival function η+.

The synchronous busy-window has the following important property.

Lemma 4.3 ([42]). The length L of the synchronous busy-window is the maximum length of any
possible busy-window in any schedule.

Proof. This proof sketch depends on the argumentation presented in A.2 in [42]. Any busy-

window rather than the synchronous one does not satisfy one or both following conditions:
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8 Zain A. H. Hammadeh, SophieQuinton, and Rolf Ernst

(1) all tasks are activated synchronously at the beginning of the busy-window.

(2) the arrival of activations follows the maximum arrival function η+.

However, shifting left all jobs in the busy-window in order to satisfy the above two conditions

can only bring more workload to be processed during the busy-window which makes it longer.

The synchronous busy-window satisfies both above conditions, and it has therefore the maximum

length. □

A second property of the synchronous busy-window that is needed for response time analysis is

in the following lemma.

Lemma 4.4 ([42]). The worst-case response time of a task τi is found in a busy-window in which all
tasks other than τi are released synchronously at the beginning of the busy-window and then at their
maximum rate.

Proof. This lemma is lemma 4.1 in [42]. The key argument to prove this lemma is that if all

jobs of tasks different from τi are "shifted left" such that they are released synchronously at the

beginning of the busy-window, the workload of jobs of τi cannot diminish. □

To compute the response time of a job ℓ of τi activated at a with absolute deadline dℓi , it is
sufficient to be aware of a part of the busy-window in which only jobs with absolute deadline

smaller than or equal to dℓi execute. This part of the busy-window relative to the absolute deadline

dℓi is named deadline-d busy-window and Li (a) denotes its length.

We are looking for a job ℓ activated at time a ⩾ 0 such that Rℓ
i is the worst-case response time:

R+i = Rℓ
i . Let α

0

i (a) denote the activation time of the first job, which has the order 0, of τi in a

busy-window where the job ℓ activated at a belongs to the same busy-window.

α0

i (a) = a − δ
−
i (η
+
i (a)) (3)

Lemma 4.3 shows that L is the maximum length of any busy-window, therefore, the significant

values of a are in the interval [0,L−Ci [. Furthermore, in [42] the author claims that it is not difficult

to see that the local maxima of Li (a) is found for those values of a such that in the arrival pattern

there is at least an instant of a task different from τi with deadline equal to dℓi , or all tasks are
synchronized, i.e., α0

i (a) = 0. This claim can be proven using the argument given to prove Lemma

4.4.

Lemma 4.5. The response time of a job ℓ of τi with absolute deadline dℓi does not decrease if all jobs
of τi are "shifted" to the left such that dℓi coincides with the immediate previous absolute deadline, let
dp denote it, of a job of a task different from τi .

Proof. Shifting left keeps the priority of the job ℓ without changing as ℓ is shifted such that

dℓi coincides the closest previous higher priority absolute deadline dp . That will not decrease the
workload that interferes with ℓ. By comparing Figure 2.a with Figure 2.b we observe that the

response time of τi does not decrease.

τi

τj
(a)

t

t
(b)

Fig. 2. The impact of shifting shifting left on the response time of τi
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Weakly-Hard Real-Time Guarantees for EDF Scheduling 9

task Ci Di Ti
τ1 1 2 4

τ2 2 4 5

τ3 4 8 15

a Rℓ
3

0 8

1 9

2 9

6 9

Table 2. The worst-case response time analysis of τ3.

□

Lemma 4.5 shows that it is sufficient to say:

R+i = max

a=d−Di
d∈D

{Rℓ
i }

where Rℓ
i is the response time of the job ℓ activated at a, and D is the set of absolute deadlines of

tasks when they are released synchronously at t = 0:

D = ∪j ∈Z {d
l |dl = δ−j (l ) + D j ∧ d

l < L, l ∈ N∗} (4)

τ1

τ2

τ3

a = 6

R6

3
= 9

Fig. 3. The worst-case response time of τ3. The job is activated at a = 9.

Example 4.6. Let us consider the task set shown in Table 2. We want to compute the worst-case

response time of τ3. In this system L = 14 as Figure 1 shows. The set D is: D = {9, 10, 14}. The
equivalent values of a are shown in Table 2. Figure 3 illustrates the worst-case response time.

4.3 Algorithm to compute worst-case response time
We start with bounding the length of the synchronous busy-window L (see Definition 4.2):




L(0) =
∑

j ∈Z Cj

L(m+1) =
∑

j ∈Z η+j (L
(m) ) . Cj

(5)

where the equation is equivalent to Equation 1 in [42] and it converges when L(m+1) = L(m)
.

After bounding L, we can compute D which represents the set of candidates to bound the

worst-case response time, Equation 4.

The next step is to bound the contribution of tasks in the deadline busy-window Li (a). Assume

that the beginning of the busy-window is at t0 = 0. Up to time t , η+j (∆ = t − 0) jobs of τj will have

been released for j , i and there will be no more than η̃+j (a + Di − D j ) jobs contribute in Li (a).

