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ABSTRACT 

 

In this paper, we propose and compare multiple criteria for 

selecting ElectroEncephaloGraphic (EEG) channels over the 

Riemannian manifold, for EEG classification in Brain-

Computer Interfaces (BCI). These criteria aim to promote 

EEG covariance matrix classifiers to generalize well by 

considering EEG data non-stationarity. Our approach 

consists of both increasing the discriminative information 

between classes over the manifold and reducing the 

dispersion within classes. We also reduce the influence of 

outliers in both discriminative and dispersion measures.  

Using the proposed criteria, channel selection is done 

automatically in a backward elimination process. The 

criteria are evaluated on EEG signals recorded from a 

tetraplegic subject and dataset IVa from BCI competition 

III. Experimental evidences confirm that considering the 

dispersion within each class as a measure for quantifying the 

effects of non-stationarity and removing the most affected 

channels can improve the performance of BCI by 5% on the 

tetraplegic subject and by 12 % on dataset IVa.    

 

Index Terms— Channel selection, BCI, EEG, 

covariance matrix, Riemannian manifold 

 

1. INTRODUCTION 

A Brain-Computer Interface (BCI) processes a user’s brain 

signals, typically measured using Electroencephalography 

(EEG), and translates them into commands for an interactive 

application [1]. EEG signals are essentially non-stationary 

[2], due to various neurophysiological and extra-

physiological causes [3], leading to variations in BCI users' 

performance [4]. This highlights the necessity of considering 

the non-stationarity of the data to improve how well an EEG 

classifier can generalize to unseen EEG data in BCI [5, 7]. 

In the literature, such non-stationarities have been addressed 

using a wide range of techniques, at different BCI levels [6]. 

At the machine learning level, one approach consists in 

matching the statistical distributions of different datasets - 

corresponding to different sessions or subjects - using 

geometrical transformations such as translation, scaling and 

rotation [8, 9, 10]. Additionally, classifiers ensembles [3] are 

another approach for handing non-stationarity. With this 

approach, the information from multiple sources (i.e., 

subjects or sessions) is handled by multiple classifiers. 

These classifiers are combined into a “global” classifier.  

As a general categorization, these methods can be divided 

into two approaches: the first approach’s main goal is to 

match the distribution of the data by applying some 

geometrical transformation, while the second approach tries 

to include all the statistical variabilities and model them. In 

none of these two approaches, the non-stationarity in the 

data is removed or reduced: their main aim is to handle its 

existence. See [11] for a review of all such approaches. 

Despite the variety of variables that may lead to data non-

stationarity, including psychological characteristics and 

neuroanatomic properties, the neuro-physiological causes of 

all these variations are not well nor fully known [9,12]. 

Thus, modeling these sources and removing/reducing their 

effect precisely had not been possible, at least so far.  

Our contribution to tackling data non-stationarity, in order to 

make BCI more robust, is to quantify and reduce the 

undesirable effects of these non-stationary sources by 

removing  EEG channels which are mostly affected by them.  

For representing EEG patterns, we use EEG spatial 

covariance matrices, which have been shown to be efficient 

descriptors when analyzing them using Riemannian 

geometry [13, 14]. Indeed, covariance matrices are 

symmetric positive definite (SPD). Due to their positive 

definiteness, their feature space is not a vector space. 

Considering the non-linear geometry of data points in 

analysis and reformulating the space as a connected 

Riemannian manifold, by equipping each tangent space with 

a Riemannian metric, leads to superior results in comparison 

with analyses in Euclidean space [13]. Thus, in this study, 

we focus on covariance matrices Riemannian geometry.  

Barachant and Bonnet [15] proposed a channel selection 

method, which is adapted to the Riemannian geometry of 

covariance matrices. They used the distance between the 

means of different classes as a criterion for removing the 

less informative channels [15], as follows:  

 

(1) 

where is the mean of class i. Although their method led 

to good results, they have not considered changes in data 

variance. Hence, even with increasing data non-stationarity, 

this criterion only considers the distance between means, 

despite changes in variance and possible overlap between 

classes. Thus, there is a need for channel selection 

algorithms, adapted to Riemannian classifiers, that can deal 

with EEG non-stationarities. This is what we propose here. 



