
HAL Id: hal-02475835
https://inria.hal.science/hal-02475835

Submitted on 12 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Curated Archiving of Research Software Artifacts :
lessons learned from the French open archive (HAL)

Roberto Di Cosmo, Morane Gruenpeter, Bruno P Marmol, Alain Monteil,
Laurent Romary, Jozefina Sadowska

To cite this version:
Roberto Di Cosmo, Morane Gruenpeter, Bruno P Marmol, Alain Monteil, Laurent Romary, et
al.. Curated Archiving of Research Software Artifacts : lessons learned from the French open
archive (HAL). IDCC 2020 - International Digital Curation Conference, Feb 2020, Dublin, Ireland.
�10.2218/ijdc.v15i1.698�. �hal-02475835�

https://inria.hal.science/hal-02475835
https://hal.archives-ouvertes.fr

IJDC | Peer-Reviewed Paper

Curated Archiving of Research Software Artifacts:
lessons learned from the French open archive (HAL)

Roberto Di Cosmo
Inria, Software Heritage,

University of Paris, France

Morane Gruenpeter
Software Heritage,

University of L’Aquila, Italy

Bruno Marmol
CCSD, Inria,

France

Alain Monteil
IES Inria, France

Laurent Romary
Inria, France

Jozefina Sadowska
IES Inria, France

Abstract

 Software has become an indissociable support of technical and scientific knowledge.
The preservation of this universal body of knowledge is as essential as preserving
research articles and data sets. In the quest to make scientific results reproducible, and
pass knowledge to future generations, we must preserve these three main pillars:
research articles that describe the results, the data sets used or produced, and the
software that embodies the logic of the data transformation.

The collaboration between Software Heritage1 (SWH), the Center for Direct Scientific
Communication (CCSD)2 and the scientific and technical information services (IES3) of
The French Institute for Research in Computer Science and Automation (Inria)4 has
resulted in a specified moderation and curation workflow for research software artifacts
deposited in the HAL5 open access repository. The curation workflow was developed to
help digital librarians and archivists handle this new and peculiar artifact - software
source code. While implementing the workflow, a set of guidelines has emerged from
the challenges and the solutions put in place to help all actors involved in the process.

1 Software Heritage: the universal software source code archive (https://www.softwareheritage.org/)
2 CCSD: a combined service unit (UMS3668). Its main objective is to provide tools needed to archive,

disseminate and capitalise on scientific outputs (https://www.ccsd.cnrs.fr/en/)
3 https://www.inria.fr/en/centre/sophia/research/scientific-and-technical-information
4 https://www.inria.fr/en/
5 HAL: the French global open access repository (hal.archives-ouvertes.fr)

Received 16 December 2019

Correspondence should be addressed to Morane Gruenpeter, Paris, France. Email: morane@softwareheritage.org

The International Journal of Digital Curation is an international journal committed to scholarly excellence and
dedicated to the advancement of digital curation across a wide range of sectors. The IJDC is published by the
University of Edinburgh on behalf of the Digital Curation Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

Copyright rests with the authors. This work is released under a Creative Commons Attribution
(UK) Licence, version 2.0. For details please see http://creativecommons.org/licenses/by/2.0/uk/

International Journal of Digital Curation
2020, Vol. 0, Iss. 0, 1–

1 http://dx.doi.org/10.2218/ijdc.v0i0.0
DOI: 10.2218/ijdc.v0i0.0

http://www.ijdc.net/
https://www.ccsd.cnrs.fr/en/
https://www.inria.fr/en/centre/sophia/research/scientific-and-technical-information
https://www.inria.fr/en/
http://hal.archives-ouvertes.fr/
https://www.softwareheritage.org/
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://creativecommons.org/licenses/by/2.0/uk/

2 | Curated Archiving of Research Software doi:10.2218/ijdc.v0i0.0

Introduction

Modern research relies on software, but it has only gained recognition recently. While
strategies for articles and even data preservation are already the norm, software is still a
unique artifact for which it is rare to find dedicated deposits and preservation
mechanisms in institutional repositories (Milliken, 2019). We need to preserve source
code alongside scientific articles and datasets to scaffold future work on top of these
open science pillars. As declared on the Inria /UNESCO Paris call:

‘Recognise software source code as a fundamental research document on a
par with scholarly articles and research data;’ (UNESCO-Inria, 2019)

Figure 1. The Open Science pillars for sharing articles, data and software.