Wi (a, t ) =
∑
j,i

D j⩽a+Di

min{η+j (t ), η̃
+
j (a + Di − D j )} . Cj + λi (a, t ) . Ci (6)
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Where λi (a, t ) is the number of jobs of τi that are activated in [0, t[:

λi (a, t ) =



min{η+i (t − α
0

i (a)), η̃
+
j (a)} t > α0

i (a),

0 otherwise .
(7)

Then, the deadline busy-window Li (a) is bounded as follows:




L(0)i (a) =
∑

j,i
D j⩽a+Di

Cj + I {α 0

i (a)=0}
. Ci

L(m+1)i (a) =Wi (a,L
(m)
i (a))

(8)

Where I {α 0

i (a)=0}
is a Boolean such that:

I {α 0

i (a)=0}
=



1 α0

i (a) = 0,

0 otherwise .
(9)

Note that Equation 8 is equivalent to Equation 3 in [42].

The response time of the job ℓ that is activated at a is then:

Rℓ
i = max{Li (a) − a,Ci } (10)

The computation of the worst-case response time of a given task τi is shown in Algorithm 1.

Algorithm 1: Compute the worst-case response time

1 Compute L (Equation 5);

2 for d ∈ D do
3 a = d − Di ;

4 α0

i (a) = a − δ
−
i (η
+
i (a));

5 Compute Li (a) (Equation 8);

6 Compute Rℓ
i (Equation 10);

7 R+i = max{Rℓ
i }

4.4 Sufficient and necessary schedulability test
For EDF scheduling, a sufficient and necessary schedulability test has been developed based on the

demand bound function.

Definition 4.7. Demand bound function db fi is defined as follows:

db fi (t ) := η̃
+
i (t − Di ) . Ci (11)

Theorem 4.8. A task setZ is schedulable if and only if:

∀t ∈ D :

∑
∀i ∈Z
Di⩽t

db fi (t ) ⩽ t (12)

Proof. It has been proven in Theorem 6 in [29] and Theorem 3.1 in [42] that if a deadline-

miss can occur in a busy-window, then a deadline-miss occurs in the synchronous busy-window.

Therefore, it is sufficient to test the schedulability in the synchronous busy-window.

At each point of time t ∈ D if the demanded workload to be processed up to t is less than t ,
then the absolute deadline at t will be guaranteed. Thus, it is necessary to test the schedulability

∀t ∈ D. □
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5 STATE-OF-THE-ART TWCA
TWCA is proposed in [20, 45] to provide WHRT guarantees in the form of a deadline miss model.

TWCA considers systems that are temporarily overloaded due to rare sporadic jobs, e.g., from

interrupt service routines or recovery tasks. In this paper, as in, e.g. [22], we assume that the task set

Z is partitioned into overload tasks O and typical tasks T , which represent the nominal behavior

of the system. TWCA relies on the assumption that a typical task τi ∈ T may miss its deadline only

with the presence of any overload task τs ∈ O, otherwise, τi is schedulable. Thus, TWCA does not

apply to systems in which a typical task is not schedulable with the absence of all overload tasks.

In this section, we show how to compute DMMs for FPP scheduling. In TWCA, the concept of

busy-window has a crucial rule in computing DMMs. In FPP, a level-i busy-window is a maximal

time interval [t1, t2[ during which the processor is busy w.r.t. task τi such that jobs of tasks of equal

or higher priority than τi are still pending. The longest such interval, called worst-case level-i

busy-window and its length is denoted by BW +
i , is built such that τi and higher-priority tasks are

released synchronously at the beginning of the busy-window and then as early as possible. Figure

4 illustrates the worst-case level-i busy-window.

Let hp (i ) denotes the set of tasks with higher priority or equal to the priority of τi . In FPP,

if a job ℓ of τj ∈ hp (i ) is activated within a level-i busy-window [t1, t2[, i.e., act
ℓ
j ⩾ t1, then it

completes execution in the same level-i busy-window endℓj ⩽ t2. Following this property of the

level-i busy-window in FPP, we deduce that τi misses its deadline in the level-i busy-window due to

sporadic overload jobs that are activated in the same level-i busy-window. Using this observation,

TWCA computes dmmi (k ) by:

• bounding the number of deadline-misses that τi may miss within one level-i busy-window;

let Ni denote this bound.

• bounding the number of level-i busy-windows in which jobs of the k-sequence miss their

deadline; let NBWmiss
i denotes this bound.

Then, dmmi (k ) can be bounded safely as

dmmi (k ) := Ni . NBWmiss
i (13)

Definition 5.1. Ni is an upper bound on the number of deadlines that τi may miss within any

level-i busy-window.

In FPP, Ni is computed as follows:

Ni = #{q | 1 ⩽ q ⩽ Qi : R
q
i > Di } (14)

Where Qi denotes the maximum number of jobs of τi in the worst-case level-i busy-window.

Bounding NBWimiss
is more complex. We bound first the number of sporadic overload jobs.

Definition 5.2. Ωs→i
k is an upper bound on the number of sporadic overload jobs of τs ∈ O that

may interfere with any level-i busy-window containing jobs of the k-sequence.

