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Multi Model Adaptive Control for CACC applications
Francisco Navas, Vicente Milanés, Carlos Flores and Fawzi Nashashibi

Abstract—This paper proposes a multi-model adaptive control
(MMAC) algorithm based on Youla-Kucera (YK) theory to deal
with heterogeneity in cooperative adaptive cruise control (CACC)
systems. The main idea of MMAC is to choose the plant in
a predefined set that best approximates the system dynamics,
applying the corresponding predesigned controller. A set of
linear plants describing different vehicle dynamics is defined.
Different CACC controllers are designed depending on these
linear plants. Simulation and experimental results prove how
MMAC determines the closest plant in the set, choosing the
CACC system able to ensure string stability.

Index Terms—Heterogeneous string, Homogeneous string, Co-
operative Adaptive Cruise Control, Youla-Kucera parameteriza-
tion, Multi-Model Adaptive Control.

I. INTRODUCTION

Traffic demand has increased significantly over recent years.
According to the European Commission, road transport consti-
tutes 82.4% of the whole passengers’ transport in the European
Union (EU) [1]. This leads to traffic congestion problems,
which if not solved, could have a cost up to 213 billion euros
in the next 10 years [2].

To overcome the problem of this huge rising traffic volume,
intelligent transportation systems (ITS) technology provides
efficient solutions without additional infrastructure cost. An
example of such a system is the commercially available adap-
tive cruise control (ACC) [3], that can maintain a minimum
safety time gap with the vehicle ahead. Recently, research
focuses on the cooperative version of this system, so-called
cooperative ACC (CACC) [4]. Vehicle-to-vehicle (V2V) com-
munication is added to ACC, providing a lower minimum
safety time gap, which could increment highway capacity in
almost a 100 % [5].

The main criteria to evaluate a CACC system is the min-
imum time gap achievable that guarantees string stability.
The latter is defined as the attenuation of disturbances along
the string of vehicles [6]. As it needs to be ensured to
avoid collisions, improve highway capacity and reduce fuel
consumption, string stability analysis for a string of vehicles
has been a hot topic in research.

When vehicles within the string have identical dynamics
(i.e. homogeneous string), disturbances attenuates/amplifies
uniformly along the string. String stability for homogeneous
string of vehicles has been widely studied [6], being ensured
for any positive time gap value if no delay is present in
the communication link between vehicles. This statement is
validated through experimental results [7] [8].

On the contrary, when vehicles in the string have not
identical dynamics, disturbances do not attenuate/amplify in
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the same way downstream; e.g. a vehicle with slower dynamics
will have difficulties to follow a vehicle with faster dynamics.
This was first noticed during the GCDC 2011, where ATeam
remarked how string stability is explicitly affected by preced-
ing vehicle’s dynamics–the minimum time gap achievable goes
from 0.6s to 1.5s [9]. Guidelines are given in [10] [11] about
how to change variables of a CACC controller depending on
whether slower or faster dynamics vehicle is in front of the
ego-vehicle.

String stability for a heterogeneous string of vehicles has
been mainly addressed in two different ways: Robust control–
a fixed controller able to work under bounded uncertainties
in the plant. Dynamics difference between ego and preceding
vehicles is seen as uncertainty in the platoon model; Adaptive
control– controller changes with the unknown uncertainties in
the system, e.g. control is modified depending on ego and
preceding dynamics. Adaptive control is needed when robust
control is not able to offer decent behaviour due to all the
parameters changes that can occur in the system.

Related to robust control, [12] added some local condi-
tions for heterogeneity to a robust controller designed for a
homogeneous string of vehicles. Dynamics of the different
agents within the strings need to be known to validate if
the required local conditions are fulfilled. [13] proposed a
controller design based on linear matrix inequality (LMI)
to ensure individual stability, while an H∞ control algorithm
considers disturbances that affect string stability. Again some
conditions based on the components of the string should
be validated. A H∞ robust control design was presented in
[14] to overcome uncertainty between model connections. The
range of model parameters needs to be known apriori. [15]
presented a H∞ control method which can guarantee both
individual and string stabilities to parameters uncertainties and
communication delay. Heterogeneity is reflected by different
vehicle mass and time lag of powertrain dynamics. Wind gust
and road slopes are also considered as external disturbances.

Related to adaptive control, almost all the existing work
takes as baseline controller a CACC feedforward/feedback
proportional-derivative (PD) controller. This type of controller
has been extensively used due its simplicity and performance.
[16] designed a new feedforward controller for a heteroge-
neous string of vehicles to minimize spacing error and make
independent string stability from preceding vehicles dynamics.
Models of ego and preceding vehicles are included in the
feedforward, so string stability remains as in a homogeneous
string of vehicles. However, there is not mention of how
to obtain the dynamics of both vehicles in order to adapt
the controller. More recently, one-vehicle look-ahead topol-
ogy with model reference adaptive control is considered in
[17]. They augmented a normal feedforward/feedback CACC
system working in the homogeneous case with an adaptive



term compensating unknown driveline vehicle dynamics. The
idea is the same, but dynamics estimation for subsequent
adaptation is included. Preceding vehicle dynamics estimation
is also developed in [18] with a particle filter algorithm. [19]
proposes an adaptive optimal control solution able to learn
the optimal feedback loop based on online data. However,
vehicle dynamics are considered as a first-order function with
differences of 0.04s in their response time, which seems unreal
to simulate heterogeneity. Finally, an adaptive robust control
solution is proposed in [20]. It deals with different information
delays, communication topologies, ego-vehicle uncertainty and
external disturbances. However, dynamics differences between
vehicles are expressed as a maximum speed, distance and
different controller parameters, leading to simplified vehicle
models that again could not represent the real difference in a
heterogeneous string of vehicles.

