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Abstract. We have been interested in Automatic Guided Vehicles (AGV) for several years. In this paper, we
synthesize controllers for AGV applications using monocular vision. In particular, we are interested in road following
and direction change tasks, and in analyzing the influence of extrinsic camera parameter perturbations on vehicle
behavior. We use the bicycle as the kinematic vehicle model, and we choose the position of the white band on the
road as the sensor signal. We define an interaction between the camera, which is mounted inside the vehicle, and
the white band detected in the image space. Using this kind of interaction, we present how to use a pole assignment
technique to solve the servoing task. We show the simulation and experimental results (1/10 scale demonstrator) with
and without perturbations. We then investigate the use of a robust controller to slow down the effect of perturbations
on the behavior of the vehicle.
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1. Introduction

In the realm of intelligent systems for highways, de-
velopment of AGV is necessary to enable vehicles to
drive automatically along the road (Inrets, 1996; PATH,
1997). In fact, the requirement is for a controller that
can maintain the position and the orientation of the
vehicle with respect to the center of the road and/or
apply changes of direction. The problem of vehicle
control using a camera has been given considerable at-
tention by many authors (Dickmanns and Zapp, 1987;
Kehtarnavaz et al., 1991; Wallace et al., 1986; Waxman
et al., 1987). The work described in Jurie et al. (1992,
1993, 1994) is among the most notable in lateral con-
trol using monocular vision. It consists of the recon-
struction of the road using the 2D visual information
extracted from the image processing system (Chapuis
et al., 1995).

In recent years, the integration of computer vision in
robotics has steadily progressed, from the early “look
and move” systems, to current systems in which vi-
sual feedback is incorporated directly into the control

loop. These techniques of vision based control are
used to control holonomic robots in different domains
(Feddema and Mitchell, 1989; Khadraoui et al., 1996;
Papanikolopoulos et al., 1991, 1993).

The principle of this approach is based on the task
function approach (Samson et al., 1991), and many
people have developed this concept applied to vi-
sual sensors (Chaumette, 1990; Espiau et al., 1992;
Hutchinson et al., 1996). There are still a few appli-
cations in mobile robots using this kind of approach.
The main difficulty is due to the presence of non-
holonomic mechanical connections which limit robot
movements (Pissard-Gibollet and Rives, 1991; Tsakiris
et al., 1997).

We have proposed a new technique with a visual ser-
voing approach, in which control incorporates the vi-
sual feedback directly (Khadraoui et al., 1995; Martinet
et al., 1997). In other words, this is specified in terms
of regulation in the image frame of the camera. Our
application involves controlling the lateral road posi-
tion of a vehicle following the motorway white line. A
complete 2D model of both the vehicle and the scene is



thenessential. It takes into account the visual features
of the scene and the modeling of the vehicle.

The main purpose of this study is the development of
a new lateral control algorithm. We propose a new con-
trol model, based on state space representation, where
the elements of the state vector are represented by the
parameters of the scene, extracted by vision. Then,
we use a robust control approach to improve the be-
havior of the vehicle when we introduce perturbations
in the closed loop to accommodate for mounting inac-
curacies, camera calibration errors and driving up an
incline.

These approaches were tested with a 1/10 scale
demonstrator. It is composed of a cartesian robot with
6 degrees of freedom which emulates the vehicle be-
havior and the WINDIS parallel vision system. The
road, built to a 1/10 scale, comprises three white lines.

2. Modeling Aspect

Before synthesizing the control laws, it is necessary to
obtain models both of the vehicle and of the interaction
between the sensor and the environment. We indicate
only the main results of modeling aspect presented in
Martinet et al., 1997.

2.1. Modeling the Vehicle

It is useful to approximate the kinematics of the steer-
ing mechanism by assuming that the two front wheels
turn slightly differentially. Then, the instantaneous
center of rotation can be determined purely by kine-
matic means. This amounts to assuming that the steer-
ing mechanism is the same as that of a bicycle. Let
the angular velocity vector directed along thez axis be
calledψ̇ and the linear one directed along thex axis
calledẋ.

Orientation equation: Using the bicycle model ap-
proximation (see Fig. 1(a)), the steering angleδ and
the radius of curvaturer are related to the wheel base
L by:

tanδ = L

r
(1)

In Fig. 1(b), we show a small portion of a circle1S
representing the trajectory to be followed by the vehi-
cle. We assume that it moves with small displacements
between the initial curvilinear abscissaS0 and the final

Figure 1. Bicycle model.

oneSf such that:

1

r
= lim

1s→0

1ψ

1S
= dψ

dS
= dψ

dt

dt

dS
(2)

whereψ represents the orientation of the vehicle. The
time derivative ofSincludes the longitudinal and lateral
velocities along they andx axes respectively. In fact,
the rotation rate is obtained as:

ψ̇ = tanδ

L

√
ẋ2+ ẏ2 (3)

Lateral position equation: In order to construct this
equation, we treat the translational motion assuming
that the vehicle moves with small displacements be-
tweent andt+1t . In the case of a uniform movement
during a lapse of time1t , the vehicle moves through
distanced = V1t takingV as a constant longitudinal
velocity (see Fig. 2).