In FPP, Ωs→i
k is computed as follows:

Ωs→i
k = η+s (BW

+
i + δ

+
i (k ) + R

+
i ) (15)

The k-sequence is represented by δ+i (k ) which is the maximum distance between k jobs. Note

that any sporadic overload job is activated before the level-i busy-window of the first job of the

k-sequence will not interfere with its execution. On the other hand, the last job of the k-sequence
will not be impacted by any overload job that is activated after its completion time.
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τh

τi

BW +i

Fig. 4. FPP scheduling where τh has a higher priority than τi

τ1

τ2

τ3

τ4
miss miss miss miss

Fig. 5. Illustration of the unschedulable combinations c̄1, c̄2, c̄3, c̄4 in Example 5.5 where FPP is considered.
Note that Ni = 1 in this figure.

By assuming that one overload job alone is sufficient to cause Ni deadline-misses, we can then

safely compute DMM as

dmmi (k ) = Ni .
∑
s ∈O

Ωs→i
k (16)

Such bound is too pessimistic as one sporadic overload job alone may not cause a deadline-miss.

Clearly, there is room to tight this bound by considering a combination of sporadic overload tasks

which are activated within one level-i busy-window and lead to deadline-misses.

Definition 5.3. A combination of sporadic tasks c̄ is a subset of overload tasks: c̄ ⊆ O.

Let ns denotes number of overload tasks, i.e., ns = #{O}. There are 2ns − 1 combinations. By R c̄
i

we denote the worst possible response time of τi in the task set T ∪ c̄. In this way R+i = RZi where

Z = T ∪ O.

Definition 5.4. We say that a combination c̄ ⊆ O is unschedulable w.r.t τi if R
c̄
i > Di .

In the same way we call the combination c̄ for which R c̄
i ⩽ Di a schedulable combination.

In the worst-case, the available sporadic overload jobs

∑
s ∈O Ω

s→i
k will form a finite number

of instances x c̄ of each unschedulable combination c̄ such that 0 ⩽ x c̄ ⩽ mins ∈c̄ {Ω
s→i
k }. That

means,

∑
s ∈O Ω

s→i
k may screw up at most

∑
c̄∈C̃ x c̄ level-i busy-windows where C̃ denotes the set

of unschedulable combinations. NBWmiss
i can be bounded as follows:

NBWmiss
i ⩽ max

{∑
c̄∈C̃

x c̄
}

(17)

Conservatively, we can compute a DMM for any task τi ∈ T using the following ILP:

dmmi (k ) = max

{
Ni

∑
c̄∈C̃

x c̄ :

∑
c̄:s ∈c̄∈C̃

x c̄ ⩽ Ωs→i
k ∀s ∈ O, x c̄ ∈ N ∀c̄ ∈ C̃

}
(18)

Example 5.5. Consider a system with 4 tasks where τ1,τ2,τ3 are sporadic overload tasks with

Ω1→4

k = 2, Ω2→4

k = 2 and Ω3→4

k = 2 where task τ4 has a lower priority than the sporadic tasks.
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τ3

case 1

τ2

τ1

X X

case 2

X X busy-windows

case 3

X X

τ3

case 4

τ2

τ1

X X busy-windows

case 5

X X X

Fig. 6. Packing overload jobs into busy-windows of τ4 where X = deadline-miss. In this example ,Example 5.5,
there are 5 unschedulable cases.

With 3 overload tasks we get 7 combinations, assume that the set of unschedulable combinations

is C̃ = {c̄1 = {τ1,τ2,τ3}, c̄2 = {τ1,τ2}, c̄3 = {τ1,τ3}, c̄4 = {τ2,τ3}} and the other 3 combinations are

schedulable. Figure 5 shows the unschedulable combinations. Using the given Ωs→i
k values we can

combine unschedulable combinations in 5 different ways:

(1) x c̄1 = 2⇒
∑

c̄∈C̃ x c̄ = 2

(2) x c̄1 = 1,x c̄2 = 1⇒
∑

c̄∈C̃ x c̄ = 2

(3) x c̄1 = 1,x c̄3 = 1⇒
∑

c̄∈C̃ x c̄ = 2

(4) x c̄1 = 1,x c̄4 = 1⇒
∑

c̄∈C̃ x c̄ = 2

(5) x c̄2 = 1,x c̄3 = 1,x c̄4 = 1⇒
∑

c̄∈C̃ x c̄ = 3

Then dmmi (k ) = 3 × Ni is the maximum number of deadline-misses that τ4 may miss in the

k-sequence. Figure 6 illustrate the 5 unschedulable cases.

Note that the above ILP is not only NP-hard [33] but also it might have an exponential size input.

Hence, directly computing dmmi (k ) is impractical, instead, we consider the LP relaxation in [45].