Today, software is still too often considered as just data, even though data is
gathered through observations or experiments, whereas software is a product of human
ingenuity, written by authors and contributors, and embodying the logic of the data
transformation. As mentioned in (Alliez et al., 2019), it is challenging to determine
who should get credit for the software and which authority has the capability of doing
so. Software can be designed and developed by a large number of contributors with a
rich development history and a complex web of dependencies. This is why software
source code should be considered a research output category of its own. We need to
establish preservation strategies to capture both the scientific knowledge it contains and
the metadata to comprehend its context.

To ensure preservation of source code, three actors in the French and international
research community have collaborated to provide a place for researchers to deposit their
source code.

Hyper Articles en Ligne a.k.a HAL

The first actor in this collaboration is HAL, the French national open access repository,
created in 2000 by the French National Centre for Scientific Research (CNRS6) and
maintained by the the Center for Direct Scientific Communication (CCSD), destined to
provide tools for archiving and dissemination of scientific outputs openly. HAL is a
repository where researchers can deposit their academic outputs compliant with their

6 http://www.cnrs.fr/en/cnrs

IJDC | Peer-Reviewed Paper

http://www.cnrs.fr/en/cnrs

doi:10.2218/ijdc.v0i0.0 Di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowska | 3

copyrights7. Since its creation, HAL has supported different types of deposits:
publications, documents (e.g pre-prints and reports), academic work (e.g theses) and
research data (e.g images, videos). HAL’s goal is to make research as accessible and
open as possible.

IES Inria

Another collaborator in this effort is Inria, the French National Institute for computer
science and applied mathematics. Inria Created in 1967 , it currently hosts in its teams
over 3000 researchers8 and supports the creation of a broad spectrum of open source
software, including award winning projects such as Coq, OCaml, and Sckit-Learn.

The research center has a dedicated scientific and technical information service,
denoted IES-Inria, which played a major role when specifying the new type of research
output: software source code, shown in (Barborini et al., 2018).

Software Heritage (SWH)

The third collaborating initiative is Software Heritage, a nonprofit organization whose
goal is building the Library of Alexandria for software source code by collecting,
preserving and making the source code available in the long term, as detailed in
(Abramatic et al., 2018) and (Di Cosmo and Zacchiroli, 2017).

Software Heritage initiated this collaboration, due in part because of its primary goal
and practical knowledge of how to implement software preservation workflows.

These three collaborators designed and implemented a complete workflow dedicated
to research source code artifacts that involves three major steps:

1. depositing software source code on HAL’s platform
2. moderating and curating the deposit by a certified IES-Inria moderator
3. sharing the deposit and pushing the deposit to the SWH archive

Thanks to this fruitful collaboration software deposits were integrated into the
document types supported by HAL, in September 2018.

In this article, we detail the workflow for curating the deposit of software artifacts in
the HAL open access repository and the guidelines put in place for the people involved
in the process. We describe the transition from test phase to the global integration. Then,
we share the lessons learned from the implementation and usage of the source code
deposit and the specified workflow. We conclude by presenting the next steps in our
software deposit roadmap.

7 https://u-paris.fr/hal-archives-ouvertes/ accessed on 28.11.2019
8 https://www.data.gouv.fr/fr/organizations/inria/ accessed on 28.11.2019

IJDC | Peer-Reviewed Paper

https://www.data.gouv.fr/fr/organizations/inria/
https://u-paris.fr/hal-archives-ouvertes/

4 | Curated Archiving of Research Software doi:10.2218/ijdc.v0i0.0

A workflow for curating the deposit of software
artifacts

From the earliest open repositories to now, moderation has been a key part of the
submission workflow when self-archiving research outputs. One prominent example is
ArXiv9, founded in 1991 and operated by the Cornell University.

Today, there exist platforms that offer source code deposit, such as Zenodo and
Figshare, but do not have any pre-submission checks for the self-archived content. HAL
chose to follow ArXiv’s example10 and implement a sophisticated moderation workflow
in order to ensure that quality metadata is attached to every deposit into the platform.

In order to extend the existing HAL moderation workflow to support deposits of
research software, a similar workflow had to be implemented to handle the following
aspects:

• artifacts attribution,
• classification,
• compliance with metadata requirements,
• and appropriate content.

 As described in detail in (Alliez et al., 2019), keeping the humans in the loop,
similarly to the ArXiv moderation (ArXiv moderators, 2019), is essential to have quality
metadata and better credit attribution.

Figure 2. The deposit workflow on the HAL platform and archiving into SWH

The submission form

Contributors must fill out a descriptive metadata form on submission, to ensure the most
accurate information about the source code is captured. The metadata is used for

9 https://arxiv.org/ accessed on 28.11.2019
10 https://arxiv.org/help/moderation accessed on 28.11.2019

IJDC | Peer-Reviewed Paper

https://arxiv.org/help/moderation
https://arxiv.org/help/moderation

doi:10.2218/ijdc.v0i0.0 Di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowska | 5

moderating the submission and is preserved with the software in both HAL and the
SWH archive.

