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Toward real-time embedded 
observer of unsteady fluid flow 

environment 

Source : DG Group
https://www.dg-flugzeugbau.de/en/library/flutter-

resistance-of-the-dg-1000

Robust and ultra-fast
aerodynamic and aeroelastic short-time 
prediction for better active control loops.

§ active flutter suppression
§ Passengers comfort

For monitoring and actively controlling hydrodynamic and aerodynamic systems 
(e.g. aircraft wing), it can be necessary to estimate in real-time and predict the 
flow around those systems. We propose here a new method which combines 

data, physical models and measurements for this purpose. Very good numerical 
results have been obtained on 2- and 3-dimensional wake flows at moderate 

Reynolds, even 16 vortices shedding cycles after the learning window. 

V. Resseguier, M. Ladvig, A. M. Picard, E. Mémin and B. Chapron

Estimation and prediction:
• Flow
• Lift, drag
• …

Observer

Controller 

Simple 
model

Simple 
model

• Flaps, slats
• Fluidic actuators
• …

Plane
aerodynamism /

aeroelasticity
Plane sensors

Which simple model?      How to combine model & measurements?

1

Data-driven
simulations

Physics-driven
simulations

On-board measurements

Data
assimilation

Data
assimilation

Reduced
order models

Our
approach

Data assimilation
(particle filter + tempering)
More accurate estimation

globally in space
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On-line 
measurements

• Sparse
• Possibly noisy 

Numerical simulations 
(ROM)

• Globally in space
• Erroneous

Example of estimation:

relative velocity
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Novelty is here !

3. Randomized physics + ,34) ,3 à Location uncertainty models (LUM)

Rigorous CFD stochastic closure, with physically-based multiplicative noise

Need for accurate uncertainty / errors quantification :

2.   Measurement-simulation coupling (data assimilation)

1.   Ultra-fast CFD simulations with intrusive reduced order models (ROM) 

On-line : Simulation & data assimilation

Stochastic
ROM

Flow
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modes
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Data
assimilation

Measurements

Off-line : Building ROM

Stochastic
ROM

Randomized
Physics

(LU)

Data

DNS codePhysics
(Navier-
Stokes)

Ø Reduced order model (ROM) : for very fast and robust CFD 
Combine data & physics (built off-line) // Closure problem handled by LUM

Ø Data assimilation : to correct the fast simulation on-line by incomplete/noisy 
measurements // Model error quantification handled by LUM

Ø Robust prediction far outside the learning period 
Optimal unsteady flow estimation/prediction in the whole spatial domain

NEXT STEPS

Tests description

• Same data assimilation
algorithms

• Observation is one spatial
resolution points of
synthetic 2D PIV
measurements, assimilated
ten times by vortex
shedding cycles.

CPU

• Generate the simulation
dataset : several hours on a
supercomputer (high-
resolution CFD).

• ROM construction : several
hours on a laptop (non-
parallelized MATLAB® code).

• On-line data assimilation:
approximately real time on
a laptop (non-parallelized
Python™ code).

Re 300, 3D
14 vortex
shedding

cycles after the
learning period
(DNS has 10? dof)

Re 100, 2D
10 vortex
shedding

cycles after the
learning period
(DNS has 10@ dof)

Reference :
PCA-projection of the DNS

(Optimal from 8-dof linear decomposition)

Our method :
POD-Galerkin with Navier-Stokes
under location uncertainty (LUM)

METHODOLOGY SUMMARY

ABSTRACT

APPLICATIONS

METHODOLOGY

NUMERICAL RESULTS FOR ; = A DEGREES OF FREEDOM (DOF) (ORDER OF THE ROM)

CONCLUSION

Benchmark :
POD-Galerkin with Navier-Stokes + optimally

tuned eddy viscosity & additive noise

Ø Real measurements
Ø Increasing complexity (dof, Reynolds, geometry, …) Ø Control loop

Inflow Q-criterion Inflow Q-criterion Inflow Q-criterion

Inflow Vorticity Inflow Vorticity

We get a B coupled ordinary differential equations
for very fast simulation of temporal modes CD E

Ø Principal Component Analysis (PCA) on a dataset to reduce the degrees of 
freedom (dof) :

Ø Approximation (at small dof B):

Ø Projection of the “physics”
onto the spatial modes : 
(POD-Galerkin)

( Physical equation (e.g. Navier-Stokes))F
G
H, ID , ⋅

Spatial  modes
ID , D

Snapshots

K ,, ED D
PCAOff-line simulation PCA residual

Learned and set 
up once for all

§ Drag reduction
§ Fuel economy

VorticityInflow


