C. S. Drummond, R. J. Eastwood, S. T. Miotto, and C. E. Hughes, Multiple Continental Radiations and Correlates of Diversification in Lupinus (Leguminosae): Testing for Key Innovation with Incomplete Taxon Sampling, Systematic Biology, vol.61, issue.3, pp.443-460, 2012.

C. Hughes and R. Eastwood, Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes, Proc. Natl Acad. Sci. USA, vol.103, pp.10334-10339, 2006.

A. Ainouche and R. J. Bayer, Phylogenetic relationships in Lupinus (Fabaceae: Papilionoideae) based on internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA, American Journal of Botany, vol.86, issue.4, pp.590-607, 1999.

J. S. Gladstones, Book Review. Lupins as Crop Plants: Biology, Production and Utilization Edited by J.S. Gladstones, C. Atkins and J. Hamblin CAB International, Wallingford, Oxon. OX10 8DE, UK 1998, f75.00 (US $1 35.00), Hardback, 465 pp. ISBN: 085199-224-2, Grass and Forage Science, vol.54, issue.3, pp.286-286, 1999.

M. Bähr, A. Fechner, K. Hasenkopf, S. Mittermaier, and G. Jahreis, Chemical composition of dehulled seeds of selected lupin cultivars in comparison to pea and soya bean, LWT - Food Science and Technology, vol.59, issue.1, pp.587-590, 2014.

B. Wolko, J. C. Clements, B. Naganowska, M. N. Nelson, and H. Yang, Lupinus, Wild Crop Relatives: Genomic and Breeding Resources, pp.153-206, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01088645

G. Boschin, A. D?agostina, P. Annicchiarico, and A. Arnoldi, Effect of genotype and environment on fatty acid composition of Lupinus albus L. seed, Food Chemistry, vol.108, issue.2, pp.600-606, 2008.

G. G. Fontanari, J. P. Batistuti, R. J. Cruz, P. H. Saldiva, and J. A. Arêas, Cholesterol-lowering effect of whole lupin (Lupinus albus) seed and its protein isolate, Food Chemistry, vol.132, issue.3, pp.1521-1526, 2012.

G. Boschin and A. Arnoldi, Legumes are valuable sources of tocopherols, Food Chemistry, vol.127, issue.3, pp.1199-1203, 2011.

M. M. Lucas, F. L. Stoddard, P. Annicchiarico, J. Frías, C. Martínez-villaluenga et al., The future of lupin as a protein crop in Europe, Frontiers in Plant Science, vol.6, p.705, 2015.

H. Lambers, J. C. Clements, and M. N. Nelson, How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae), American Journal of Botany, vol.100, issue.2, pp.263-288, 2013.

R. F. Giehl, B. D. Gruber, and N. Von-wirén, It?s time to make changes: modulation of root system architecture by nutrient signals, Journal of Experimental Botany, vol.65, issue.3, pp.769-778, 2013.

J. P. Lynch, Root Phenes for Enhanced Soil Exploration and Phosphorus Acquisition: Tools for Future Crops, Plant Physiology, vol.156, issue.3, pp.1041-1049, 2011.

M. Watt and J. R. Evans, Phosphorus acquisition from soil by white lupin (Lupinus albus L.) and soybean (Glycine max L.), species with contrasting root development, Plant and Soil, vol.248, issue.1/2, pp.271-283, 2003.

S. Koren, Canu: scalable and accurate long-read assembly via adaptive kmer weighting and repeat separation, Genome Res, vol.27, pp.722-736, 2017.

C. S. Chin, Phased diploid genome assembly with single-molecule realtime sequencing, Nat. Methods, vol.13, pp.1050-1054, 2016.

M. Ksi??kiewicz, A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits, Sci. Rep, vol.7, p.15335, 2017.

E. Sallet, J. Gouzy, and T. G. Schiex, EuGene: An Automated Integrative Gene Finder for Eukaryotes and Prokaryotes, Methods in Molecular Biology, vol.97, pp.97-120, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02790731

R. M. Waterhouse, M. Seppey, F. A. Simão, M. Manni, P. Ioannidis et al., BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics, Molecular Biology and Evolution, vol.35, issue.3, pp.543-548, 2017.