Figure 3. The software deposit form on the HAL-Inria instance platform

The design of the form was adapted from the pre-existing deposit form for scientific
articles, see figure 3 where you can choose the software type and add a software license.
The HAL metadata schema included terms that are applied to all deposits (e.g author,
title and keywords, etc.) However, it wasn’t sufficient to describe software artifacts.
Software requires more specific elements in addition to these to adequately describe its
complexities. We researched the software vocabulary landscape for a vocabulary
adapted to scientific software, and we found that the CodeMeta vocabulary was a
perfect fit. A refinement of the schema.org classes SoftwareApplication and
SoftwareSourceCode, it provides a convenient bridge with linked data and the semantic
web. In addition the core metadata for software is compliant with existing standards like
TEI and Dublin Core.

In Table 1, we compare the HAL metadata terms with the following legend:
• regular text: term that already existed for an article deposit
• bold text: term that is mandatory with the software source code deposit
• italic text: term specifically added for software

IJDC | Peer-Reviewed Paper

6 | Curated Archiving of Research Software doi:10.2218/ijdc.v0i0.0

Table 1. The descriptive metadata to ensure an accurate description of the source code artifact

Software source code

HAL metadata terms CodeMeta terms TEI

HAL ID identifier idno:halId

SWH ID identifier idno: swhid

Document type classCode: halTypology

name name title

Domain applicationCategory classCode:halDomain

Description description note:description

Keywords keywords keywords

Identifiers identifier

idno:doi
idno:arXiv
...

Production date dateCreated date:whenWritten

[deposit date] datePublished date:whenReleased

Classification classCode: classification

ACM Classification ClassCode:acm

Comment releaseNotes note:commentary

Internal note referencePublication localRef:refinterne

Project/Collaboration

See also relatedLink seeAlso

Contract, financing funding funder

ANR project(s) funding funder:ref="#projAnr"

European project(s) funding funder:ref="#projeurop"

softwareLicence license availability:licence

programmingLanguage programmingLanguage note:programmingLanguage

codeRepository codeRepository codeRepository

platform operatingSystem note:platform

version softwareVersion note:version

developmentStatus developmentStatus

runtimePlatform runtimePlatform

file file

author author author

Related data supportingData

IJDC | Peer-Reviewed Paper

doi:10.2218/ijdc.v0i0.0 Di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowska | 7

The Software deposit guidelines

We identified that a set of requirements beyond this submission form was needed to
curate software deposits. To this end, we have created two user guides, one for the
researchers that submit the software (Gruenpeter and Sadowska, 2018a), and one for the
digital archivist in charge of the moderation (Gruenpeter and Sadowska, 2018b).

When researchers want to archive and share their code as a citable artifact, they can
submit it to either the main HAL instance11 or on a specific institutional instance (e.g.
Inria's instance12). No matter where the deposit lives, all materials are discoverable on
the central HAL instance.

In the current implementation, researchers must provide a compressed archive,
containing the source code (mostly text files) .

Researchers are asked to prepare the software source code archive, before
submission, by adding the following files:

• AUTHORS
• LICENSE (Preferably from the SPDX referential catalog13)
• README - Elements that we require and recommend to be included in the

README file were taken from the "Best Practices on How to Release
Software" from (Raymond E. S., 2000)

▪ MUST include:
• name of the software/project
• a brief description of the project

▪ SHOULD include:
• project website or documentation pointer
• authors/credits list (if not in AUTHORS file)
• license (if not in LICENSE file)
• Contact and support

▪ CAN include:
• list of features
• developer's build environment
• build, installation, requirements - how to run the code
• usage - how to use the source code
• recent project news
• visual

To help researchers and ensure uniformity of the submited metadata, we have added
auto-completion for the license property, using normalised terms directly extracted
from the SPDX reference standard, developed and maintained by the software industry.

11 The main HAL instance on hal.archives-ouvertes.fr
12 The Inria instance on hal.inria.fr
13 spdx.org: The SPDX License List is a list of commonly found licenses and exceptions used in free and

open source and other collaborative software or documentation.

IJDC | Peer-Reviewed Paper

https://hal.archives-ouvertes.fr/
https://hal.inria.fr/
https://spdx.org/licenses/

8 | Curated Archiving of Research Software doi:10.2218/ijdc.v0i0.0

Curating software - including humans in the loop

The professionals curating deposits into HAL are librarians and archivists. They are
employed by specific institutions, if the institution has authority over its institutional
repository (e.g Inria and University of Lorraine) or directly by the CCSD which
operates HAL and all attached services. The curation of deposited digital artifacts is one
of the roles they assume as information experts. Most of these librarians and archivists
have a background in academic institutions, and curating these deposits is one of their
key responsibilities.