Adaptive control based on identification covers a greater
dynamic range of vehicle dynamics than robust control. With
the idea of avoiding an identification process that could slow
down the control loop, a set of linear plants that describes a
range of vehicle dynamics can be defined. Plants should be
general enough to cover a wide range of possible dynamics,
properly emulating the intended string heterogeneity. Like-
wise, a string stability analysis should be carried out in order
to define application limits, which is missing in the literature.

Controller reconfiguration depending on a set of linear
plants it is called in the literature Multi Model Adaptive Con-
trol (MMAC) [21]. Different applications of this methodology
are found in the literature: clinical stroke rehabilitation [22],
attitude tracking control for a spacecraft [23] or large-scale
photovoltaic plants [24]. The idea of MMAC is a supervisor
who chooses the proper controller among pre-designed candi-
dates controllers once more information is known about the
plant. Pre-designed controllers are conceived with the set of
linear plants. MMAC is able to determine the closest plant in
the set, switching to its corresponding controller to maintain
the desired performance. [25] proposed an indirect adaptive
control based on the identification of linear plants by using the
v-gap metric. As the metric is difficult to obtain in real time,
[26] proposed a similar approach but using model unfalsifica-
tion: If a model and a controller are unable to reproduce the
observed behaviour in closed-loop, then the set plant-controller
is not the correct representation of the system. However, noise
correlation problems are affecting system performance. The
noise correlation problem is later solved in [27] by using the
dual Youla-Kucera (YK) parameterization.

Here the MMAC algorithm based on YK in [27] is used
together with the widely used CACC feedforward/feedback
control structure. A set of linear plants describing different
vehicle dynamics is defined representing heterogeneous strings
for MMAC validation. Stability analysis is provided, clearly
defining application limits. MMAC should estimate the closest
plant in this set to ego and preceding vehicles, so the pre-
designed CACC controller able to ensure string stability is
chosen. An outline of this algorithm is in Fig. 1. Encouraging
results are obtained both in simulation and in real tests.

In brief, main contributions in this paper are the following:
• Adaptive control solution for CACC heterogeneous/ho-

Fig. 1. Outline MMAC for CACC applications.

mogeneous string of vehicles without need of identifica-
tion algorithm.

• First and second order models are employed with wider
parameter variations in order to properly emulate string
heterogeneity.

• Application limits are well-known, and applicable to a
wider range just by setting more plants in the set.

• String stability is ensured for a a specific dynamics range
in both ego and preceding vehicles.

• YK-based MMAC approach has been adapted to CACC
applications and applied for the first time experimentally.

• Dynamics estimation results faster than other estima-
tion/identification processes in the literature [17].

• Experimental results belong to the very first heteroge-
neous CACC algorithm results in the literature together
with [28].

The paper is structured as follows. Section 2 gives some
background for a good understanding of the paper. Section
3 describes MMAC for a general set of linear plants and
controllers. The same is modified in Section 4 for its appli-
cation to CACC systems. Simulation and experimental results
are analysed in Sections 5 and 6. Finally, some concluding
remarks are given in Section 7.

II. PRELIMINARIES

This section describes some basic notation, which will
be used extensively in the sequel. MMAC relies on the
YK parameterization [29] for controller reconfiguration and
supervision.

A general description of a set of linear plants and its cor-
responding predesigned controllers is given, to later apply the
doubly coprime factorization used by the YK parameterization.

A. System description and assumptions

Let’s consider a set of nominal plants represented as {G}=
{G0...,Gi...,Gn}, describing different dynamics of a system.
Gi denotes the ith linear, time-invariant, discrete plant mapping
input signals ui ∈ Rm in output signals yi ∈ Rp. For each of
these plants a discrete feedback controller Ki mapping error
signals ei in input signals ui is designed such that the closed-
loop (CL) behavior of the system is the desired one. Thus, a
set of candidate controllers is defined relying on the nominal
set of plants {K}= {K0...,Ki, ...,Kn}. Plants and controllers
are represented in state space as:

Gi =

[
Ai Bi
Ci Di

]
;Ki =

[
Ac

i Bc
i

Cc
i Dc

i

]
(1)

Time variations in the real plant Greal are considered slow
compared to input-output dynamics. The longitudinal low level



of the vehicle is considered to be properly designed, keeping
the same LTI response with uncertainties as slope, wind gust,
.... Nominal plants are defined, such that once a candidate
controller is selected, it remains unchanged–i.e. the variations
in Greal are smaller than those needed to change from one
nominal plant to other within the set.