We express:


Sψ = − lim

1t→0

xt+1t − xt

V1t
= − ẋ

V

Cψ = ẏ

V

(4)

Figure 2. Kinematic modeling of the vehicle.



Figure 3. Perspective projection of a 3D line.

In these expressions,C andS represent the trigono-
metric functions cosine and sine. The approximation to
small angles gives us the relation between the differen-
tial of the lateral coordinatex and the lateral deviation
ψ with respect toδ, expressed as follows: ẋ = −Vψ

ψ̇ = V

L
δ

(5)

2.2. Modeling the Scene

This section shows how to write the equation of the
projected line in the image plane, using perspective
projection. The scene consists of a 3D line, and its
projected image is represented by a 2D line. Figure 3
shows the frames used in order to establish this relation.

We use:r Ri = (O, xi , yi , zi ) as the frame attached to the 3D
liner Rs = (O, xs, ys, zs) as the sensor frame fixed to the
camera

We take into account:r h the camera heightr α the inclination angle of the camerar ψ the orientation of the vehicle

Any 3D point pi = (xi , yi , zi , 1)T related to the
workspace can be represented by its projection in the
image framepp = (xp, yp, zp)

T by the relation:

pp = Mpi (6)

The matrixM represents the homogeneous calibra-
tion matrix of the camera expressed in the frameRi .

Its expression is the following:

M = P′cC
′
uCa R−1

2 R−1
1 T−1 (7)

where:r P′cC′uCa translatesps = (xs, ys, zs)
T in pp. P′cC

′
u

takes into account the intrinsic parameters of the
camera (fx = f ex, fy = f ey, f the focal length,
ex, ey the dimensions of the pixel), andCa realizes
an exchange coordinates frame.r T , R1 andR2 characterize the extrinsic parameters of
the camera.T takes into account the two translations
of the camera: the heighth and the lateral position
x. R1 andR2 represent the lateral orientationψ and
the inclinationα of the camera respectively.

The expressions of the different matrices used are
given as follows:

P′cC
′
u =

 fx 0 0 0

0 fy 0 0

0 0 1 0

 ,Ca =


1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0



T =


1 0 0 x

0 1 0 0

0 0 1 h

0 0 0 1

 , R1 =


Cψ −Sψ 0 0

Sψ Cψ 0 0

0 0 1 0

0 0 0 1



R2 =


1 0 0 0

0 Cα −Sα 0

0 Sα Cα 0

0 0 0 1


We note that the second translation and the third rota-

tion are considered as null, and thatx (lateral position)
andψ (orientation) are the system variables.

Developing relation 7, we obtain the following ex-
pression ofM :


fxCψ fx Sψ 0 fxxCψ

− fySαSψ fySαCψ − fyCα − fyx SαSψ + fyhCα

−CαSψ CαCψ Sα −xCαSψ + hSα



The pixel coordinatesP = (X = xp

zp
,Y = yp

zp
)T

associated with each point of the 3D line (withxi =



zi = 0), are expressed by:
X = fx

yi Sψ + xCψ

yi CαCψ − xCαSψ + hSα

Y = fy
−yi SαCψ − x SαSψ + hCα

yi CαCψ − xCαSψ + hSα

(8)

Eliminating yi from the Eqs. (8), we obtain:

X = fx

fy

[
xCα − hSψSα

hCψ

]
Y

+ fx

[
x Sα + hSψCα

hCψ

]
(9)

Considering thatα andψ are small (<10 deg) and if we
neglect the product termαψ , the second orderTaylor
approximation gives us a new expression ofX:

X= fxx

fyh
Y+ fx

(
xα

h
+ψ

)
+O(ψ2)+O(α2) (10)

The equation of the line expressed in the image frame
is given by the following relation:

X = aY+ b (11)

where(a, b) are the line parameters expressed by:
a = fxx

fyh
= µ1x

b = fx

(
αx

h
+ ψ

)
= µ2x + µ3ψ

(12)

We express the lateral positionx and the orientation
of the vehicleψ in order to define an interaction rela-
tion between the 3D position of the vehicle and the 2D
parameters of the line in the image plane. We have:

ẋ = h fy
fx

ȧ = ξ1ȧ

ψ̇ = −α fy

fx
ȧ+ 1

fx
ḃ = ξ2ȧ+ ξ3ḃ

(13)

with: fx = 1300 pu,fy= 1911 pu,V = 20 km/h, L =
0.3 m andh = 0.12 m (in our 1/10 scale demonstrator).