The process of moderating source code deposits requires human intervention, which
leads to direct interactions between the submitting researcher and these curators.

These consultations center around the metadata attached to the deposit rather than
the source code itself, although a mild inspection of the code is done to ensure the
metadata describing it is correct.

Functional or scientific evaluation of the artifact are not in the scope of the
moderation process put in place for HAL software deposit: that role belongs not to
repositories or archives, but to reviewing committees. These committees might review
software to verify installation instructions, documentation, functionality and tests.
Examples of how this is done can be seen loking at the Information Processing On Line
Jounral (IPOL team, 2019), that has been publishing software implementing image
processing algorithm for almost a decade, or the Journal of Open Source Software,
which includes many of these criteria in their review guidance documentation (JOSS
team, 2019).

A growing number of conferences14 have an artifact Evaluation Committee (AEC)
that evaluates the software artifacts associated to the submitted articles. For example,
the POPL conference has an artifact Evaluation Process (AEP) since 2015, where the
AEC checks for consistency with the paper, good documentation, and reusability for
further research15. Artifact evaluation is now also encouraged by the Association of
Computing Machinery (ACM) with the ACM badges16, which can be awarded if the
evaluation criteria are met.

By contrast, the HAL moderation process only verifies the accuracy of the
descriptive information regarding a deposited software source code artifact and the
accuracy of its attribution. During the process the digital archivist also inspects the
artifact to check that the content included in the archive does fit a research deposit. The
deposit will not be reviewed in the academic sense of the term, so the functionality of
the source code or its reproducibility are not verified.

14 See the list maintained at https://www.art i fact-eval.org/
15https://popl19.sigplan.org/track/POPL-2019-artifact-Evaluation
16https://www.acm.org/publications/policies/artifact-review-badging

IJDC | Peer-Reviewed Paper

https://www.acm.org/publications/policies/artifact-review-badging
https://popl19.sigplan.org/track/POPL-2019-Artifact-Evaluation
https://www.artifact-eval.org/
https://www.artifact-eval.org/
https://www.artifact-eval.org/

doi:10.2218/ijdc.v0i0.0 Di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowska | 9

Figure 4. The moderation process when reviewing a software artifact for archival

In figure 4, the contribution and moderation workflow is detailed with the actions
that each actor will make to ensure proper archiving of source code. First, the
contributor (which can be a researcher, a team member or an institutional representative
in charge of the contribution) will prepare the artifact as detailed in the software deposit
guidelines, upload the compressed archive, and add metadata on the submission form.
Then, the moderator will review the deposit by verifying that the metadata matches the
artifact itself and the values in the submission form. The moderator will also check for
extraneous content, for example videos, images, or other material that is unlikely to be
part of a software source code bundle. If the contributor has listed a code repository, the
moderator will verify that the authors of the deposit and in the code repository are the
same, even if using pseudonyms, to ensure due credit is given.

Our experience over the first two years of operation shows that, with the support of
the guidelines, the software moderation process does not add greatly to the workload of
digital archivists, and can be performed by digital archivists.

The IES-Inria and CCSD teams, which play the role of digital archivists for HAL
platform, are used to working with articles, reports and other textual deposit types. The
software deposit was very different from that which they were used to review. When

IJDC | Peer-Reviewed Paper

10 | Curated Archiving of Research Software doi:10.2218/ijdc.v0i0.0

establishing the requirements for a software deposit, we realized that there is no need, at
this point, to act as an AEC and verify the functionality, the quality and reproducibility
of the artifact itself.

Therefore, the main actions the digital archivist performs while reviewing software
deposit are:

• detecting extraneous or abusive content (illegal or harassing),
• verifying consistency between the metadata and the software source code itself,
• completing or correcting the deposit metadata if needed.
During the review process, the digital archivist can request modifications to the

deposit from the contributor using a request ticket system, providing a channel with pre-
written responses for identified recurrent issues.

Communicating with the contributors and researchers, during the test phase, over
their deposits enriched the curation process and helped creating better specifications for
the HAL software source code deposit guidelines.

Transferring source code from HAL to SWH

The Hal platform had already implemented transfers of content to Arxiv via the
SWORD protocol, available on HAL’s documentation (CCSD Development team,
2017). The same integration between HAL and SWH has been designed and
implemented using the same protocol.