B. Doubly coprime factorization

[Gi,Ki] needs to be factorized through the doubly coprime
factorization [30] to apply later the basis of MMAC, that is,
the YK parameterization.[

M̃i Ñi
][Xl,i

Yl,i

]
= M̃iXl,i + ÑiYl,i = I (2)

These coprime factors should be such that Gi and Ki are:

Gi = NiMi
−1 = M̃i

−1Ñi

Ki = UiVi
−1 = Ṽi

−1Ũi
(3)

At the same time, these coprime factors Ui ∈ RHmxp
∞ , Ũi ∈

RHmxp
∞ , Vi ∈ RH pxp

∞ , Ṽi ∈ RH pxp
∞ , Ni ∈ RH pxm

∞ , Ñi ∈ RH pxm
∞ ,

Mi ∈ RH pxm
∞ and M̃i ∈ RH pxm

∞ should satisfy the double
Bézout’s identity [31].

[32] allows to obtain coprime factors for [Gi,Ki], when Gi
and Ki are described in state-space form, Eq. (1). These factors
satisfy (3) and the double Bézout’s identity.

III. MULTI MODEL ADAPTIVE CONTROL

Multi-model adaptive control (MMAC) is a supervisor
switching among prespecified candidate controllers as new
data about the plant is known, until one of these controllers
finally remains unchanged.

It considers that the real plant Greal belongs to a set of nomi-
nal plants {G}= {G0...,Gi...,Gn}, or at least is close to one of
them. Each of the nominal plants is associated to a controller
to give a desired performance {K}= {K0...,Ki, ...,Kn}.

The supervisor is at a higher level, specifying which is
the switching sequence γ that makes the system converge to
the best controller for the unknown real plant Greal. If Greal
coincides with one of the nominal plants in the set {G}, a
good candidate controller Ki is straightforward. Otherwise, the
closest nominal plant in the set should be chosen, switching
to the corresponding controller. Both supervisor and switching
are related to Youla-Kucera (YK) parameterization.

YK parameterization is divided in two: Parameterization
of all the controllers that stabilize a given plant; useful for
performing switching between the candidate controllers [33].
And its dual formulation (also called Hansen scheme), all
the plants stabilized by a given controller, which recasts CL
identification into an open-loop-like problem [34]; employed
within the supervisor to determine the switching sequence γ

based on signals u and y.
Both theorems are briefly explained in their corresponding

sections. Once the basis is known, subsection MMAC algo-
rithm explains how they are used together, examining the set
plant-controller [Gi,Ki] and choosing the controller that is best
able to fulfill performance requirements.
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Fig. 2. (a) YK parameterization for controller reconfiguration and (b) Dual
YK parameterization for CL identification.

A. YK parameterization. Switching

YK parameterization provides all stabilizing controllers for
a given plant Gi within the set {G} by interconnecting an
initial controller K0 with Qi, called YK parameter. The initial
controller could be any in the set {K}. Doubly coprime factors
should be obtained, so the corresponding Qi can be obtained
as in [35].

Thus, different controllers Ki can be implemented just by
getting the YK parameter Qi. Different Qi’s are obtained for
each controller in the set {K}; so the YK parameter set is
{Q} = {Q0, ...,Qi, ...,Qp}. As the initial controller is K0, its
corresponding Q0 = 0. The control structure able to switch
from an initial controller K0 to any in the set {K} is depicted
in Fig. 2 (a).

When doing controller transitions, the scalar factor γi plays
a key role. It regulates the different level of activation of the
YK parameter Qi. γi may vary from 0 to 1, being 0 a 100%
contribution of K0 and 1 a 100% contribution of Ki. If the set
of controllers is greater than 2, n > 2, a linear combination of
all the controllers could be implemented as:

Q =
n

∑
i=1

γiQi with
n

∑
i=1

γi = 1 (4)

In the present work, just one of the candidate controllers is
activated at the same time. Controller reconfiguration depends
on the supervisor.

B. Dual YK parameterization. Supervisor

Dual YK parameterization is used to recast CL identification
into an OL-like problem [36]. It provides all the plants stabi-
lized by a given controller. Again, once double coprime factors
are obtained for an initial plant G0 and a fixed controller Ki
in the set {K}, all the plants stabilized by the controller can
be represented by the dual YK parameter Si.

From the general description of any plant stabilized by Ki,
it is possible to identify the real plant Greal connected to the
controller, just by identifying the dual YK parameter Si. Then
the set of all plants stabilized by Ki is represented by the
scheme in Fig. 2 (b). To identify Si, output ζ0 and input zi
need to be obtained from measurable data:

zi = Ṽiu− Ũiy (5)

ζ0 = M̃0y− Ñ0u (6)



Even when u and y are measured in CL, the identification
of Si is OL-like by employing the filtered signals ζ0 and zi.
Identification algorithms as [37] [38] [39] are suitable for Si
identification.

Si can be interpreted as the difference between real Greal
and initial plant G0. Its output, ζ0, gives an insight of this
difference. When Greal = G0 the value of ζ0 is zero. MMAC
algorithm uses this property, so an identification algorithm is
no longer needed to figure out the closest plant in the set {G}.

C. MMAC algorithm

Let {K} = {K0...,Ki...,Kn} be a set of predesigned con-
trollers for different plants {G} = {G0...,Gi...,Gn}. γ is the
switching sequence: {γ}= {γ0...,γi...,γn}. It determines which
controller Ki is activated by setting the corresponding γi to 1
at the YK reconfiguration controller structure shown in Fig. 2
(a). Only one γi can be set to 1 at the same time.