3. Pole Assignment Approach

In this section, we present the application of the pole as-
signment technique when the state model is expressed

directly in the sensor space. In our case, the sensor
space is the image plane.

The controller design is based on the kinematic
model of the vehicle. We use the(a, b) parameters
of the 2D line in the image plane as the state vector.
We steer the vehicle by acting on wheel angleδ. We
chooseb or a as the output parameter of the system
and use the results of the vehicle and scene modelings
to obtain the following equation:{

−Vψ = ξ1ȧ

(V/L)δ = ξ2ȧ+ ξ3ḃ
(14)

The state vector, denoted byX = (a, b)T , is equal
to the sensor signal vector in the state space represen-
tation. Developing, we have the following state model
of the system: {

Ẋ = AX+ BU

y = C X
(15)

with U = δ the wheel angle,y the output of the system,
and

A =
−Vξ2

ξ1
−Vξ3

ξ1

Vξ2
2

ξ1ξ3

Vξ2

ξ1

, B =
[

0
V

Lξ3

]
C = [0,1] or= [1,0]

depending on the output to be controlled. The visual
servoing scheme is then as shown in Fig. 4.

Finally, we can express the control law by the fol-
lowing relation:

U = δ = −k1a− k2b+ ky∗ (16)

whereK = [k1, k2] andk are the gains of the control
law obtained by identifying the system to a second or-
der system characterized byω0 andξ . y∗ represents
the input of the control scheme.

Figure 4. Visual servoing scheme with a pole assignment.



For the first step, we chose parameterb as the out-
put of the system and analysed the effects of pertur-
bation. For the second, we replaced parameterb by
parametera.

3.1. Choice of b as the Output of the System

3.1.1. Controller Design. Here, we present the ap-
plication of the pole assignment technique when the
state model is expressed directly in the sensor space.
We chooseb as the output parameter of the system. So,
we can write: {

Ẋ = AX+ Bδ

b = C X
(17)

and, we can express the control law by the following
relation:

δ = −k1a− k2b+ kb∗ (18)

whereK = [k1, k2] andk are the gains of the control
law obtained by identifying the system to a second or-
der system characterized byω0 andξ . For these control
gains, we obtain:

k1 = Lω0(2ξ2ξV − ξ1ω0)

V2

k2 = 2Lω0ξ3ξ

V

k = Lω2
0ξ1ξ3

V2ξ2

(19)

We note that, as expressed by these relations, the higher
the velocityV , the smaller are the gains.

3.1.2. Simulation and Experimental Results.To val-
idate this control law, we use a simulator developed
with Matlab. Figure 5 shows the visual servoing scheme
used in this simulator.

We use the kinematic model of the vehicle to simu-
late the behavior of the vehicle, and the perspective

Figure 5. Visual servoing scheme of the simulator.

Figure 6. b without perturbations (α = −7 degrees) (simulation
results).

projection relation to obtain the sensor signals =
(a, b)T . The first results (see Fig. 6) illustrate the out-
put behavior of the system corresponding to an input
valueb∗ = 100 pixels. We take into account a data flow
latency (three sample periods) in all simulation tests.
This was identified on our experimental site. We chose
ω0 = 2rd/s andξ = 0.9 in order to fix the behavior
of the system. In this case, we have no perturbations
(α is fixed at−7 degrees).

The second set of results takes into account a per-
turbed angleα (from−6 to −10 degrees). We obtain
the following response inb: Fig. 7 represents the simu-
lation results, and Fig. 8 shows the experimental results
obtained with our 1/10 scale demonstrator presented
in Section 6.

In both results, we can see a steady state error inb,
when we introduce the perturbations, and some oscil-
lations appear when angleα increases. In this case,ξ
slows down from 0.9 (α = −7) to 0.6 (α = −10) and
increases the overtaking, but the main contribution to

Figure 7. b output behavior (simulation results).



Figure 8. b output behavior (experimental results).

the oscillations is due to the data flow latency. In the
next section, we express the steady state error in order
to analyze the simulation and experimental results.

3.1.3. Closed Loop Steady State Error Estimation.
Here we analyse the behavior of the vehicle when the
extrinsic parameters of the camera are perturbed. In
this case, Eqs. (13) show us that onlyξ1 and ξ2 are
affected by perturbations of this kind.

Considering the state Eqs. (17) and taking into ac-
count parameter perturbations, we have:

A =
−V(ξ2+1ξ2)

ξ1+1ξ1
− Vξ3

ξ1+1ξ1

V(ξ2+1ξ2)
2

(ξ1+1ξ1)ξ3

V(ξ2+1ξ2)

ξ1+1ξ1


Figure 9 represents the general visual servoing

scheme, using the pole assignment approach.
In this case, we can establish the general expression

of the steady state errorε∞ by using the Laplacep
transform by:

ε(p) = b∗(p)− b(p) (20)

with:

b(p) = C[ pI − (A− BK)]−1Bkb∗(p) (21)

Figure 9. Steady state error.