The linear program of (18) is:

dmm′i (k ) = max

{
Ni

∑
c̄∈C̃

x c̄ :

∑
c̄:s ∈c̄∈C̃

x c̄ ⩽ Ωs→i
k ∀s ∈ O, x c̄ ⩾ 0 ∀c̄ ∈ C̃

}
(19)

The dual linear program of (19) reads as follows:

min

{∑
s ∈O

Ωs→i
k ys :

∑
s ∈c̄,s ∈O

ys ⩾ Ni ∀c̄ ∈ C̃ , ys ⩾ 0 ∀s ∈ O
}

(20)

We proposed in [45] an algorithm using column generation. In the generating columns based

algorithm, we start with a reduced set of unschedulable combinations to a smaller sampleW ⊆ C̃ .

Initially, this could beW := O (O is guaranteed to be unschedulable). Let x∗ be an optimal primal

solution, and yfk be an optimal dual solution for the reduced LP with objective function z∗. We

aim to find a violated constraint of the complete dual LP to identify the next variable that will be

added to the LP, which indicates the next unschedulable combination that will be added toW , by

computing

ν = min

c̄∈C̃i

∑
s ∈c̄,s ∈O

y∗s . (21)

When there are no more variables that violate the constraint of the complete dual LP, i.e., ν ⩾ Ni , the

column generation finishes, and we find a globally optimal solution z∗ = dmm′i (k ) ⩾ dmmi (k ). As
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this might take a long time due to the exponential size of C̃i , constructing a DMM from suboptimal

solutions can be sufficient. For this end, we define

dmm′′i (k ) :=
Ni

ν
z∗ (22)

If 0 < ν ⩽ Ni , then dmm′′i (k ) ⩾ dmm′i (k ). Therefore, dmm′′i (k ) is a DMM. Proofs and further

discussion are available in [45].

6 COMPUTING DMM FOR EDF SCHEDULING
In this section, we show how to compute WHRT guarantees for temporarily overloaded systems

that are scheduled with EDF. To do so, we extend TWCA [20, 45] to systems with EDF scheduling.

The notation of busy-window as defined in Definition 4.1 satisfies that if a job ℓ of τj ∈ Z is

activated within a busy-window [t1, t2[, i.e., act
ℓ
j ⩾ t1, then it completes execution in the same

busy-window endℓj ⩽ t2. Therefore, we can apply TWCA to EDF scheduling. To compute a DMM

for a given task τi ∈ T using TWCA:

(1) we compute an upper bound Ni on the number of deadlines that τi may miss within one

busy-window.

(2) we compute an upper bound Ωs→i
k on the number of overload jobs of τs that may interfere

with any busy-window containing jobs of the k-sequence.
(3) we propose a criterion to compute the unschedulable combinations efficiently.

Compute Ni . The impact of sporadic overload jobs is enclosed in the busy-window during which

they have been executed. Hence, the number of deadlines that τi may miss within one busy-window

due to one or more sporadic overload jobs can be bounded.

Lemma 6.1. For a given task τi , let BWi indicates the set of busy-windows that each of which
satisfies: all tasks but τi are activated synchronously at the beginning of the busy-window and then at
their maximum rate; and the first job of τi in the busy-window is activated at a where a = d−Di : d ∈ D.
Also, ∀b ∈ BWi let nb indicates the number of deadline-misses within the busy-window b. Let

Ni = max

∀b ∈BWi
{nb } (23)

Then Ni is an upper bound on the number of deadlines that τi may miss within one busy-window.

Proof. It has been proven in [42] that within a busy-window in which all tasks but τi are
activated synchronously at the beginning of the busy-window, and then at their maximum rate,

the workload of all other tasks cannot diminish and the response time of jobs of τi within this

busy-window can only increase. A certain distribution of the interfering workload will cause

the maximum number of deadline-misses to τi within the busy-window. Such a busy-window is

not necessary to be the synchronous one, in which a = 0. Therefore, all possible busy-window

candidates have to be checked. □

Compute Ωs→i
k .

Lemma 6.2. Ωs→i
k is computed as follows:

Ωs→i
k = η̃+s (L + δ

+
i (k ) +max{Di − Ds , 0}) (24)

Proof. Figure 7 illustrates Ωs→i
k . We know that η̃+s (∆) returns the maximum number of jobs

that may be activated within a closed time interval. We should carefully bound the window of

k-sequence by considering the maximum distance between k jobs and sufficient time windows
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τs

Ds

Ωs→i
k = 3

τi

Di

L δ+i (k ) Di − Ds

k-sequence

Fig. 7. Ωs→i
k under EDF scheduling policy.

before and after it during which the execution of the first and the last jobs of the k-sequence might

be impacted.