The switching sequence γ is specified by the supervisor. The
goal is to figure out which plant in the set {G} is the closest to
the real plant Greal. As outlined above, Si does not need to be
directly identified to know the closest plant in the set [27]. If
Greal coincides with the initial plant G0, ζ0 should be zero for
any value of u and y. By choosing different coprime factors M̃i
and Ñi for every nominal plant in the set {G}, ζi = M̃iy− Ñiu
gives the closeness to these plants. The smallest truncated 2-
norm Ji = (‖ζi‖2)

2 will activate the signal γi corresponding to
the controller Ki able to fulfill performance requirements.

The MMAC algorithm for a real plant Greal with a set
of stabilizing controllers {K} designed for a set of nominal
plants {G} is described in Algo. 1. h should be positive, and
expresses the mandatory difference between two norms for
controller change.

Algorithm 1 Multi Model Adaptive Control
1. Initialization
γ[n] = [0] . Switching sequence initialization
K[n] = [K0, ...,Ki, ...,Kn] . Candidate controllers
M̃[n] = [M̃0, ...,M̃i, ...,M̃n] . Left coprime factor M for Gi
Ñ[n] = [Ñ0, ..., Ñi, ..., Ñn] . Left coprime factor N for Gi
ζ [n] = [0] . Si output initialization
J[n] = [0] . Truncated 2-norm initialization
loop
2. YK Controller reconfiguration
UpdateController(γ) . Apply controller Ki, with i = γ

Get(u,y) . Obtain measurements u and y
3. Supervisor
3.1 Closeness to plants in set
for i in (0,n) do

ζ [i] = M̃[i]y− Ñ[i]u . Output of Si
J[i] = (norm2(ζ [i]))2 . Compute truncated 2-norm/ Closeness

to nominal plants
imin = argmini{i ∈ n | J[i]} . The smallest norm corresponds to

the closest plant
3.2 Evaluate switching sequence
if (J[γ[i] == 1]≤ J[imin]+h) then

γ = γ . Previous controller remains
else

γ[imin] = 1 . Controller changes
γ[∀i except i = imin] = 0

end loop

IV. MMAC FOR CACC APPLICATIONS

This section describes how MMAC can be used together
with a CACC feedforward/feedback structure to address the
problem of heterogeneity in CACC string of vehicles.

This work proposes a feedforward/feedback fractional-order
(FO) PD controller [40], able to keep performance but in-
creasing flexibility design by moving from integer to fractional
order differentiation. This CACC FOPD controller is extended
with the feedforward filter in [16] to ensure string stability
even if different dynamics are present in the string. A model of
each of the vehicles in the string would be necessary. Further
details are in subsection CACC control structure.

In order to avoid any identification process that could slow
down the control loop, MMAC is used as a supervisor able
to choose the proper controller among a pre-designed CACC
controller set {K}. The task of the supervisor will be to
estimate the closest plant to the ego and preceding vehicles, so
the controller ensuring string stability will be chosen. Details
how Algo. 1 is modified for a CACC application are in
subsection Supervisor and switching.

A. CACC control structure

A string of z vehicles driving in the same lane is considered.
j determines the order of a vehicle inside the string, j ∈ [1,z].
Vehicle j denotes ego-vehicle and vehicle j− 1 preceding
vehicle. The solution here focuses on ego-vehicle situation
depending on preceding’s dynamics. From now on, Greal is
equivalent to ego-vehicle Gj.

Vehicle j tracks its preceding vehicle, regulating the dis-
tance with respect to the desired inter-vehicle distance pro-
vided by a constant time gap spacing policy [6]. As seen in
Eq. (7) the desired intervehicle distance dre f , j is the addition
of two terms, a fixed standstill distance s j and a variable
term composed by the vehicle’s velocity v j multiplied by the
constant time gap h j.

dre f , j = s j +h jv j (7)

This desired distance is compared with the real one d j, so
a distance error needs to be regulated to zero: ed, j = d j −
dre f , j. A FOPD controller (see Eq. (8)) is designed following
guidelines in [41].

Kj = Kp, j +Kd, jsα j =

[
Ac

j Bc
j

Cc
j Dc

j

]
(8)

String stability is defined as the attenuation of speed distur-
bances along the string of vehicles. A sufficient condition is
presented in [42]: The absolute position of each vehicle cannot
be amplified as it propagates along the string:

SS = ‖x j/x j−1‖∞ ≤ 1 f or i > 1 (9)

When ideal communication is considered (no delays are
present in the communication link), the choice of a feedfor-
ward filter as Fj = 1/(h js + 1) = [Af

j Bf
j;C

f
j Df

j] ensures
string stability for any positive value of h j [43]. The statement
above is no longer valid when a heterogeneous string of
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vehicles is considered. [16] included dynamics of ego and
preceding vehicles in Fj (see Eq. 10), proving string stability
even when dynamics are not the same.

Fj =
1

h js+1
G j−1

G j
=

[
Af

j Bf
j

Cf
j Df

j

]
(10)

Both ego Gj and preceding vehicle Gj−1 need to be known
to ensure string stability. When Gj = Gj−1, the feedforward
controller reduces to the homogeneous case.