Table 1. Steady state errorε∞.

α in degrees ε∞ measured ε∞ computed

−8 35 37

−9 49 56

−10 55 62

Hence we obtain:

ε∞ = [1+ C(A− BK)−1Bk] b∗∞ (22)

After some developments and approximations, we
can write the final relation of the steady state error as
follows:

ε∞ =
[

1−
1+ 1ξ2

ξ2

1+ 2Vξξ2

ω0ξ1

1ξ2

ξ2

]
b∗∞ (23)

The steady state error becomes null, if the following
expression is true:

1ξ2

ξ2
= 1α

α
= 0 (24)

We observe that, in the absence of perturbations in
theα parameter, we have no steady state error. When
α is different from the reference value, we obtain an
error which confirms all the simulation results.

In this experiment, we can verify the values of steady
state error for different values of theα parameter (see
Table 1).

The difference between reference and experimental
values can be explained by the imprecise calibration of
the interaction between the scene and the camera.

In the next section, we show the way to reduce this
steady state error.

3.1.4. Pole Assignment with Integrator. In this sec-
tion, we introduce an integrator into the control law in
order to eliminate the steady state error in case of per-
turbations. The visual servoing scheme is represented
in Fig. 10.

Figure 10. Visual servoing scheme with integrator.



In this case, we can express the control law by the
relation:

δ = −k1a− k2b− Ki

∫
(b∗ − b) dt (25)

wherek1, k2 andKi are the gains of the control law ob-
tained by identifying the system to a third order system
characterized by the following characteristic equation:
(p2 + 2ξω0 p+ ω2

0)(p+ ξω0). The control law gains
are given by:



k1 = − Lω0(2ω0ξ1ξ
2− 3ξ2ξV + ω0ξ1)

V2

+ Lω3
0ξ

2
1ξ

V3ξ2

k2 = 3Lω0ξ3ξ

V

Ki = − Lω3
0ξ1ξ3ξ

V2ξ2

(26)

In the first simulation, we consider no perturbations.
Figure 11 illustrates the fact that the response time is
correct.

Secondly, we introduce some perturbations in theα

angle (from−6 to−10 degrees). Figure 12 shows the
simulation results and Fig. 13 shows the experimental
ones.

In fact, no steady state error persists during servoing,
but some oscillations and problems of stability appear
whenα is very different from the reference value.

We therefore decided to analyse the same approach
using the other parameter.

Figure 11. b without perturbations (α= −7) (simulation results).

Figure 12. b output behavior (simulation results).

Figure 13. b output behavior (experimental results).

3.2. Choice of a as the Output of the System

In this part, we choosea as the output parameter of the
system. We can then write:{

Ẋ = AX+ Bδ

a = C X
(27)

and we can express the control law by the following
relation:

δ = −k1a− k2b+ ka∗ (28)

whereK = [k1, k2] andk are the gains of the control
law, expressed by the following relations:

k1 = Lω0(2Vξ2ξ − ω0ξ1)

V2

k2 = 2Lω0ξ3ξ

V

k = − Lω2
0ξ1

V2

(29)



Figure 14. a with perturbations (α= −6 to −10) (simulation
results).

Figure 15. a with perturbations (α = −6 to−10) (experimental
results).

We note that, as we observed with parameterb, the
higher the velocityV , the smaller are the gains.

We tested this approach as we did for parameterb.
When no static perturbations occurred, the output

behavior corresponds to the desired output (a∗ = 0.43)
in both simulation (Fig. 14) and experimental (Fig. 15 )
cases. If we introduce this kind of perturbation into the
α parameter, steady state error and oscillations appear
on the output of the system.

As before, we can express the steady state error in
the following form:

ε∞ = [1+ C(A− BK)−1Bk] a∗∞ (30)

and after some developments, we obtain:

ε∞ =
[

1− 1

1+ 2Vξξ2

ω0ξ1

1ξ2

ξ2

]
a∗∞ (31)

The steady state error becomes null, if the following
expression is verified:

1ξ2

ξ2
= 1α

α
= 0 (32)

We observe that, in the absence of perturbations to
theα parameter, we have no steady state error.

We therefore introduce an integrator into the control
law in order to eliminate this steady state error in case
of perturbations.

The control law is expressed by the relation:

δ = −k1a− k2b− Ki

∫
(a∗ − a) dt (33)

wherek1, k2 andKi are the gains of the control law:

k1 = 3
Lω0ξ2ξ

V
− Lω2

0ξ1

V2
(2ξ2+ 1)

k2 = 3Lω0ξ3ξ

V

Ki = Lω3
0ξξ1

V2

(34)

We tested the output behavior of the system in the
presence of perturbations toα angle (from−5 to−9
degrees). Figure 16 illustrates the simulation results
and Fig. 17 the experimental ones.