δ+i (k ): the longest closed time interval that contains k consecutive jobs is bounded by δ+i (k ). An
overload job that occurs during it may have an impact on the response times of the k-sequence.
L: An overload job will have no impact on the first job of the k-sequence unless they belong to

the same busy-window. L is proven to be the maximum length of a busy-window.

max{Di − Ds , 0}: Any sporadic overload job with an absolute deadline beyond the absolute

deadline of the k-th job has no impact on any job belongs to the k-sequence. □

Schedulability criterion. A task τi misses its deadline when it experiences interfering from un-

schedulable combinations, see Definition 5.4. To compute DMMs using TWCA, the set of un-

schedulable combinations has to be computed. In EDF scheduling policy, a sufficient and necessary

schedulability test based on the demand bound function is used [42]. The demand bound function

is defined in Definition 4.7, and the schedulability test is presented in Equation 12. Based on this

schedulability test we compute the set of unschedulable combinations as follows:

Lemma 6.3. A combination c̄ is unschedulable if (necessary condition) the task set T ∪ c̄ is not
schedulable:

∀t ∈ D :

∑
∀i ∈{T ∪c̄ }
Di⩽t

db fi (t ) > t (25)

Proof. If the system is not schedulable with the presence of the combination c̄, it does not mean

that τi misses its deadline. In other words, the set of unschedulable combinations w.r.t. τi is a subset
of the set of unschedulable combinations generated using the above condition. Therefore, the above

condition is a necessary schedulability criterion w.r.t. τi . □

The superset of unschedulable combinations w.r.t. τi is then:

C̃i = {c̄ | ∃t ∈ D :

∑
∀i ∈{T ∪c̄ }
Di⩽t

db fi (t ) > t } (26)

Note that for EDF scheduling∀i, j ∈ T : C̃i = C̃j because C̃ is computed regardless the considered

task, see Lemma 6.3.

Compute DMM. Each unschedulable combination may impact at most one busy-window causing

at most Ni deadline-misses. Ni is a constant, however, the number of impacted busy-windows varies

depending on the waywe combine the available sporadic overload jobs

∑
s ∈O Ω

s→i
k in unschedulable
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combinations. To conservatively compute the DMM, we need to maximize the number of impacted

busy-windows, thus, the following theorem:

Theorem 6.4 ([45]). We compute a DMM for any task τi ∈ T as follows:

dmmi (k ) = max

{
Ni

∑
c̄∈C̃i

x c̄ :

∑
c̄:s ∈c̄∈C̃i

x c̄ ⩽ Ωs→i
k ∀s ∈ O, x c̄ ∈ N ∀c̄ ∈ C̃i

}
(27)

where x c̄ represents the number of instances of the unschedulable combination c̄.

Proof. On the one hand, within one busy-window there will be no more than Ni deadline-misses

as has been proven in Lemma 6.1.

On the other hand, there will be no more than max{
∑

c̄∈C̃i x c̄ } impacted busy-windows (each

includes at least one deadline-miss).

The ILP in Equation 27 provides, therefore, an upper bound on the number of deadlines that τi
might miss out of any k-sequence, i.e., a DMM.

□

Note that the ILP does not depend on the scheduling policy. What changes w.r.t. the considered

scheduling policy is how Ni , C̃i , and Ωs→i
k are computed.

This ILP can compute DMMs for tasks for which arrival curves are used to model task activations.

Hence, it is more general than that in [4, 44]. Nevertheless, the proposed work is not able to compute

DMMs for tasks that have δ+ (2) = ∞, i.e., sporadic tasks, because we will not be able to bound

Ωs→i
k . In the next section, we extend this discussion by addressing the sources of pessimism in

computing DMMs.

7 SOURCES OF PESSIMISM
Computing dmmi (k ) using the proposed analysis has three main sources of pessimism:

(1) Ni is only an upper bound on the number of deadlines that τi may miss within one busy-

window. Not every unschedulable combination causes the same number of deadline-misses.

Figure 8 illustrates this case. While the combination c̄1 = {τ1,τ2} causes two deadline-misses

and therefore Ni = 2, c̄2 = {τ2} cannot cause more than one deadline-miss. When Ni = 1,

there is no pessimism related to Ni .

(2) TWCA assumes that every busy-window within the time window of the k-sequence experi-
ences the maximum interference from all tasks τi ∈ T . This may not be possible given the

activation models of tasks in T within the time window of the k-sequence. Consequently,
the maximum number of impacted busy-windows are over-approximated.

Figure 9 shows a scenario in which τ4 meets its deadline even with the presence of the

unschedulable combinations c̄2 = {τ2}. Over a k-sequence, two busy-windows that both

experience c̄2 cannot both miss deadlines because they cannot both be interfered by τ3.
(3) When a sporadic task τs has more than one job within the longest busy-window. Let ωs

denotes the number of jobs of τs within the longest busy-window. In a combination, each task

τs has a Boolean representation: either ωs jobs are activated as early as possible according to

the activation model of τs when τs ∈ c̄ or none of them when τs < c̄.
In the next section, we motivate and validate our analysis a realistic case study and a set of synthetic

test cases to extensively test our analysis.

8 EXPERIMENTS
Two kinds of experiments will be presented in this section: a realistic case study inspired by

industrial practice, and synthetic test cases.
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τ1

τ1

τ2

τ2

τ3

τ3

τ4
X X

(a)

τ4 X

(b)

Fig. 8. Ni as a source of pessimism in the computations of dmmi (k ). The black upward arrows indicate the
deadline. X indicates a deadline-miss.

τ1

τ2

τ3

τ4

Fig. 9. Second source of pessimism in the computation of dmmi (k ). When τ3 does not interfere with τ4, then
the combination c̄2 = {τ2} is not unschedulable any more.