Figure 3 shows the classical SISO structure for CACC
systems. Notice how the control signal u j is the addition of
u j, f f and u j,c. Here the controller structure is modified to
MIMO, so FOPD controller Kj and feedforward filter Fj can
be changed at once by using the YK parameterization. The
modified MIMO structure is shown in Fig. 4.

Notice that there are as many controllers as there are
possible dynamics combinations between ego and preceding
vehicles.

B. Supervisor and switching

Let’s consider n number of nominal plants in the set {G}=
{G0...,Gi...,Gn}. Preceding Gj−1 and ego Gj vehicles can
be described by any of these nominal plants; or have a close
behavior to one of them. Depending on ego and preceding
dynamics combination, a set of (n + 1)2 CACC controllers
is created {K} = {Kxr}, where x is the closest plant in {G}
to the preceding vehicle Gj−1, and r the closest to the ego-
vehicle Gj. Similarly, γ is the switching sequence {γ}= {γxr},
specifying which controller in {K} is activated by modifying
to 1 the corresponding γxr at the YK controller reconfiguration
structure. Only one γxr can be set to 1 at the same time.

The switching sequence γ is specified by the supervisor.
The goal is to determine which of the plants in the set {G}
is the closest to the real one Gj. As already outlined, this
is done through the signal ζi. The smaller its truncated 2-
norm Ji the closer to the plant Gi. The same kind of system
is installed in the preceding vehicle, sending to ego-vehicle
which is the closest plant to Gj−1. Once x and r are known,
the corresponding switching signal γxr is activated, so string
stability is ensured.

The general MMAC algorithm in Algo. 1 is modified
for CACC applications. It remains the same, except for a
switching sequence γ that depends on two different indexes, a
communication link added to get the value of x when obtaining
measurements u and y, and an extra condition when ego-
vehicle is exactly between two plants in the set {G}. Even
if unlikely, the fastest model is chosen in order to provide the
most string stable controller in the most critical situation. The
mandatory difference between two norms h is set to 0.4.

V. SIMULATION RESULTS

This section presents the MMAC CACC performance when
the string of vehicles is heterogeneous. In the following sub-
sections, the sets of nominal plants and corresponding CACC
controllers are introduced. These sets are chosen according
to the requirements of convergence and stability. Different
simulations have been carried out. The first of them (sub-
section Matching case), dynamics of both vehicles, preceding
and ego, coincide exactly with one of the plants in the set
{G}. Subsection Non-matching plant considers that preceding
and/or ego-vehicle have dynamics close to one of the plants
in the set.

A. Plant and controller sets

Convergence and stability for MMAC algorithms are as-
sured by assuming that the true plant is sufficiently close to
the identified model in the set [44] [45]. Thus, determination
of the correct set of nominal plants ensures convergence and
stability [25]. The idea is to determine the stability criterion
for each pair plant/model, analyzing the maximum uncertainty
around the plant without affecting the performance/stability of
the system. In that way, one can define the required number
of plants for the desired application range.

Vehicles with fast or slow dynamics, and with a certain
overshoot are considered through second-order transfer func-
tions: They are LTI plants mapping control velocity signals in
output velocity signals:

Gi =
w2

n,i

s2 +2 fdamping,iwn,is+w2
n,i

=

[
Ai Bi
Ci Di

]
(11)

where fdamping,i is the damping factor and wn,i is the natural
frequency in rad/s. Application range is defined by lim-
its in fdamping,i and wn,i: fdamping,i ∈ [0.55,0.65] and wn,i ∈
[0.9524,6.667]. Notice that these limits could be extended
in order to deal with every possible vehicle in the market.
These limits are in consistency with real vehicle models in
the literature as [46], [47] and [48], validating the selected
application range.

Once the application range is defined, string stability in
Eq. (9) is extended in order to get the minimum number of
nominal plants in {G} able to cover the whole application
range with string stability guarantee. For doing so, uncer-
tainties in damping factor and natural frequency of both ego
and preceding vehicles are included into the string stability
condition (see Eqs. (12) and (13)) as ∆ fdamping, j, ∆ fdamping, j−1,
∆wn, j and ∆wn, j−1. MMAC uses the same LTI plant model for
a given vehicle operational range. When doing so, there are
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Fig. 5. Uncertainty range string stable for pairs (G0,K0), (G1,K1) and
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inaccuracies between the associated model and the real model.
This can be seen as heterogeneous string stability problem
within the given operational range. String stability must be
guaranteed in the worst-case scenario, providing the number
of nominal plants for the MMAC design.

For the specific range defined above, three models in the set
{G} are enough to ensure string stability in the whole applica-
tion range. String stable areas for pairs (G0,K0), (G1,K1) and
(G2,K2) are depicted in Fig. 5. Small overlapping between
them is carried out in order to have a safer solution.