As we can see, no steady state error persists during
servoing, but some oscillations and problems of stabil-
ity appear whenα is far from the reference value. These
results are close to those encountered when using pa-
rameterb. We therefore conducted investigations into
robust control approaches, particularly intoH∞ space
control.

Figure 16. a with perturbations (α= −5 to −9) (simulation
results).



Figure 17. a with perturbations (α= −5 to −9) (experimental
results).

4. Robust Control Approach

Due to the the problem of oscillations and stability
encountered when using a pole assignment approach,
we decide to investigate a robust control approach. We
chose the approach developed inH∞ space at the begin-
ning of the eighties (Zames and Francis, 1983; Kimura,
1984; Dorato and Li, 1986; Doyle et al., 1989),
concerning controller design with plant uncertainty
modeled as unstructured additive perturbations in the
frequency domain.

4.1. Generality Concerning H∞ Space

Here, we present the application of the robust con-
trol technique, particularly inH∞ space (Dorato et al.,
1992).

The servoing scheme is presented in the Fig. 18.
We consider an additive perturbation in the fre-

quency domain:

F(p) = F0(p)+1F0(p) (35)

whereF0(p) represents the nominal transfer function.

Figure 18. Servoing scheme inH∞ space.

The aim is to determine a single robust controller
c(p)which ensures the stability of the closed loop sys-
tem. Then, we can write 1+ F(p) · c(p) as:

[1+ F0(p) · c(p)] ·
[
1+ c(p)

1+ F0(p) · c(p) ·1F0(p)

]
= [1+ F0(p) · (p)] · [1+ q(p) ·1F0(p)] (36)

with q(p) = c(p)
1+F0(p)·c(p) .

To ensure the stability of the close loop system, we
must verify:

|1+ F( jω) · c( jω)| 6= 0 ∀ω (37)

We define a transfer functionr ( jω) which bounds
the variations ofF0( jω) as:

|1F0( jω)| ≤ |r ( jω)|
|r ( jω)|
F0( jω)

≤ 1
∀ω (38)

In this case, ifc(p) stabilizes the nominal plant
F0(p) we can express the robust stability condition as
(Kimura, 1984):

‖q(p)r (p)‖∞ < 1 (39)

In these conditions, the robust controller can be ex-
pressed by:

c(p) = q(p)

1− F0(p)q(p)
(40)

General Case. In this part we summarize the differ-
ent steps to follow to synthesize a robust controller.
The functionr (p) bounds the variations ofF0(p). We
construct the proper stable function:

F̃0(p) = B(p) · F0(p) (41)

whereB(p) =∏( pi−p
p̄i+p) represents the Blaschke prod-

uct of unstable polespi (Re(pi ) > 0) of F0(p).
For convenience, we definẽq(p) as:

q(p) = B(p) · q̃(p) (42)

and then:

F0(p) · q(p) = F̃0(p) · q̃(p) (43)



We have to choose a minimal phase functionrm(p)
as:

|rm( jω)| = |r ( jω)| (44)

In this case, we can expressr (p) = b(p) · rm(p),
whereb(p) is an inner function (|b( jω)| = 1, ∀ω).

The robust condition of stability can be rewritten as:

‖u(p)‖∞ < 1 with u(p) = q̃(p) · rm(p) (45)

Using relation 43, and since the function 1− F0(p) ·
q(p) has the zeros at the unstable polesαi of F0(p),
we can express the first interpolation conditions with:

q̃(αi ) = 1

F̃0(αi )
∀i = 1, . . . , l (46)

Sinceq̃(p) andrm(p) are H∞ functions, the func-
tion u(p)must be an SBR function (Strongly Bounded
Real), and the conditions of interpolation can be written
as:

u(αi ) = q̃(αi ) · rm(αi ) = rm(αi )

F̃0(αi )
= βi (47)

(βi represents an interpolation point). So the solution
to the problem of robust stabilization of an unstable
system (Kimura, 1984) lies in finding an SBR function
u(p)which interpolates to the pointsu(αi ). This prob-
lem is called the Nevanlinna-Pick interpolation prob-
lem. Dorato et al. in (Dorato and Li, 1986) have pro-
posed an iterative solution of this problem based on
the interpolation theory of Youla and Saito (Youla and
Saito, 1967). When the relative degree of the function
rm(p) is greater than 0, we must append one or more
supplementary interpolation conditions near infinity.