For these experiments, the worst-case response time analysis of EDF scheduling is implemented

and integrated with pyCPA [15], which is a python implementation of Compositional Performance

Analysis (CPA)[23]. We use pyCPA as a core analysis for our experiments.

Remember that we consider the LP relaxation in [45] to compute dmmi (k ) instead of directly

computing it using the ILP in Theorem 6.4. The optimization problem is solved using cplex.

Concerning the schedulability criterion in Equation 26, we implement the Quick convergence

Processor-demand Analysis (QPA) algorithm [46] that reduces significantly the number of iterations

required to check the schedulability of a given task set.

8.1 Satellite on-board software
We start with a case study inspired by industrial practice, which is provided by Thales Alenia Space

(TAS) and published in [22]. The case study is a satellite on-board software.

A satellite comprises two major parts: the platform and the payload. While the payload’s software

has soft real-time requirements, the platform functions, e.g., the Attitude and Orbit Control System

(AOCS) and the Thermal Control System (TCS), are characterized by hard real-time requirements.

However, some functions of the platform on-board software (OBSW) may occasionally miss few

deadlines without jeopardizing the mission which motivates considering WHRT requirements

instead of hard ones.
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Fig. 10. Activation models for τ10,τ11 and τ21.

In this experiment, we recall the case study from [22] but with considering EDF scheduling

instead of fixed priority scheduling. The task set representative of OBSW consists of 30 tasks: 27

tasks are in the nominal mode and 3 recovery and reconfiguration tasks (τ10,τ11 and τ21) which
cause a transient overload on the system when they are activated. Table 3 brings the task set from

Table 1 in [22] and from the results in Section 8.1 where τ10,τ11 and τ21 appear in red. Activation

models for τ10,τ11 and τ21 are illustrated in Figure 10.

When considering EDF scheduling, no task misses its deadline. For the sake of the case study,
we shorten the deadline of the sporadic overload tasks τ10,τ11,τ21 such that ∀s ∈ {10, 11, 21} : Ds =

8 ∗Cs (they are not shown in Table 3). In this case, 11 nominal tasks miss their deadline with the

presence of the sporadic overload, namely: τ1,τ2,τ3,τ4,τ5,τ6,τ7,τ9,τ12, τ13 and τ16.
Table 4 shows dmmi (k ) : k = 2, 10, 100, 500, 1000 for the impacted tasks. Not surprisingly, τ1,τ2

have the worst DMMs as they have the shortest periods. Because of the inborn robustness of

the implemented control laws, OBSW tasks might tolerate few deadline-misses. That is, tasks

τ3,τ4,τ5,τ6,τ7,τ12 need to tolerate only 1 deadline-miss out of any sequence of 10 deadlines while

τ9, τ13 and τ16 need to tolerate no more than 1 deadline-miss in a row and 3 out of any consecutive

10 deadlines. However, τ1 and τ2 may miss up to 3 consecutive deadlines when the 3 recovery and

reconfiguration tasks are activated within one busy-window which could be intolerable and lead to

a functional error.

Let us now repeat the experiment for FPP scheduling in order to illustrate the impact of EDF

scheduling on the DMMs of real-time tasks by comparing the results of the two schedulers (EDF,

FPP). Note that for FPP, τ1 has the highest priority while τ30 has the lowest one and the index of

each task refers to its priority. The task set has a criticality-based priority assignment; neither Rate

Monotonic (RM) nor Deadline Monotonic (DM) is used.

In FPP scheduling, only three nominal tasks miss their deadline as shown in Table 5. As the

priority is fixed, we can predict which task may miss its deadline. In this case study nominal tasks

τ1 to τ9 will never be impacted by the sporadic overload tasks (τ10,τ11,τ21), while the rest might

be impacted and miss few deadlines when the 3 recovery and reconfiguration tasks are activated

within one level-i busy-window. In this case, TWCA helps in bounding the distribution of the

deadline-misses/hits in the form of a DMM.

EDF scheduling sacrifices no task, instead, it fairly distributes the deadline-misses. Therefore, it

is not possible to predict which task will miss its deadline. EDF is therefore can not guarantee the

schedulability of systems that have hard and WHRT tasks.

In the next experiment, we present a comparison between DMMs computed under EDF and RM

using synthetic test cases to study the impact of EDF scheduling on DMMs extensively.
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Name C T D Name C T D
τ1 0.56 15.625 15.625 τ16 3.5 250 250

τ2 0.76 15.625 15.625 τ17 27 500 500

τ3 15 125 31.25 τ18 1.5 1000 1000

τ4 25.03 125 46.875 τ19 16 1000 1000

τ5 7.5 62.5 62.5 τ20 19.1 1000 1000

τ6 6.15 125 125 τ21 36.02 500 1000

τ7 1.2 125 125 τ22 88.8 2000 2000

τ8 0.9 1000 500 τ23 2 32000 32000

τ9 1.95 250 250 τ24 1 32000 32000

τ10 30 10000 125 τ25 1 1000 1000

τ11 30 350 125 τ26 20 1000 1000

τ12 1.2 125 125 τ27 40 2000 2000

τ13 5.15 250 203.125 τ28 1.5 2000 2000

τ14 1.2 1000 500 τ29 1.5 2000 2000

τ15 22.5 500 500 τ30 0.2 32000 32000

Table 3. OBSW tasks.C ,T and D denote respectively: worst-case execution time, period/minimum distance,
deadline. The time unit is ms.