The deposit is automatically pushed to SWH after a moderator has validated the
submission. On reception the deposit is verified by an automated tool. If the verification
passes, the deposit is published on HAL’s platform and the deposit is scheduled for
ingestion in the SWH archive. Otherwise, a detailed error is returned.

The SWORD 2.0 (Jones and Lewis , 2013) implementation provides the technical
interface between a client (HAL) and a server (SWH) to push deposits of software
source code with associated metadata, available on the API documentation (Software
Heritage Development team, 2017).

Figure 5. The deposit status on the Software Heritage archive

First, when a deposit arrives to SWH, an automated verification insures the artifact
contains a compressed archive and the associated metadata. After it is verified, the
ingestion of the content into the archive starts, as illustrated in figure 5.

During the ingestion of the software artifact, SWH computes an intrinsic identifier,
the SWH-ID, using a cryptographic signature of the software artifact, see Di Cosmo,
Gruenpeter and Zacchiroli (2018) for a detailed explanation.

IJDC | Peer-Reviewed Paper

doi:10.2218/ijdc.v0i0.0 Di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowska |
11

This SWH-ID does not depend on a resolver, and allows to identify the deposit no
matter the future developments and organizational changes. This SWH-ID is presented
alongside the HAL-ID on the Software artifact view on the HAL platform.

The software view

The deposited software artifacts are accessible on the HAL platform in a specific
software view, as presented in figure 6, with the complete metadata record and offers
several services :

• TEI, DublinCore or Bibtex exports
• the link to the browsable source code on SWH, in figure 7

Figure 6. A software deposit on the HAL platform

Figure 7. The deposit’s browsable source code on the SWH web-app

IJDC | Peer-Reviewed Paper

12 | Curated Archiving of Research Software doi:10.2218/ijdc.v0i0.0

From test phase to global integration
After we defined the specifications and requirements for the software source
code deposit, the CCSD and SWH engineers built a prototype which was only
accessible on HAL-Inria, and provided a first test of a software deposit and the
HAL to SWH integration.

Between February 2018 and July 2018, a panel of researchers were invited to test the
software deposit, described in (Barborini et al. 2018). Their feedback was integrated
into the final version and contributed to improve the deposit guidelines. Throughout this
period, the IES-Inria digital archivists tested the moderation process. With their input, a
few ergonomic changes were made to the moderation view and the standardised
responses to request changes from submitters. During the test phase, 12 software
artifacts were uploaded.

The test phase was incredibly valuable for creating and consolidating specific
guidelines for the contributors and for the moderators.

The official opening of the software artifact deposit for all HAL instances was on
the 25th of September 2018 and was reported by the local press.

In December 2019, we can count 80 source code deposits and 98 software records
deposits, which is a promising start for curating software deposits as a research output.

Deposits without source files

During the test phase, researchers could also deposit metadata records about source
code without the source code itself, similar to "bibliographic records." Occasionally,
users have chosen to deposit only descriptive information about a software artifact,
because they needed the reference to the software record in their activity reports. The
clear drawback is that it is impossible for the digital archivist to check the information
deposited. One approach is to prevent software deposit without the software source code
itself, which would be a compressed static archive without its development history.

While this approach is reasonable for researchers that do not use collaborative
development platforms, it turns out to be an annoyance for those that have made their
software source code available online, or even archived it already in SWH.

The next version of software deposit in HAL should allow to provide just the link to
SWH, or to the code repository, where it will be possible for SWH to fetch the source
code instead of uploading a compressed archive, lowering the barrier for software
deposits into HAL

Lessons learned

Open issues
We have handled a variety of deposits since the service has been open, and discovered
interesting corner cases that led us to evolve our software deposit policy:

• Collective authorship: sometimes we receive the request to use the team name as
the software author, instead of providing the full list of contributors. We are
evaluating the possibility of a solution of supporting one collective author, and at
the same time have a sort of “corresponding author” for managing the deposit;

IJDC | Peer-Reviewed Paper

doi:10.2218/ijdc.v0i0.0 Di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowska |
13

Also, we keep in mind that authorship can be established only with a clear link
between a person and a deposit, which is difficult with the collective authorship;

• Legacy software: software that was created a long time ago should be archived
in its original state, but it would be useful to add extra information to describe its
origin. We are working on a dedicated standard for this particular use case;

• Software collections: sometimes researchers try to deposit a single archive
containing many different software tools or software libraries;

• Research experiments that do not really qualify as a software tool on their own;
for this particular use case, the researchers usually only need long term archival
and intrinsic identifiers: we plan to refer them to the dedicated guidelines for
source code archival and reference available on the Software Heritage website
(Di Cosmo, 2019);

• Software source code deposited that include large datasets, instead of a reference
to a separate data deposit.