Case of a Plant With Two Poles at the Origin.Pre-
vious work (Kimura, 1984; Dorato et al., 1992; Byrne
and Chaouki, 1994; Byrne et al., 1997) has shown how
to consider the case of a plant with integrators. We can
define:

r (p) = r ′m(p)
p2

(48)

wherer ′m(p) is a minimal phase function and:

F̃0(p) = p2 · B(p) · F0(p)

q̃(p) = q(p)

p2 · B(p)
(49)

Using relation 43, we can write the following con-
ditions of interpolation:

q̃(αi ) = 1

F̃0(αi )
∀i = 1, . . . , l

q̃(0) = 1

F̃0(0)
2 poles at the origin

(50)

To ensure thatc(p) is a robust controller, the func-
tion u(p) = r ′m(p) · q̃(p) must be an SBR function
which satisfies the interpolation conditions at the un-
stable poles of the functionF0(p) and also at the origin
with the relations:

u(αi ) = r ′m(αi )

F̃0(αi )
∀i = 1, . . . , l

u(0) = r ′m(0)
F̃0(0)

2 poles at the origin
(51)

In these conditions, the functionq(p) can be ex-
pressed by:

q(p) = p2 · B(p) · u(p)
r ′m(p)

(52)

4.2. Controller Design Using Parameter b

Previous results have been presented in (Martinet et al.,
1998a, b).

Considering parameterb as the output of the system,
we define:

F1(p) = b

δ
= V2ξ2+ pξ1V

ξ1 p2Lξ3

1F1(p)

F1(p)
= |

1α
α
| + |1h

h |
1+ ξ1

V ·ξ2
· p

(53)

Using the following expression ofr (p):

r (p) = sup
ω

∣∣∣∣1F1( jω)

F1( jω)

∣∣∣∣F1(p) (54)

and looking at Fig. 19, we can considerr ′m(p) as:

r ′m(p) = K1 · p2 · F1(p) with K1 = 0.82 (55)

To determine the value ofK1, we have to plot the
quantity|1F1( jω)

F1( jω) | considering the following perturba-
tions:

1α

α
= 57% and

1h

h
= 25%.



Figure 19. Frequency response of|1F1( jω)
F1( jω) |.

Since F1(p) has no unstable pole, the function
B(p) = 1, and we have to chooseu(p) as an SBR
function with a relative degree of 1 (because of the
expression ofr ′m(p)).

We choose the following expression ofu(p):

u(p) = K1

1+ τ · p (56)

to satisfy the conditions of interpolation:u(0)= r ′m(0)
F̃1(0)

= K1 at the origin

u(∞) = 0
(57)

We deduce the expression of the functionq(p):

q(p) = p2 · K1

(1+ τ · p) · K1 · p2 · F1(p)

= (ξ1 p2Lξ3)

(1+ τ · p) · (V2ξ2+ pξ1V)
(58)

and developing, we obtain the robust controllerc(p):

c(p) = 1

τ · p · F1(p)
= ξ1 pLξ3

τ · (V2ξ2+ pξ1V)
(59)

4.3. Controller Design Using Parameter a

Considering parametera as the output of the system,
we define: 

F2(p) = a

δ
= − V2

ξ1Lp2

1F2(p)

F2(p)
=
∣∣∣∣1h

h

∣∣∣∣ (60)

As previously, we use the following expression of
r (p):

r (p) = sup
ω

∣∣∣∣1F2( jω)

F2( jω)

∣∣∣∣F2(p) (61)

and looking at the expression ofF2(p), we can consider
r ′m(p) as:

r ′m(p) = K2 · p2 · F2(p) with K2 = 0.25 (62)

SinceF2(p) has no unstable pole, we have to choose
u(p) as an SBR function with a relative degree of 2
(because of the expression ofr ′m(p)).

We choose the following expression ofu(p):

u(p) = K2

(1+ τ · p)2 (63)

and the conditions of interpolation are the following:u(0)= r ′m(0)
F̃2(0)

= K2 at the origin

u(∞) = 0
(64)

We deduce the expression of the functionq(p):

q(p) = p2 · K2

(1+ τ · p)2 · K2 · p2 · F2(p)

= − ξ1Lp2

(1+ τ · p)2 · V2
(65)

and developing, we obtain the robust controllerc(p):

c(p) = 1

τ · p · (2+ τ · p) · F2(p)

= − ξ1Lp

τ · (2+ τ · p) · V2
(66)

4.4. Simulation and Experimental Results

As for the pole assignment technique, we have de-
veloped a simulator in matlab. We introduce pertur-
bations to angleα (from α=−3 to α=−11) during
simulation.

Figures 20 and 21 show the simulation and experi-
mental results of a robust control approach usingb pa-
rameter as the output of the system(b∗ = 100 pixels).
In these experiments we chooseτ = 0.67. There is no



Figure 20. b output behavior (αfrom−3 to−11 degrees) (simu-
lation results).