J. Macas, P. Novák, J. Pellicer, J. ?í?ková, A. Koblí?ková et al., In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae, PLOS ONE, vol.10, issue.11, p.e0143424, 2015.

J. K. Hane, A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution, Plant Biotechnol. J, vol.15, pp.318-330, 2017.

J. K. Pritchard, M. Stephens, and P. Donnelly, Inference of population structure using multilocus genotype data, Genetics, vol.155, pp.945-959, 2000.

G. Evanno, S. Regnaut, and J. Goudet, Detecting the number of clusters of individuals using the software structure: a simulation study, Molecular Ecology, vol.14, issue.8, pp.2611-2620, 2005.

M. Nattestad and M. C. Schatz, Assemblytics: a web analytics tool for the detection of variants from an assembly, Bioinformatics, vol.32, pp.3021-3023, 2016.

S. Kurtz, Versatile and open software for comparing large genomes, Genome Biol, vol.5, p.12, 2004.

C. Lee, D. Yu, H. Choi, and R. W. Kim, Reconstruction of a composite comparative map composed of ten legume genomes, Genes Genomics, vol.39, pp.111-119, 2017.

J. Wang, Hierarchically aligning 10 legume genomes establishes a familylevel genomics platform, Plant Physiol, vol.174, pp.284-284300, 2017.

W. Zhuang, The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication, Nat. Genet, vol.51, pp.865-876, 2019.

J. Kreplak, A reference genome for pea provides insight into legume genome evolution, Nat. Genet, vol.51, pp.1411-1422, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02278272

D. J. Bertioli, The genome sequence of segmental allotetraploid peanut Arachis hypogaea, Nat. Genet, vol.51, pp.877-884, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02141867

L. Ren, W. Huang, and S. B. Cannon, Reconstruction of ancestral genome reveals chromosome evolution history for selected legume species, N. Phytol, vol.223, pp.2090-2103, 2019.

M. Kroc, G. Koczyk, W. ?wi?cicki, A. Kilian, and M. Nelson, New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L. (narrow-leafed lupin), Theor. Appl. Genet, vol.127, pp.1237-1249, 2014.

Y. Wang, D. Coleman-derr, G. Chen, and Y. Q. Gu, OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species, Nucleic Acids Res, vol.43, pp.78-84, 2015.

H. Tang, An improved genome release (version Mt4.0) for the model legume Medicago truncatula, BMC Genomics, vol.15, p.312, 2014.

R. D. Finn, 2017-beyond protein family and domain annotations, vol.45, pp.190-199, 2016.

K. R. Skene, Pattern formation in cluster roots: some developmental and evolutionary considerations, Ann. Bot, vol.85, pp.901-908, 2000.

J. L. Riechmann and E. M. Meyerowitz, The AP2/EREBP family of plant transcription factors, Biol. Chem, vol.379, pp.633-646, 1998.

A. Hirota, T. Kato, H. Fukaki, M. Aida, and M. Tasaka, The auxinregulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis, Plant Cell, vol.19, pp.2156-2168, 2007.

L. Hsieh, Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing, Plant Physiol, vol.151, pp.2120-2132, 2009.

R. Bari, B. Datt-pant, M. Stitt, and W. Scheible, PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants, Plant Physiol, vol.141, pp.988-999, 2006.

D. Secco, Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery, Plant Cell, vol.25, pp.4285-4304, 2013.

Y. Y. Zhu, microRNA expression profiles associated with phosphorus deficiency in white lupin (Lupinus albus L.), Plant Sci, vol.178, pp.23-29, 2010.

R. Gamuyao, The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency, Nature, vol.488, pp.535-539, 2012.

M. Dobiesz and A. I. Piotrowicz-cie?lak, Proteins in relation to vigor and viability of white lupin (Lupinus albus L.) seed stored for 26 years, Front. Plant Sci, vol.8, pp.1-11, 2017.