The importance of a software license

During the test phase the license of the software wasn’t a mandatory metadata and the
user form didn’t instruct users how to choose a license. As could be expected, this led to
deposits with many variations in the software license names and even deposits without a
license. Hence we made the license mandatory, and we now provide autocompletion for
license names using the standard list developed by the SPDX project of the Linux
Foundation for a large consortium of industry players.

Publishing versus sharing

Research software has been around for decades, and some research institutions have a
long experience in managing it as a valuable output of research (Alliez et al., 2019), but
only very recently attention has started to grow in the broader scholarly ecosystem. This
new interest has spawned a rich discussion about what actually could be a software
publication. In this context we would like to stress the importance of remembering that
in the scholarly world there is a precise semantics attached to the term publication: an
academic publication is a research result that has been qualified through some form of
peer review; a result that has been simply shared, for example by making it available
somewhere on the Internet, is usually not regarded as a publication17.

When we come to software, that is in its vast majority developed outside of
academia, and in particular to open source software, it is common practice to share it
broadly on code hosting platforms like GitHub, GitLab, and many other ones, but this
act of sharing does not carry the same meaning as the act of academic publishing, and
code hosting platforms do not play at all the same role as publishers in the academic
world.

Hence we should refrain from using the term “publication” when we talk about
software that is simply shared on the Internet, even when its source code is deposited on
institutional archives. The research community is still exploring how to exactly handle
software when it comes to credit and academic recognition, with various ongoing
experimentations like the AEC, IPOL, the Journal of Open Source Software (JOSS

17In BibTeX, for example, the entry unpublished is used for material that has not been formally published.

IJDC | Peer-Reviewed Paper

14 | Curated Archiving of Research Software doi:10.2218/ijdc.v0i0.0

team, 2019; Smith et al., 2018), the Dagsthul DARTS series18, ACM Badges, etc: it is up
to researchers to reach an agreement on this very sensitive issue.

 For this reason, in the metadata for software deposited via HAL, we do not
indicate HAL as a publisher.

Keeping the human in the loop

Even if we do not know yet what should qualify as a software publication, we do know
that we need quality metadata to describe research software, and to be used for citing
software artifacts. We argue that this requires human intervention, and that it is not
enough to just share software on code hosting platforms like GitHub, or self-archive it
on repositories like Figshare or Zenodo.

This is why for deposit in HAL and archival in SWH a moderation process is put in
place: to ensure that the deposit is a software artifact that reflects a scientific endeavour
and that due credit is attributed to all authors of the software without a quality and
functionality review of the source code.

Software Identification, reference and citation

We follow the Software Citation Principles (Smith et al. 2016) to create a
citation for software deposits into HAL. In figure 8. we have proposed a citation
format containing metadata submitted with the software deposit, which is
already available on the HAL platform.

Figure 8. The proposed citation for software artifacts on the HAL platform.

In the citation format, two identifiers are used: the first for the research product, the
HAL-ID and the second for the software source code itself with the SWH-ID of the root
directory containing the complete development tree. While the HAL-ID identifies the
metadata and thus the attribution of the research product, the SWH-ID references the
exact version of software source code associated to the deposit. Each identifier caters to
different use cases.

At the moment we are working on a proposal for a specific BibTex @software
entry as it was already introduced in BibLateX (Kime, Wemheuer and Lehman, 2019)
to provide a better BibTex export on the HAL platform. The proposal is developed with
Inria’s citation working group and will be shared with FORCE11’s Software Citation
Implementation WG19 and RDA Software Source Code IG20 for feedback.

18https://www.dagstuhl.de/publikationen/darts/
19 https://www.force11.org/group/software-citation-implementation-working-group
20 https://www.rd-alliance.org/groups/software-source-code-ig

IJDC | Peer-Reviewed Paper

https://www.rd-alliance.org/groups/software-source-code-ig
https://www.force11.org/group/software-citation-implementation-working-group
https://www.dagstuhl.de/publikationen/darts/

doi:10.2218/ijdc.v0i0.0 Di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowska |
15

The proposal development is public and can be viewed and commented on its
dedicated repository21.

Conclusion

Decades of experience handling research projects at Inria have shown that a proper
moderation process is important to ensure the high quality of the metadata associated to
the research software artifacts. To support this process, the collaboration between
Software Heritage, Inria and HAL has created tools and guidelines that enable digital
archivists to efficiently handle research software deposits, and offers to the HAL users
dedicated services for helping preserving and disseminating their software artifacts. We
believe that this is an important step forward in the long journey to make software a first
class research output in the scholarly ecosystem. On the HAL-CCSD-Inria-SWH
collaboration roadmap, there are a few milestones ahead: allowing the deposit of
metadata with a link to a code repository which will be archived in SWH or a direct
reference to a SWH artifact with the SWH-ID; exporting BibTeX format with a
complete @software entry; exporting other software citation formats (e.g
codemeta.json); improving links between teams, people, articles and data to software
deposits; and improving the researchers CV export with software research outputs. We
believe that these improvements will encourage researchers to share their software and
benefit the research and digital curation communities.