In this study, we first assume that non-stationarity mostly 

manifests as changes in the variance of data. Thus, we try to 

remove the channels which convey most of the variance 

while conveying less discriminative information.  

As the second criterion, we quantify the effects of non-

stationarity (i.e., change in data distribution) as multi-modal 

distributions for each class, with overlap between classes. 

Our second proposed approach consists in considering the 

clusters of samples from one class surrounded by samples 

from other classes as an indicator for dispersion, and thus in 

removing channels leading to this dispersion. 

The remainder of this paper is organized as follows: first, we 

provide notations and some basic definitions in section 2.1. 

In section 2.2 we describe our proposed approaches. The 

experimental set-up and results are reported and discussed in 

section 3. Finally, the paper is concluded in section 4. 

 

2. METHOD 

 

2.1. Riemannian manifold of covariance matrices 

The representation of data points in this paper is denoted by 

a covariance matrix , where  denotes the trial number 

and  denotes its corresponding class.   is an   

positive definite matrix, where  denotes the number of 

EEG channels. It is computed by the optimal linear 

shrinkage of the spatial covariance matrix of each trial [16].  

Each class, i.e., each mental task, is represented using a pool 

of covariance matrices. The Riemannian distance between 

two covariance matrices along the manifold is computed as: 

 

 
(2) 

where  and are the covariance matrices of the th 

and th trial of class  and  respectively,  denotes 

the Frobenius norm, and  is the log-matrix operator. 

To compute the mean of SPD matrices in a Riemannian 

framework, we use the Riemannian center of mass :  

 

 

(3) 

This point has the minimum squared distance from all points 

of the class . There is no closed-form solution for this 

equation, but it can be computed using an iterative algorithm 

[17]. 

The variance within each class is defined based on [20]: 

 

(4) 

where  is an empirical estimation of the variance of class 

 and  is the number of samples.  

 

2.2. Channel selection 

From the classification point of view, having a 

discriminative representation of different classes is 

desirable. Changes in the distribution of data, as the result of 

sources of non-stationarity, can affect class discrimination. 

In the following, we propose two criteria that measure both 

the data dispersion and how much each channel carries 

discriminative information. The selection of the channels 

using such criteria is done based on algorithm 1 [15]. It is 

written for the first criterion. To use it with the second 

criterion, lines 5 and 7 should be changed to compute Eq. 

(9) and Eq. (10) (described hereafter), line 9 to compute Eq. 

(11), and line 13 should be removed.  

 

Algorithm 1. Channel subset selection  

Input: , ,    % , , : class type 

Input: ,  , ,      % : No of selected channels, : No of all channels, 

                                                                % : No. of classes, : No. of samples in each class 

Output:                 %Subset: Subset of selected channels  

 

1:  
2:  :  
3:    
4:        

5:             % : Remove ith row and column from matrix C   

6:           

7:           

8:       

9:          

10:   
11:   
12:     % Remove th element of Subset 

13:   

14:   

15:  

 

2.2.1 Maximum distance minimum variance criteria 

It is assumed that channels that are mostly affected by 

different sources of non-stationarity could have a higher 

influence on data dispersion. Such channels may also carry 

less discriminative information. By considering these two 

factors simultaneously, we can avoid removing high 

variance channels that convey high discriminative 

information. To do so, our first selection criterion is:  

 

(5) 

where the numerator represents the distance between class 

means over the manifold and the denominator represents the 

total variance within different classes. For channel selection, 

we start with all channels. Then, we assess the effects of 

removing each channel on Crit1, and the less informative 

channel (i.e., the channel whose removal leads to a 

maximum value for Crit1) is removed. In other words,  

channels that contribute most to the variance and carry less 

https://www.google.com/search?rlz=1C1CHBD_enFR849FR850&sxsrf=ACYBGNTw23rVgd4ExdLRFvjpyk4wzfhs-A:1570551218766&q=empirical+estimation+of+variance+and+mean&spell=1&sa=X&ved=0ahUKEwjI1Pubh43lAhUqShUIHQqgAwEQkeECCC4oAA


discriminative information are removed first using this 

criterion. However, using the variance for controlling the 

non-stationarity may suffer from outliers interference. Thus, 

we propose a second criterion taking into account outliers.  

