Skip to Main content Skip to Navigation
Conference papers

A Stochastic Optimization Model for Commodity Rebalancing Under Traffic Congestion in Disaster Response

Abstract : After a large-scale disaster, the emergency commodity should be distributed to relief centers. However, the initial commodity distribution may be unbalanced due to the incomplete information and uncertain environment. It is necessary to rebalance the emergency commodity among relief centers. Traffic congestion is an important factor to delay delivery of the commodity. Neither the commodity rebalancing nor traffic congestion is considered in previous studies. In this study, a two-stage stochastic optimization model is proposed to manage the commodity rebalancing, where uncertainties of demand and supply are considered. The goals are to minimize the expected total weighted unmet demand in the first stage and minimize the total transportation time in the second stage. Finally, a numerical analysis is conducted for a randomly generated instance; the results illustrate the effectiveness of the proposed model in the commodity rebalancing over the transportation network with traffic congestion.
Document type :
Conference papers
Complete list of metadata

Cited literature [16 references]  Display  Hide  Download

https://hal.inria.fr/hal-02460520
Contributor : Hal Ifip <>
Submitted on : Thursday, January 30, 2020 - 10:17:48 AM
Last modification on : Thursday, January 30, 2020 - 10:22:34 AM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2022-01-01

Please log in to resquest access to the document

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Xuehong Gao. A Stochastic Optimization Model for Commodity Rebalancing Under Traffic Congestion in Disaster Response. IFIP International Conference on Advances in Production Management Systems (APMS), Sep 2019, Austin, TX, United States. pp.91-99, ⟨10.1007/978-3-030-29996-5_11⟩. ⟨hal-02460520⟩

Share

Metrics

Record views

67