Acknowledgements

This work is partially supported by the FAIRsFAIR European project.
We thank Vicky Steeves, from New York University, for her valuable comments on

a preliminary version of this article.

References

[journal article] Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli.
(2018). Building the universal archive of source code. Communications of the ACM,
61(10), 29-31. DOI: https://doi.org/10.1145/3183558

[journal article] Alliez, P., Di Cosmo, R., Guedj, B., Girault, A., Hacid, M. S., Legrand,
A., & Rougier, N. P. (2019). Attributing and Referencing (Research) Software: Best
Practices and Outlook from Inria. Computing in Science & Engineering, IEEE, In
press, pp.1-14. ⟨http://doi.org/10.1109/MCSE.2019.2949413⟩. hal-02135891v2⟨ ⟩

[blog post] ArXiv moderators (2019). Our Moderation Process. In arXiv.org blog.
Retrieved on December 6th 2019 from
https://blogs.cornell.edu/arxiv/2019/08/29/our-moderation-process/

21 https://gitlab.inria.fr/gt-sw-citation/BibTeX-sw-entry

IJDC | Peer-Reviewed Paper

https://hal.archives-ouvertes.fr/hal-02135891v2
https://dx.doi.org/10.1109/MCSE.2019.2949413
https://dx.doi.org/10.1109/MCSE.2019.2949413
https://blogs.cornell.edu/arxiv/2019/08/29/our-moderation-process/
https://doi.org/10.1145/3183558

16 | Curated Archiving of Research Software doi:10.2218/ijdc.v0i0.0

[poster] Barborini, Y., Di Cosmo, R., Dumont, A. R., Gruenpeter, M., Marmol, B.,
Monteil, A., Sadowska, J., & Zacchiroli, S. (2018). The creation of a new type of
scientific deposit: Software. In RDA Eleventh Plenary Meeting, Berlin, Germany.
Retrieved from https://hal.archives-ouvertes.fr/hal-01738741

[documentation] CCSD Development team (2017). Documentation API-HAL: Import
SWORD. Retrieved on December 6th 2019 from https://api.archives-
ouvertes.fr/docs/sword

[documentation] Di Cosmo, R. (2019). How to use Software Heritage for archiving and
referencing your source code: guidelines and walkthrough. hal-02263344 , ⟨ ⟩ see
also https://www.softwareheritage.org/save-and-reference-research-software/

[proceedings] Di Cosmo, R., & Zacchiroli, S. (2017). Software heritage: why and how
to preserve software source code. In iPRES 2017-14th International Conference on
Digital Preservation Sep 2017, Kyoto, Japan (pp. 1-10). Retrieved from
https://hal.archives-ouvertes.fr/hal-01590958/

 [proceedings] Di Cosmo, R., Gruenpeter M. & Zacchiroli, S. (2018). Identifiers for
Digital Objects: the Case of Software Source Code Preservation. . In iPRES 2018-
15th International Conference on Digital Preservation, Sep 2018, Boston, United
States (pp. 1-9). 10.17605/OSF.IO/KDE56⟨ ⟩. hal-01865790v4⟨ ⟩

[report] Gruenpeter, M. & Sadowska, J.(2018a). Create software deposit: User guide
and best practices. (Technical Report). Inria; CCSD; Software Heritage. Retrieved
from https://hal.archives-ouvertes.fr/hal-01872189

[report] Gruenpeter, M. & Sadowska, J.(2018b). Moderate software deposit A guide
and best practices for the digital archivist.(Technical Report). Inria; CCSD;
Software Heritage. Retrieved from https://hal.inria.fr/hal-01876705

[documentation] IPOL team, Information Processing On Line policy. Retrieved from
https://www.ipol.im/meta/policy/ on December 2019

[meeting document] UNESCO-Inria expert meeting (2019). Paris Call: Software
Source Code as Heritage for Sustainable Development Retrieved from
https://unesdoc.unesco.org/ark:/48223/pf0000366715.locale=en

[documentation] Jones R. & Lewis.S (2013). SWORD 2.0 Profile. Retrieved on
December 6th 2019 from
https://web.archive.org/web/20191015204612/http://swordapp.github.io/SWORDv2
-Profile/SWORDProfile.html