X j

X j−1
(∆ fdamping, j,∆ fdamping, j−1,∆wn, j,∆wn, j−1) =

=

G j(∆ fdamping, j ,∆wn, j)Fj
G j−1(∆ fdamping, j−1,∆wn, j−1)

− G j(∆ fdamping, j ,∆wn, j)K j
s

1− (
G j(∆ fdamping, j ,∆wn, j)K j

s +G j(∆ fdamping, j,∆w j)K jh j)
(12)

Gi(∆ fdamping,i,∆wn,i) =

=
(wn,i +∆wn,i)

2

s2 +2( fdamping,i +∆ fdamping,i)(wn,i +∆wn,i)s+(wn,i +∆wn,i)2

with i = j, j−1
(13)

Values for nominal plants in the set are in Table I. G0, G1
and G2 go from faster to slower dynamics. Plants Gx1, Gx2
and Gx3 are also present in Table I, and they will be the non-
matching cases in the corresponding subsection. Notice how
Gx3 have first order dynamics corresponding to the production
vehicle in [47]. The latter allows to test how the algorithm
behaves in a high-speed scenario and with a different order
model. τi refers to the time constant of the first order transfer
function.

TABLE I
PLANTS AND PARAMETERS.

G0 fdamping,0 = 0.6 wn,0 = 3.3333

G1 fdamping,1 = 0.6 wn,1 = 1.6667

G2 fdamping,2 = 0.6 wn,2 = 1.1111

Gx1 fdamping,2 = 0.65 wn,2 = 6.6667

Gx2 fdamping,2 = 0.55 wn,2 = 0.9524

Gx3 τ3 = 0.2

For every plant in the set {G} = {G0,G1,G2} a FOPD
controller has been designed with the objective of being
robust to uncertainties. Guidelines in [41] are followed, re-
sulting in a controller set {K} = {K0,K1,K2}. Controller

TABLE II
FOPD CONTROLLER PARAMETERS

Kp Kp α h

K0 Kp,0 = 0.35 Kd,0 = 0.15 α0 = 0.3847 h0 = 1s

K1 Kp,1 = 0.5 Kd,1 = 0.225 α1 = 0.3847 h1 = 1s

K2 Kp,2 = 0.6 Kd,2 = 0.3 α2 = 0.3847 h2 = 1s

parameters are shown in Table II. This set is extended in-
cluding the feedforward filter; Eq. (10) depends on possi-
ble combinations between plants in {G}, yielding {Kxr} =
{K00,K01,K02,K10,K11,K12,K20,K21,K22}, where x is the
plant in the preceding vehicle, and r the plant in the ego-
vehicle.

Once nominal plants and candidate controllers are defined,
Theorem 1 is applied to get the coprime factors needed in
Theorem 3, so the set of YK parameters is obtained as {Qxr}=
{Q00,Q01,Q02,Q10,Q11,Q12,Q20,Q21,Q22}. Each of them
permits controller reconfiguration from an initial controller to
a controller in the set {Kxr}. This set is reduced by choosing
an initial controller K00. Thus, the new set of YK parameters is
{Qxr} = {Q01,Q02,Q10,Q11,Q12,Q20,Q21,Q22}. Controller
transition is done through the scalar factor γxr associated to
Qxr. In the switching sequence γ only one γxr can be set
to one at the same time. If none of them is activated, the
inital controller K00 will be applied. Table III gathers the
information related to the controller set and the corresponding
YK parameter.

TABLE III
CONTROLLER SET AND YK PARAMETER

Kxr Gj−1 Gj Kj Fj Qxr γxr

K00 G0 G0 K0
1

hs+1 – –

K01 G0 G1 K1
1

hs+1
G0
G1

Q01 γ01

K02 G0 G2 K2
1

hs+1
G0
G2

Q02 γ02

K10 G1 G0 K0
1

hs+1
G1
G0

Q10 γ10

K11 G1 G1 K1
1

hs+1 Q11 γ11

K12 G1 G2 K2
1

hs+1
G1
G2

Q12 γ12

K20 G2 G0 K0
1

hs+1
G2
G0

Q20 γ20

K21 G2 G1 K1
1

hs+1
G2
G1

Q21 γ21

K22 G2 G2 K2
1

hs+1 Q22 γ22

B. Matching case

The matching case considers that ego and preceding vehicles
have dynamics that coincide exactly with one of the plants
in the set {G}. Specifically, preceding vehicle has dynamics
corresponding to plant Gj−1 =G0, while ego-vehicle has faster
dynamics like Gj = G2.

The dual YK parameterization is used in the supervisor, so
identification algorithms are not needed to determine which is
the closest plant in the set. ζi is used instead. By obtaining the
signal value for every plant in the set, one can easily determine
closeness. The top graph in Fig. 6 shows the evolution of these
signals through time for the ego-vehicle Gj, while the bottom
graph depicts the truncated 2-norm Ji related to ζi. Different



system activation times are considered to see how the system
reacts to different initial conditions. Solid-line indicates the
case where MMAC is activated at 0s, while dotted line shows
the situation where MMAC is activated at 29s. In both cases,
ζ2 and J2 are always zero, as Gj = G2. This plant index r is
used together with the received index x to specify the switching
sequence γ .

Figure 7 depicts the performance of MMAC CACC algo-
rithm when preceding vehicle is Gj−1 = G0 and ego-vehicle
Gj = G2. A comparison is made between an ego-vehicle with
an erroneous controller and with the controller that makes
the system string stable, observing the transition from one
to another when using MMAC. The initial and erroneous
controller in the YK controller reconfiguration is K00. The top
graph plots vehicles’ speeds when using K00 (dotted red line),
K02 (dotted blue line), MMAC activated at 0s (solid green
line) and MMAC activated at 29s (solid pink line). Preceding
vehicle speed is also shown (black solid line). The second
graph plots the switching sequence γ given by the supervisor.
The switching sequence is determined by the signals in Fig.
6. Dot-line indicates the case where MMAC is activated at
29s. Only γ02 is shown to have a lighter graph; the rest are
zero even when MMAC is activated at 29s. Finally, the bottom
graph represents the distance error for each of the controllers.