Name dmmi (2) dmmi (10) dmmi (100) dmmi (500) dmmi (1000)
τ1 2 3 3 9 12

τ2 2 3 3 9 12

τ3 1 1 3 4 4

τ4 1 1 3 4 4

τ5 1 1 3 4 4

τ6 1 1 3 4 4

τ7 1 1 3 4 4

τ9 1 3 4 4 4

τ12 1 1 3 4 4

τ13 1 2 4 4 4

τ16 1 3 4 4 4

Table 4. DMMs for OBSW tasks when EDF scheduling is considered.

Name dmmi (2) dmmi (10) dmmi (100) dmmi (500) dmmi (1000)
τ12 1 2 3 4 4

τ13 1 2 4 4 4

τ26 1 3 4 4 4

Table 5. DMMs for OBSW tasks when FPP scheduling is considered.

8.2 Synthetic test cases
In this section, we present a set of synthetic test cases that we have developed to test more

extensively our approach on a variety of systems. We aim to study and illustrate the impact of EDF

scheduling on DMMs by comparing the impact of different factors on the computation of dmmi (k )
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when EDF and RM are considered respectively. Particularly, we study the utilizationU , the share

of sporadic overloadUO/U whereUO =
∑

s ∈O Us , and the system size.

Synthetic test case generation. Our synthetic test cases consist of a set of tasks with a worst-case

execution time, a period (for periodic tasks), a minimum distance function (for sporadic tasks),

and a relative deadline. Every task setZ consists of typical tasks that are chosen to be periodic

in this experiments, and overload tasks, i.e.Z = T ∪ O. The following steps summarize how we

generated them:

• We first choose the number of tasks n = #{Z} and the number of overload tasks ns = #{O}.

We then decide on the system utilization to be shared among the tasks.

• UUnifast [5] is applied to assign a share of the system utilization to each task (sporadic or

periodic, typical or overload).

• For typical tasks, we assign periods randomly chosen in a predefined set of harmonic values.

Then, the worst-case execution time of typical tasks is computed as follows: Ci = Ui ∗ pi ,
where pi denotes the period of the typical task τi . Note that δ

−
i (n) = (n − 1) . pi .

• Generating minimum distance functions for sporadic tasks is not straightforward, and there

is no standard approach for this. In particular, they have to be super-additive, i.e., δ− (a+b) ⩾
δ− (a) + δ− (b) for all a, b [23]. To achieve this, we depended on the definition of Us of a

sporadic task, which is defined as follows (see Definition 3.3):

Us = lim

n→∞

(n − 1) ∗Cs

δ−s (n)

We first randomly assign the worst-case execution time for each sporadic task τs ∈ O
such that Cs ∈ [mini ∈T {Ci },maxi ∈T {Ci }]. The justification of this choice is not to bias the

activation model of τs toward having a high density of jobs by selecting short execution times

or low density by selecting long execution times. Then, we compute δ−s (N ) = (N − 1) ∗Cs/Us ,

with a sufficiently large N (for all our experiments δ−s (100) is much larger than the longest

busy-window). We generated then a trace of N jobs such that the first one is at 0 and the

last one is at δ−s (N ) and N − 2 jobs in between. We use pyCPA [15] to extract the minimum

distance function from the generated trace (model.TraceEventModel(trace)).
To guarantee a wide variety of system models, we chose the various parameter values as follows:

• Number of tasks n ∈ [3, 45] and number of sporadic overload tasks ns ∈ [1, 20]. On the one

hand, analyzing a system with n < 3 makes no sense because it is trivial. On the other hand,

scheduling 45 tasks on one resource is realistic and acceptable.

• Total utilization is U ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Resources in the generated test cases range

from average to maximum allowed utilization.

• The transient overload UO has a share of UO/U ∈ {0.001, 0.01, 0.05, 0.1, 0.15, 0.2}. The gener-
ated test cases range from being slightly overloaded to highly overloaded.

• Each typical task is assigned a relative deadline Di ∈ {0.6, 0.8, 1, 1.2, 1.4} × pi . Thus, the
deadline is arbitrary.

• Each overload task is assigned a relative deadline Ds = Cs to get higher priorities under EDF

scheduling.

Note that we chose to have a range of values rather than just intervals to facilitate the study of

parameters impact.

Results. We performed the experiment over 5000 task sets generated as explained above. For

each task set, we applied first the EDF scheduling policy, and we computed dmmi (k ) for k =
10, 100, 500, 1000 where τi ∈ T . Then we assigned the highest priorities to the sporadic overload
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Fig. 11. The impact ofU andUO/U on the computed DMM under EDF scheduling.
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Fig. 12. The impact ofU andUO/U on the computed DMM under RM scheduling.

tasks to interfere with all tasks in T , and we assigned fixed priorities to tasks in T according to RM.