J. C. Jimenez-lopez, Characterization of narrow-leaf lupin (Lupinus angustifolius L.) recombinant major allergen IgE-binding proteins and the natural ?-conglutin counterparts in sweet lupin seed species, Food Chem, vol.244, pp.60-70, 2018.

R. Lin, Development of a sequence-specific PCR marker linked to the gene 'pauper' conferring low-alkaloids in white lupin (Lupinus albus L.) for marker assisted selection, Mol. Breed, vol.23, pp.153-161, 2009.

M. M. Lucas, The future of lupin as a protein crop in, Europe. Front. Plant Sci, vol.6, p.705, 2015.

J. D. Berger, D. Shrestha, and C. Ludwig, Reproductive strategies in mediterranean legumes: trade-offs between phenology, seed size and vigor within and between wild and domesticated lupinus species collected along aridity gradients, Front. Plant Sci, vol.8, p.548, 2017.

J. C. Clements, P. F. White, and B. J. Buirchell, The root morphology of Lupinus angustifolius in relation to other Lupinus species, Aust. J. Agric. Res, vol.44, pp.1367-1375, 1993.

K. R. Skene, Cluster roots: some ecological considerations, J. Ecol, vol.86, pp.1060-1064, 1998.

D. Cordell, J. Drangert, and S. White, The story of phosphorus: global food security and food for thought, Glob. Environ. Change, vol.19, pp.292-305, 2009.

O. Raymond, The Rosa genome provides new insights into the domestication of modern roses, Nat. Genet, vol.50, pp.772-777, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01798003

B. J. Walker, T. Abeel, T. Shea, M. Priest, and A. Abouelliel, Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement, PLoS ONE, vol.9, p.112963, 2014.

H. Tang, ALLMAPS: robust scaffold ordering based on multiple maps, Genome Biol, vol.16, pp.1-15, 2015.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet. J, vol.17, p.10, 2011.

H. Li and R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform, Bioinformatics, vol.26, pp.589-595, 2010.

A. Mckenna, The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res, vol.20, pp.1297-1303, 2010.

N. Dierckxsens, P. Mardulyn, and G. Smits, NOVOPlasty:de novoassembly of organelle genomes from whole genome data, Nucleic Acids Research, vol.45, p.gkw955, 2016.

P. Novak, P. Neumann, J. Pech, J. Steinhaisl, and J. Macas, RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads, Bioinformatics, vol.29, issue.6, pp.792-793, 2013.

P. Neumann, P. Novák, N. Ho?táková, and J. Macas, Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification, Mobile DNA, vol.10, issue.1, p.1, 2019.

A. Marques, Correction for Marques et al., Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin, Proceedings of the National Academy of Sciences, vol.112, issue.48, pp.E6720-E6720, 2015.

A. Kato, A. Kato, P. S. Albert, J. M. Vega, A. Kato et al., Sensitive fluorescencein situhybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation, Biotechnic & Histochemistry, vol.81, issue.2-3, pp.71-78, 2006.

P. J. Bradbury, Z. Zhang, D. E. Kroon, T. M. Casstevens, Y. Ramdoss et al., TASSEL: software for association mapping of complex traits in diverse samples, Bioinformatics, vol.23, issue.19, pp.2633-2635, 2007.

I. Letunic and P. Bork, Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees, Nucleic Acids Research, vol.44, issue.W1, pp.W242-W245, 2016.

D. A. Earl and B. M. Vonholdt, STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method, Conserv. Genet. Resour, vol.4, pp.359-361, 2012.

F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics, vol.31, pp.3210-3212, 2015.

C. Pont, S. Wagner, A. Kremer, L. Orlando, C. Plomion et al., Paleogenomics: reconstruction of plant evolutionary trajectories from modern and ancient DNA, Genome Biology, vol.20, issue.1, p.29, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02278824

D. Kim, B. Langmead, and S. L. Salzberg, HISAT: a fast spliced aligner with low memory requirements, Nat. Methods, vol.12, p.357, 2015.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biology, vol.15, issue.12, pp.1-21, 2014.

K. J. Livak and T. D. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???CT Method, Methods, vol.25, issue.4, pp.402-408, 2001.