At second 0 Ego-incorrect, Ego-MMAC 1 and Ego-MMAC
2 are overlapping; it is not until second 1.8 that the correspond-
ing γ02 is activated, making a transition of Ego-MMAC 1 from
Ego-Incorrect to Ego-Correct. From second 1.5 to 32 Ego-
MMAC 2 matches with Ego-Incorrect as the system has been
activated at second 29, and the correct γ02 is not identified until
second 32. It is then when Ego-MMAC 2 starts its transition
from Ego-Incorrect to Ego-Correct.

From these results, one observes the importance of using
different controllers depending on vehicle dynamics. When
using K00 the string of vehicles results unstable. Ego-vehicle
speed is amplified in comparison with the preceding one,
and distance error tracking is large. No matter the activation
time, MMAC is able to specify in a few seconds the correct
switching sequence that makes the string stable. Thus, distance
error tends to zero and the transition between controllers is
really soft. To the best of authors’ knowledge, the only work
mixing controller reconfiguration and dynamics estimation
for an heterogeneous string of vehicles is the one in [17].
Parameters estimation takes 31s, which is much slower than
the presented work.

C. Non-matching case

The non-matching case considers that ego-vehicle and/or
preceding vehicle are not one of the plants in the set {G},
but within the application range: Gx1, Gx2 and Gx3. The
Vinnicombe ν-gap in [49] is employed to figure out which
is the closest plant in the set, so later can be verified if
the proposed MMAC algorithm is properly working. ν-gap
goes from 0 to 1, and expresses the difference between two
plants; the closer to zero the more the two plants look alike.
In the case of Gx1, the lower value of ν-gap is for G0 (ν-
gap(Gx1,G0)= 0.5336), so it is the closest plant to Gx1 in
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Fig. 6. ζi and Ji comparison. Gj−1 = G0 and Gj = G2. Solid-line indicates
the case where the system is activated at 0s, while dotted line shows the case
where the system is activated at 29s.
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Fig. 7. Simulation results MMAC CACC. Gj−1 = G0 and Gj = G2 .

the set. In the case of Gx2, the closest plant results G2 with
ν-gap(Gx2,G2)= 0.1449. Finally, in the case of the first order
plant Gx3 the closest results G0 with ν-gap(Gx3,G0)= 0.5722.

Figure 8 shows the evolution through time of ζi and Ji when
Gj−1 = G1 and ego-vehicle Gj = Gx3 (Citroen C4 model used
in [47]). Again different system activation times are consid-
ered, 10s and 35s in solid and dotted lines respectively. In both
cases, one can observe how the minimum value corresponds
to ζ0. Even if Gx3 is a production vehicle model and not a
candidate plant in the set {G}, dual YK parameterization gives
a good insight of the closest plant. Notice that ζ0 is not zero
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Fig. 9. Simulation results MMAC CACC. Gj−1 = G1 and Gj = Gx3.

in these cases, but it is much more smaller than ζ1 and ζ2.
Figure 9 depicts the performance of MMAC CACC algo-

rithm when preceding vehicle is Gj−1 = G1 and ego-vehicle is
the production vehicle Gj = Gx3. Again incorrect (K00, dotted
red line) and correct controller (K10, dotted blue line) are
compared with MMAC activated at 10s (solid green line) and
MMAC at 35s (solid pink line). Preceding vehicle (black solid
line) follows a speed profile that goes between 22 and 28m/s.
Indexes are identified in preceding and ego vehicles, so the
corresponding γ10 is activated in few seconds no matter the
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Fig. 10. ζi and Ji comparison. Gj−1 = Gx1 and Gj = Gx2. System shutdown
at 71.5s.
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Fig. 11. Simulation results MMAC CACC. Gj−1 =Gx1 and Gj =Gx2. System
shutdown at 71.5s.

activation time, making the distance error zero in a smooth
way.

At second 10 Ego-incorrect, Ego-MMAC 1 and Ego-
MMAC 2 are overlapping; it is not until second 12.8 that the
corresponding γ10 is activated, making Ego-MMAC 1 goes
from Ego-Incorrect to Ego-Correct. It is not until second 36
that Ego-MMAC 2 starts its transition from Ego-Incorrect to
correct as the system has been activated at second 35, and the
correct γ10 is identified at second 36.

Finally, a case with two non-matching models in preceding
and ego vehicles is considered: Gj−1 = Gx1 and ego-vehicle
Gj =Gx2. This is the most critical case possible, as it considers



the fastest preceding vehicle together with the slowest ego-
vehicle, and different damping factors in the limits of the
application range. Evolution through time of ζi and Ji for ego-
vehicle is in Fig. 10. The closest plant is G2 as ζ2 is the lower
one. Differences between the unstable controller and stable one
are remarkable in the distance error tracking.