We aim to show a comparison between fixed priority scheduling and EDF. As the relative deadline

can be larger than the period (D > T) neither RM, which has been proven by Liu and Layland [29]

to be optimal when D = T , nor DM, which has been shown by Leung and Whitehead [26] to be

optimal when D ⩽ T , is optimal. However, we used RM as a systematic approach to assigning the

priorities instead of random assignment. Studying the impact of priority assignments, e.g. DM, RM,

EDF, on the computed DMM is an interesting topic. However, this is out of the scope of this paper.
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TWCA does not apply to task sets in which T is not schedulable. The 5000 generated task sets

have T schedulable under EDF. However, there are 398 task sets in which T is unschedulable

under RM.

Now we have 4602 task sets to continue the experiment. we normalize dmmi (k ) to 1 by reporting
v = maxi ∈T {dmmi (k )/k }. That facilitates the comparison between systems with different number

of tasks and between dmmi (k ) for different k .
Figure 11 shows the average of the reported value v under EDF. Each curve represents a certain

utilization. Each point of the curves is the average of v of task sets that have the sameU and the

sameUO/U . Curves grow with increasingUO/U and they are shifted up with increasingU .

We can draw the same conclusion from Figure 12 where RM is considered. By comparing both

figures, we conclude that EDF can help tasks to miss fewer deadlines and tolerate larger overload.

However, we showed in the last experiment (OBSW) that EDF distributes the deadline-misses

causing all tasks inZ to miss their deadline. This experiment supports this conclusion where in

3050 task sets out of 4602 all tasks inZ miss their deadline when EDF is considered. All tasks in

Z miss their deadline in 1517 task sets when RM is considered. Remember that every sporadic

overload task has Ds = Cs in both EDF and RM. The results are therefore pessimistic. In RM, the

highest priority task misses its deadline when δ−s (2) < Cs , such a situation can be considered as a

burst.
We reported in this experiment the average running time to compute dmmi (500) over 4602 task

sets for RM and EDF. When RM is considered the average running time was 0.623s , while it was
only 0.03379s for EDF. To explain this result, let us recall the set of unschedulable combinations C̃ .
The size of this set determines the number of variables (columns) of our ILP, or the number of steps

in the column generation algorithm, which is used in the LP relaxation. A task setZ does not have

the same C̃ under EDF and RM. Let C̃EDF
denotes the set of unschedulable combinations under EDF

and C̃RM
under RM; it is always true that C̃EDF ⊆ C̃RM

because every schedulable combination

c̄ under RM is schedulable under EDF but not vice versa. The experiment over 4602 shows that

computing dmmi (k ) under RM required at most 361 steps (columns to be generated), while under

EDF it required at most 17 steps.

At this point, we can propose the following conclusions:

• TWCA reports pessimistic bounds. The sources of pessimism are illustrated in Section 7.

• TWCA scales well w.r.t. k , n and ns . The experiment covers k = 10, 100, 500, 1000, n ∈ [3, 45],
and ns ∈ [1, 20] with a maximum running time equals to 1.3s for EDF and 32.5s for RM.

• TWCA implies better to a relatively low transient sporadic overload. Figures 11 and 12

illustrate this conclusion.

• EDF can help tasks to miss fewer deadlines and tolerate larger overload comparing to RM.

• EDF is proper for systems that comprise only WHRT tasks. RM is proper for systems in

which hard and weakly-hard real-time tasks are defined.

9 CONCLUSION
Many practical real-time systems are weakly-hard, which can de facto sustain a bounded number

of deadline-misses. That makes computing WHRT guarantees to be a requisite as the worst-

case guarantees are not expressive for these systems. In this work, we addressed the problem of

computing WHRT guarantees in the form of a DMM using TWCA for independent tasks where

EDF scheduling policy is considered.

Through the pages of this paper, we first recalled state-of-the-art worst-case response time

analysis of EDF which is the foundation of TWCA. Later, we presented state-of-the-art TWCA to

, Vol. 1, No. 1, Article . Publication date: June 2019.



Weakly-Hard Real-Time Guarantees for EDF Scheduling 23

compute DMMs. We showed then how to adopt TWCA to compute DMMs for independent tasks

under EDF scheduling policy in temporarily overloaded systems.

This work was motivated by and validated on a realistic case study inspired by industrial practice

(satellite on-board software) and on a set of synthetic test cases. The experiment was performed

over 5000 task sets to compare DMMs computed under EDF and RM scheduling policies. The goal

was to study the impact of EDF scheduling on DMMs extensively. The results showed that EDF

can help tasks to miss fewer deadlines and tolerate larger overload comparing to RM. They also

showed that EDF distributes the deadline-misses among tasks. Therefore, EDF will likely lead to

failure to the hard real-time tasks.

This works can be used for considering distributed WHRT systems, where heterogeneous

scheduling policies can be used, in order to provide end-to-end weakly-hard real-time guarantees

such as end-to-end DMMs.
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