[documentation] JOSS team (2019). JOSS review criteria. Retrieved on December 6th
2019 from https://joss.readthedocs.io/en/latest/review_criteria.html also available
swh:1:cnt:bcce0f89bd9a8e70e63a4d2d67e99b3cfb1f9d8f;origin=https://github.com/
openjournals/joss

IJDC | Peer-Reviewed Paper

https://joss.readthedocs.io/en/latest/review_criteria.html
https://hal.archives-ouvertes.fr/hal-01738741
https://hal.inria.fr/hal-01872189
https://hal.archives-ouvertes.fr/hal-01738741
https://hal.inria.fr/hal-01876705
https://archive.softwareheritage.org/swh:1:cnt:bcce0f89bd9a8e70e63a4d2d67e99b3cfb1f9d8f;origin=https://github.com/openjournals/joss/
https://archive.softwareheritage.org/swh:1:cnt:bcce0f89bd9a8e70e63a4d2d67e99b3cfb1f9d8f;origin=https://github.com/openjournals/joss/
https://web.archive.org/web/20191015204612/http://swordapp.github.io/SWORDv2-Profile/SWORDProfile.html
https://web.archive.org/web/20191015204612/http://swordapp.github.io/SWORDv2-Profile/SWORDProfile.html
https://unesdoc.unesco.org/ark:/48223/pf0000366715.locale=fr
https://www.ipol.im/meta/policy/
https://hal.archives-ouvertes.fr/hal-01865790v4
https://dx.doi.org/10.17605/OSF.IO/KDE56
https://hal.archives-ouvertes.fr/hal-01590958/
https://api.archives-ouvertes.fr/docs/sword
https://api.archives-ouvertes.fr/docs/sword

doi:10.2218/ijdc.v0i0.0 Di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowska |
17

[software] Kime P., Wemheuer M., Lehman P., (2019). The biblatex Package
Programmable Bibliographies and Citations Specifications (Version 3.13)
http://mirrors.ibiblio.org/CTAN/macros/latex/exptl/biblatex/doc/biblatex.pdf

[blog] Michael J. (2018). Software Deposit: Guidance for Researchers (Version 1.0).
Zenodo. http://doi.org/10.5281/zenodo.1327310

[blog post] Milliken G.(2019). Self-Archiving Software in Institutional Repositories:
Identifying Problems and Proposed Solutions. In IASGE project blog. Retrieved on
December 6th 2019 from https://investigating-archiving-git.gitlab.io/updates/Self-
Archiving-Software-in-IRs/

[documentation] Raymond E. S. (2000). Software Release Practice HOWTO. Retrieved
on December 6th 2019 from https://www.tldp.org/HOWTO/html_single/Software-
Release-Practice-HOWTO/

[article] Smith et al. (2016). Software citation principles. PeerJ Com-put. Sci. 2:e86;
http://doi.org/10.7717/peerj-cs.862

[article] Smith AM, Niemeyer KE, Katz DS, Barba LA, Githinji G, Gymrek M, Huff
KD, Madan CR, Cabunoc Mayes A, Moerman KM, Prins P, Ram K, Rokem A, Teal
TK, Valls Guimera R & Vanderplas JT. (2018). Journal of Open Source Software
(JOSS): design and first-year review. PeerJ Computer Science 4:e147
https://doi.org/10.7717/peerj-cs.147

[documentation] Software Heritage Development team (2017). Software Heritage -
Deposit: API specifications. Retrieved on December 6th 2019 from
https://docs.softwareheritage.org/devel/swh-deposit/index.html

IJDC | Peer-Reviewed Paper

https://doi.org/10.7717/peerj-cs.147
https://investigating-archiving-git.gitlab.io/updates/Self-Archiving-Software-in-IRs/
https://investigating-archiving-git.gitlab.io/updates/Self-Archiving-Software-in-IRs/
https://docs.softwareheritage.org/devel/swh-deposit/index.html
http://doi.org/10.5281/zenodo.1327310

	​ Introduction
	​ Hyper Articles en Ligne a.k.a HAL
	​ IES Inria
	​ Software Heritage (SWH)

	​ A workflow for curating the deposit of software artifacts
	​ The submission form
	​ The Software deposit guidelines
	​ Curating software - including humans in the loop
	Transferring source code from HAL to SWH
	​ The software view

	​ From test phase to global integration
	​ Deposits without source files

	Lessons learned
	Open issues
	​ The importance of a software license
	​ Publishing versus sharing
	Keeping the human in the loop
	​ Software Identification, reference and citation

	​ Conclusion
	Acknowledgements
	References