Figure 11 depicts the performance of MMAC CACC al-
gorithm when preceding vehicle is Gj−1 = Gx1 and ego-
vehicle Gj = Gx2. Incorrect (K00, dotted red line) and correct
controllers (K02, dotted blue line) are compared with MMAC
solution (solid green line). Indexes are correctly identified
in preceding and ego vehicles, so the corresponding γ02 is
activated, preserving string stability. MMAC shut down is
also analysed in the same figure; the system shuts off at
71.5s passing smoothly from a string stable behaviour to an
unstable one. Notice how in the unstable case, the distance
error tracking gets bigger than in previous cases. This distance
error is directly associated with an ego-vehicle speed that is
amplified.

At second 0 Ego-incorrect and Ego-MMAC are overlapping;
it is at second 3 that the corresponding γ02 is activated, making
Ego-MMAC goes from Ego-Incorrect to Correct. At second
71.5 MMAC system is switched off, making Ego-MMAC
comes back to Ego-Incorrect.

It has been proved the correct behaviour of MMAC for
CACC applications even if the real vehicle Gj is not exactly
one of the candidate plants in the set {G}. Different orders and
speed scenarios have been used. Real vehicle dynamics should
be within the application range. A larger set of models and
controllers would be needed in practice to cover the different
dynamics in a fleet of vehicles.

VI. EXPERIMENTAL RESULTS

A string of two cycabs is used as the experimental test
platform. Cycabs are mobile platforms used in several research
labs conceived for urban applications [50]. The vehicle is
controlled by a commanded velocity. The velocity is limited
up to 4m/s, because it is mainly designed for crowded areas
where higher speeds can lead to unsafe situations. MMAC
CACC algorithm is implemented in C++ using RTMaps1

prototyping software.
Experimental results serve as convergence validation of a

real system. This is a non-matching case. Since both vehicles
in the string have similar dynamics, the string will always be
homogeneous, not being required the activation of any γxr in
the switching sequence γ . The initial controller is modified to
K01; in that way, a modification of γ will be mandatory to
obtain the best performance possible.

Figure 12 depicts the evolution through time of ζi and Ji
during the experimental test. MMAC algorithm is activated
at 0s. The minimum value corresponds to ζ0, so G0 is the
closest plant to the real dynamics of a cycab. It is not until
2.5s that the differences between J0, J1 and J2 are big enough
to determine the switching sequence γ .

Figure 13 depicts the performance of MMAC CACC algo-
rithm when applied to a string of two cycabs. A comparison is

1https://intempora.com/
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made between the second cycab in the string with an erroneous
controller and with the controller that makes the system
string stable, showing the transition between both when using
MMAC. The top graph plots cycabs’ speeds when using K10
(dotted red line), K00 (dotted blue line) and MMAC activated
at 0s (solid green line). First cycab’s speed is also shown (black
solid line). The middle graph shows the switching sequence γ

determined by signals in Fig. 12. The bottom graph plots the
corresponding distance errors when using correct, erroneous
and MMAC controllers. Notice that initial distance errors are
not the same for the 3 tests; a maximum error of 20cm was
considered to start each of the tests.

From these results, one can see how important it is to
take into account vehicle dynamics to ensure string stability.
Inappropriate performance can be clearly appreciated on the



distance error tracking. Even if this is less remarkable in the
speed response, distance error is longer when the velocity
step is big enough. The difference in the second step is less
remarkable, as the speed step is smaller, but oscillations are
present in the distance error. For the MMAC algorithm, it
takes 2.5s to determine that both vehicles are closer to G0,
switching to the homogeneous controller K00 through γ00. The
transition between both controllers is smooth. The resulting
transient is a combination of the initial distance error and
the controller reconfiguration induced by γ00. These results
validate the simulation results seen in the previous section.

Experimental results serve as a convergence proof of a
real vehicle with some of the plants in {G}. As vehicles
are homogeneous, the most important task is to detect that
both vehicles have similar dynamics, in order to switch to the
classical homogeneous CACC controller.

VII. CONCLUSIONS

This paper explores the use of MMAC for CACC applica-
tions in heterogeneous/homogeneous string of vehicles.

Youla-Kucera theory is explained as the basis of a general
MMAC algorithm based on a set of nominal plants and pre-
defined controllers. MMAC acts as a supervisor determining
the closest plant to the real system in the set, switching to
the predesigned controller that will give the best performance
possible. No identification algorithm is needed, the dual YK
parameterization is used instead.

The general MMAC algorithm is later applied to a feed-
forward/feedback FOPD CACC system, so a structure able to
handle different dynamics in a string without the need of an
identification algorithm is obtained.

Performance of MMAC CACC algorithm is analysed
through simulation results. A set of 3 linear plants is con-
sidered for validation purposes. Real vehicles models are
considered within the application range. Dynamics matching
and non-matching (even with different model order) cases
with a plant in the set are considered, verifying how the
supervisor is able to provide the closest plant in the set,
activating the controller that ensures string stability. Dynamics
estimation results much faster than other estimation processes
in the literature. A test setup of two cycabs is used, showing
that MMAC CACC design is not only theoretically, but also
practically feasible.

Although the set {G} is composed by 3 plants, this could
be extended to n plants, so a larger dynamic range can be
covered in heterogeneous CACC applications.

Finally, as communication delays have a direct impact in
the string stability of the system, the developed YK controller
structure will be extended in order to deal with such delays
and different communication topologies.
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