 

2.2.2 Maximum margin –minimum inter-class dispersion 

To inhibit the effects of outliers, we consider both 

discriminative information and the dispersion component of 

the selection criterion. For representing discriminative 

information, we use the margin size (i.e., ) of a soft 

margin Support Vector Machine (SVM) classifier, where  

 

 

(6) 

 and  are support vectors covariance matrices, K a 

kernel between covariance matrices (see Eq. (8) below) and 

 and  are the matrices labels.  are the coefficients 

obtained by optimizing the objective function of SVM. With 

an appropriate set-up of regularization parameter (not very 

large value (i.e., overfitting to data including outliers) nor 

very small (i.e., a lot of misclassification in training 

process), the margin size is robust to outliers [7]. To 

represent the dispersion, as an indicator of non-stationarity, 

instead of considering the within-class variance, we 

represent it by batches of samples from one class that are 

surrounded by samples from other classes. These samples 

can affect the generalization of the classifier. For example, 

in the case of an SVM classifier, these samples may lead to a 

larger upper bound for the probability of test error, by 

increasing the empirical risk (i.e., ), as follows:  

 

 

(7)  

 
where  and  denotes the number of misclassified training 

samples and the number of all the training samples 

respectively, and  denotes the Vapnik–

Chervonenkis dimension of the SVM-classifier, which is 

inversely proportional to the margin size [7]. Therefore, the 

influence of non-stationary sources (i.e., undesirable inter-

class dispersion), which leads to lower SVM generalization 

(i.e., higher upper bound for the probability of test error), 

can be reduced by decreasing the distance of non-outlier 

misclassified samples from the boundary between classes. 

By focusing on non-outlier samples when computing the 

dispersion, we reduce the effects of outliers. 

 To capture these samples, as an indicator of within-class 

dispersion, we use the inconsistency between the prediction 

of a local classifier ( ) and a global classifier (SVM) 

in the same feature space. This inconsistency can represent 

some of the undesirable effects of non-stationarity. For this 

purpose, we train an SVM using a Riemannian kernel: 

 

(8)  

 
Then a weighted  is trained on the same data:  

 

 

(9)   

. 

The   parameter should be large enough to avoid capturing 

the outliers in computing the dispersion indicator. The 

inconsistency between the prediction of the SVM 

and  classifiers is used for measuring the undesirable 

interclass dispersion as follows: 

 

 (10) 

 

where  is a Dirac delta function and (.) and (.) 

denotes the prediction of SVM and  classifiers 

respectively. Both the discriminative information and the 

dispersion measure are used to evaluate the channel subset:  

 

 

(11) 

To give an equal contribution to both factors, both are 

normalized by their maximum value within an iteration (line 

3 of Algorithm 1) 

 

3. EVALUATIONS 

3.1. Datasets  

The proposed criteria were evaluated on two datasets. The 

first dataset is recorded from a tetraplegic subject during 

multiple sessions. The sessions took place on several days at 

the subject’s home, an environment with low control on 

background luminosity, ambient sounds or electromagnetic 

interference, or in the lab. EEG signals were recorded with 

46 active scalp electrodes. Our experiments used data from 3  

sessions, called S9, S11, and S13. They are composed of 3, 

3, and 2 runs respectively. Each run comprised 10 trials per 

mental task (left or right imagined hand movements). For the 

offline evaluation of this dataset, EEG signals were band-

pass filtered in 8-24 Hz using a 5th order Butterworth filter. 

For each trial, two epochs were extracted from 250ms after 

the instruction cue. The window length was 2s with 50% 

overlap between consecutive windows. 