Figure 21. b output behavior (α from−3 to−11 degrees) (experi-
mental results).

steady state error during servoing and the robustness is
much improved.

As a second step, we use the parametera of the
line as the output of the system, to synthesize a new
robust controller using theH∞ technique. In these
experiments we chooseτ = 0.5.

The simulation and experimental results are pre-
sented in Figs. 22 and 23. The output behavior of
the system corresponding to a reference input value
a∗ = 0.43 is illustrated. As we can see, there is no
steady state error in the output response and the output
behavior remains unchanged when we introduce per-
turbations toα angle. So we can conclude that both
theorical and experimental results tend to select para-
metera as the output of the system.

In the next section, we discuss 3D lateral position
behavior during servoing and we analyze the effect of
camera height perturbation when using the previous
robust controller.

Figure 22. a output behavior (αfrom−2 to −9 degrees) (simula-
tion results).

Figure 23. a output behavior (αfrom−2 to−9 degrees) (experi-
mental results).

5. Discussion

As we have seen in the previous section, it is better
to choose parametera of the 2D line as the output of
the system. So, in the following we develop only the
discussion concerning this choice. We first analyse the
lateral position behavior of the vehicle and the effect
of camera height perturbation. We conclude the dis-
cussion by considering the coupling of perturbations.

5.1. Lateral Position Behavior

In this part, we present the lateral position behavior of
the vehicle (simulated on our 1/10 scale demonstrator).
We present successively the results of:r pole assignment with integrator (Fig. 24)r the robust control approach (Fig. 25)



Figure 24. Lateral position behavior (pole assignment) (experi-
mental results).

Figure 25. Lateral position behavior (robust control) (experimental
results).

when using thea parameter of the 2D line as the output
of the system.

If we look at these figures, we can compare the be-
havior of the lateral position of the vehicle. When using
the pole assignment technique, the lateral position of
the vehicle is sensitive to perturbations. Oscillations
and divergence occur when angleα is far from the ref-
erence value. On the other hand, the robust controller
is very efficient and the robustness is greatly improved.
We think that the weak variations of the lateral posi-
tion observed on the curves may have been produced by
small perturbations to camera height (see Eq. (12)) dur-
ing the experiments (imprecise calibration). We con-
clude that behavior is more efficient and stable when
using a robust controller.

5.2. Camera Height Perturbation

To clarify and analyze the sensitivity of the control
laws on perturbations, we decided to study the effect
of camera height perturbation.

Figure 26. Perturbation of camera height.

Figure 27. Lateral position behavior (experimental results).

We fixed the variations of camera height at 25% of
the reference value (0.12 m) (Fig. 26).

Figure 27 presents the lateral position behavior when
using both approaches.

We observe a lateral deviation of the vehicle in both
approaches. We can verify these results by looking at
relation 12, where the lateral position of the vehicle
x is directly linked to parametera through the cam-
era height parameter. Even if in both cases a lateral
deviation is present, the robust controller is smoother
and induces better behavior of the linkage between the
vision aspect and the control aspect.

As in a real scene, it is unrealistic to think that pertur-
bations will occur separately. So we decided to study
the effect of coupled perturbations.

5.3. Coupling Perturbations

In the first test, we introduced perturbations into
camera height (25%) (Fig. 28) and camera inclination
angle (±1 and±2 degrees) (Fig. 29).



Figure 28. Perturbation on camera height.

Figure 29. Perturbation to camera inclination angle.

Figure 30. Parametera (robust and pole assignment control) (ex-
perimental results).

Using the parametera as the output of the system, we
compared the pole assignment and robust control ap-
proaches. Figure 30 shows the output behavior of the
system (a parameter) and Fig. 31 presents the lateral
position behavior of the vehicle. As shown previously,

Figure 31. Lateral position behavior (robust and pole assignment
control) (experimental results).

Figure 32. Perturbation on camera roll angle.

robust control minimizes the effect of camera inclina-
tion angle perturbation, but even if the other pertur-
bation is also minimized, the effect on the 3D lateral
position remains considerable.

With these results, we definitively conclude that the
robust control approach is better than the pole assign-
ment approach.

In the second test, we append perturbation on camera
roll angle (sinusoid of±2 degrees) (Fig. 32).

Figure 33 presents the evolution of the output system.
As we can see the robust controller is more efficient,
and we observe also that the effect on lateral position
behavior is better when using this kind of controller
(see Fig. 34). But the simplified model is not sufficient
to take all of these perturbations into account.

In the third test, we use sinusoid functions to inject
perturbation into extrinsic camera parameters:

r camera roll angle (sinusoid of±2 degrees) (Fig. 35),



Figure 33. Parametera (robust and pole assignment control) (ex-
perimental results).

Figure 34. Lateral position behavior (robust and pole assignment
control) (experimental results).r camera inclination angle (sinusoid of±1 degree)

(Fig. 36),r camera height (sinusoid of±10 mm ) (Fig. 37).