The second dataset used is dataset IVa from BCI 

competition III [17]. EEG signals were filtered in 8-30 Hz  

 

https://en.wikipedia.org/wiki/Vapnik%E2%80%93Chervonenkis_dimension
https://en.wikipedia.org/wiki/Vapnik%E2%80%93Chervonenkis_dimension


Table I. Evaluations (accuracy Ac.) on dataset IVa 

 

using a 5th order Butterworth filter. For each trial, one 

epoch is extracted from 0.5s to 4s after the cue.    

 

3.2. Results 

We first compared the influence of Crit0 and Crit1 on 

dispersion and discriminative information. For these two 

criteria, the summation of the variance within each class and 

the distance between class means for different subsets of 

channels, are illustrated in Fig.1. All runs of the first dataset 

(S9-S11-S13) are included. With Crit1, about 45% of the 

variance was removed by removing the first 6 channels (i.e., 

55% was preserved by the 40 remaining channels) versus 

only 17% of it using Crit0 (Fig 1. (b)).  

In the second experiment, to illustrate the effects of reducing 

the variance, we compared the average accuracy of a Fisher 

geodesic Minimum Distance to the Mean (fgMDM) 

classifier [19], across different numbers of channels. 

Sessions S9, S11, S13 alone and S9-S11-S13 together are 

used as data sets in this experiment (Fig.2). Leave-one-run-

out cross-validation was used for evaluation on each dataset. 

In our experiments, we used k = 5 and 10 for detecting 

probable informative badly located samples using k-NN. 

These values were selected experimentally, by considering 

the number of samples in the training sets. The SVM 

regularization parameter was selected by examining C = 0.1, 

1, 10, 102, 103, 104 using cross-validation on the training set. 

We used  = 1, in Eq. (11), to use an equal weight for 

dispersion and discriminative information in Crit2. 

We ran a one-way repeated measure ANOVA to compare 

the average accuracy achieved for each dataset for selected 

channels, by each criterion. For statistical analysis, the 

numbers of channels considered for analysis are selected 

from an interval by considering the tradeoff between within 

and between class-dispersion (e.g., for the first dataset, we 

considered the numbers of channels which preserve at least 

50% discriminative information and remove more than 40% 

within-class dispersion, i.e., from 10 to 40). Considering the 

variance in Crit1 led to a significantly higher accuracy than 

with Crit0 (p<0.05). However, whereas using margin as 

selection criteria led to significantly higher accuracy than 

with Crit0 (p<0.05), the difference between Crit1 and Crit2 

was not significant. A comparison between Crit0 and Crit2 

showed significant superiority of Crit2 (p<0.05). For BCI 

competition III dataset IVa, the average accuracy with all 

channels, the best accuracy, and the accuracy for a specific 

number of channels (10) after channel selection using the 

different criteria, are averaged across the 5 subjects and are 

reported in Table I. Statistical testing of the average 

accuracy across channels (No=10 to 40) between different 

subjects and criteria, confirmed that Crit0 and Crit1 are 

significantly different (p<0.05).  
 

4. CONCLUSION 

In this paper, we proposed, studied and compared different 

criteria for channel selection over the manifold of SPD 

matrices and test it for EEG classification in BCI 

application. Our experiments confirm that considering the 

variance as a factor for controlling the data non-stationarity 

and removing channels affected by the sources of non-

stationarity can improve BCI performances, both as 

compared to using all channels and as compared to selecting 

channels based on the between class means only. Our works 

thus contributed new tools for channel selection in EEG-

based Riemannian classifiers.  
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Fig. 1. (a) Distance between means, (b) Variance sum. 

 

Fig2. Average classification accuracy of fgMDM after channel 

selection by Crit0, Crit1, Crit2, and Margin size. 

 
Maximum 
Ac. 

Ac.  
No = 10 

Mean Ac.  
Across 
channels 

Mean Ac 
across 
subjects 

Crit0 0.8321 0.7724 0.7563  
0.6666 

 
Crit1   0.8731 0.8212    0.7952 

Crit2 0.8704 0.8245 0.8079 

Margin 0.8673 0.8185 0.8036 
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