Figure 38 presents the lateral position behavior of the
vehicle and Fig. 39 the output behavior of the system.

Even if the effect of the roll angle perturbation is at-
tenuated, there is an offset which appears on the output
of the system and on the lateral position of the vehicle.

As regards these tests, we conclude that these ap-
proaches are subject to two limitations. The model of
the interaction between the sensor and the scene does
not take roll angle into account, and there is a problem
in the presence of camera height perturbation.

6. The Path to Implementation

Until now, we have not had a real demonstrator.
So, these approaches were tested with a 1/10 scale
demonstrator. It is composed of a cartesian robot with

Figure 35. Perturbation to camera roll angle.

Figure 36. Perturbation on camera inclination angle.

Figure 37. Perturbation on camera height.

6 degrees of freedom (built by the firm AFMA Robot)
and the WINDIS parallel vision system (Martinet et al.,
1991; Rives et al., 1993).

This whole platform (see Fig. 40) is controlled by a
VME system, and can be programmed in C language
under the V×Works real time operating system. The
CCD camera is embedded on the end effector of the



Figure 38. Lateral position behavior (robust control) (experimental
results).

Figure 39. Parametera (robust control) (experimental results).

Figure 40. Overview of the experimental site.

cartesian robot and is connected to the WINDIS vision
system. In this servoing scheme the position of the dif-
ferent parts of the controller changes with the approach
under consideration.

The road (see Fig. 41), built to a 1/10 scale, com-
prises three white lines. For each level of this vision
system, we have introduced parallelism allowing us to
reach video rate for most of the application tasks. The
vision system computes the(a, b) parameters of the

Figure 41. 1/10 scale road.

projected line in the image plane at video rate (25 Hz).
In this implementation, we have identified a data flow
latency of three sample periods.

Now, we are working on the conception of a real
demonstrator with the lateral and longitudinal control
capabilities. We think that the main difficulties to path
to real implementation should be the continuous extrac-
tion of visual informations in real environment, and the
effectivness of the approaches described above.

7. Conclusion and Future Work

Controllers based on a visual servoing approach have
been developed in this paper. We designed a controller
with a pole assignment technique directly in the im-
age space. After modeling the vehicle and the scene,
we obtained equations which can be used to write the
state model of the system. Visual servoing is performed
well when there are no perturbations. When perturba-
tions occur, a steady state error and oscillations appear.
By introducing an integrator into the visual servoing
scheme, we suppress the steady state error but amplify
the oscillation problem.

We then investigated a robust control approach. The
choice ofb as the output parameter of the system does
not permit the control of the lateral position of the
vehicle precisely when the perturbations appear, but
ensures control of heading. The choice of parameter
a as the output of the system, to synthesize a new ro-
bust controller, seems to be sufficient when we have
perturbations toα angle and camera height.

In the future, we will investigate a controller which
can take into account a combination of perturbations to
α angle, camera height and camera roll angle. For this
purpose, we shall require improved models both of the
scene and of the vehicle. The robust control approach
is well adapted in this case, because this approach is
efficient when we use more complex models. So an



extension of this work using dynamic modeling can be
considered.

We think that experimentation on a real vehicle will
be necessary to validate all of the results presented in
this paper.
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plication à des t̂aches robotiques. Ph.D. Thesis, IRISA/INRIA,
Rennes, France.

Dickmanns, E.D. and Zapp, A. 1987. Autonomous high speed road
vehicle guidance by computer. InProceedings of 10th IFAC World
Congress.

Dorato, P., Fortuna, L., and Muscato, G. 1992.Robust Control for Un-
structured Perturbations—An Introduction, Springer-Verlag, Lec-
tures Notes in Control and Information Sciences, Vol. 168.

Dorato, P. and Li, Y. 1986. A modification of the classicalnevanlinna-
pick interpolation algorithm with applications to robust stabiliza-
tion. IEEE Transactions on Automatic Control, 31(7):645–648.

Doyle, J., Glover, K., Khargonekar, P., and Francis, B. 1989. State
space solutions to standard H2 and H∞ control problems.IEEE
Transactions on Automatic Control, 34(8).

Espiau, B., Chaumette, F., and Rives, P. 1992. A new approach to
visual servoing in robotics.IEEE Transactions on Robotics and
Automation, 8(3):313–326.

Feddema, J.T. and Mitchell, O.R. 1989. Vision-guided servoing
with feature-based trajectory generation.IEEE Transactions on
Robotics and Automation, 5(5):691–700.

Hutchinson, S., Hager, G.D., and Corke, P. 1996. A tutorial on visual
servo control.IEEE Transactions on Robotics and Automation,
12(5):651–670.

Inrets. 1996. La route automatisée-réflexions sur un mode transport
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