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Abstract
Program transformation is a common practice in computer science, and its many applications can
have a range of different objectives. For example, a program written in an original high level language
could be either translated into machine code for execution purposes, or towards a language suitable
for formal verification. Such compilations are split into several so-called passes which generally aim
at eliminating certain constructions of the original language to get some intermediate languages
and finally generate the target code. Rewriting is a widely established formalism to describe the
mechanism and the logic behind such transformations. In a typed context featuring type-preserving
rewrite rules, the underlying type system can be used to give syntactic guarantees on the shape of
the results obtained after each pass, but this approach could lead to an accumulation of (auxiliary)
types that should be considered. We propose in this paper an approach where the function symbols
corresponding to the transformations performed in a pass are annotated with the (anti-)patterns
they are supposed to eliminate and show how we can check that the transformation is consistent
with the annotations and thus, that it eliminates the respective patterns. With the generic principles
governing term algebra and rewriting, we believe this approach to be an accurate formalism to any
language providing pattern-matching primitives.
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1 Introduction

Rewriting is a well established formalism widely used in both computer science and math-
ematics. It has been used, for example, in semantics in order to describe the meaning of
programming languages [22], but also in automated reasoning when describing, by inference
rules, a logic, a theorem prover [16], or a constraint solver [15]. Rewriting has turned out
to be particularly well adapted to describe program semantics [25] and program transfor-
mations [21, 6]. There are several languages and tools implementing the notions of pattern
matching and rewriting rules ranging from functional languages, featuring relatively simple
patterns and fixed rewriting strategies, to rule based languages like Maude [9], Stratego [28],
or Tom [4], providing equational matching and flexible strategies; they have been all used as
underlying languages for more or less sophisticated compilers.

In the context of compilation, the complete transformation is usually performed in
multiple phases, also called passes, in order to eventually obtain a program in a different
target language. Most of these passes concern transformations between some intermediate
languages and often aim at eliminating certain constructions of the original language. These
transformations could eliminate just some symbols, like in desugaring passes for example, or
more elaborate construction, like in code optimization passes.

To guarantee the correctness of the transformations we could of course use runtime
assertions but static guarantees are certainly preferable. When using typed languages, the
types can be used to guarantee some of the constraints on the target language. In this
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case, the type of the function implicitly expresses the expected result of the transformation.
The differences between the source and the target language concern generally only a small
percentage of the symbols, and the definition of the target language is often tedious and
contains a lot of the symbols from the source type. For example, for a pass performing
desugaring we would have to define a target language using the same symbols as the source
one but the syntactic sugar symbols.

Formalisms such as the one proposed for NanoPass [17] have proposed a method to
eliminate a lot of the overhead induced by the definition of the intermediate languages by
specifying only the symbols eliminated from the source language and generating automatically
the corresponding intermediate language.

For instance, let’s consider expressions which are build out of (wrapped) integers,
(wrapped) strings and lists:

Expr = int(Int)
| str(String)
| lst(List)

List = nil()
| cons(Expr, List)

If, for some reason, we wand to define a pass encoding integers by strings then, the target
language in NanoPass would be Expr−int, i.e. expressions build out of strings and lists. Note
that in this case the tool (automatically) removes the symbol int from Expr and replaces
accordingly Expr with the new type in the type of cons.

This kind of approaches reach their limitations when the transformation of the source
language go beyond the removal of some symbols. For example, if we want to define a
transformation which flattens the list expressions and ensures thus that there is no nested
list, the following target type should be considered:

Expr = lit(Literal)
| lst(List)

Literal = int(Int)
| str(String)

List = nil()
| cons(Literal, List)

Functional approaches to transformation [24] relying on the use of fine grained typing sys-
tems which combine overloading, subtyping and polymorphism through the use of variants [11]
can be used to define the transformation and perform (implicitly) such verifications.

While effective, this method requires to design such adjusted types in a case by case basis.
We propose in this paper a formalism where function symbols are annotated with the patterns
that should be eliminated by the corresponding transformation and a mechanism to verify
that the underlying rewriting system is consistent with the annotations. In our example, we
could then keep the original types and just annotate the flattening transformation with the
(anti-)pattern cons(lst(l1), l2).

First, in the next section, we will introduce the basic notions and notations used in the
article. We introduce then, in Section 3, the notion of pattern-free term and the corresponding
ground semantics for general terms. Section 4 describes a method for checking pattern-freen
properties relying on the deep semantics, an extension of the ground semantics. In Section 5
we show how this method can be used to verify that specific patterns are absent from the
result of a given transformation. We finally present some related work and conclude.

2 Preliminary notions

We define in this section the basic notions and notations used in this paper; more details can
be found in [3, 27].
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Amany-sorted signature Σ = (S,F), consists of a set of sorts S and a set of symbols F . We
distinguish constructor symbols from function symbols by partitioning the alphabet F into D,
the set of defined symbols, and C the set of constructors. A symbol f with domain Dom (f) =
s1× . . .×sn ∈ S∗ and co-domain CoDom (f) = s ∈ S is written f : s1× . . .×sn 7→ s; we
may write fs to indicate explicitly the co-domain. We denote by Cs, resp. Ds, the set of
constructors, resp. defined symbols, with co-domain s. Variables are also sorted and we
write x : s or xs to indicate that variable x has sort s. The set Xs denotes a set of variables
of sort s and X =

⋃
s∈S Xs is the set of sorted variables.

The set of terms of sort s ∈ S, denoted Ts(F ,X ) is the smallest set containing Xs and such
that f(t1, . . . , tn) is in Ts(F ,X ) whenever f : s1× . . .×sn 7→ s and ti ∈ Tsi

(F ,X ) for i ∈ [1, n].
We write t : s to explicitly indicate that the term t is of sort s, i.e. when t ∈ Ts(F ,X ). The
set of sorted terms is defined as T (F ,X ) =

⋃
s∈S Ts(F ,X ). The set of variables occurring

in t ∈ T (F ,X ) is denoted by Var (t). If Var (t) is empty, t is called a ground term. Ts(F)
denotes the set of all ground first-order terms of sort s and T (F) denotes the set of all
ground first-order terms, while members of T (C) are called values. A linear term is a term
where every variable occurs at most once. The linear terms in T (C,X ) are called constructor
patterns.

A position of a term t is a finite sequence of positive integers describing the path from
the root of t to the root of the subterm at that position. The empty sequence representing
the root position is denoted by ε. t|ω, resp. t(ω), denotes the subterm of t, resp. the symbol
of t, at position ω. t [s]ω denotes the term t with the subterm at position ω replaced by s.
We note Pos (t) the set of positions of t.

We call substitution any mapping from X to T (F ,X ) which is the identity except over
a finite set of variables called its domain. A substitution σ extends as expected to an
endomorphism σ′ of T (F ,X ). To simplify the notations, we do not make the distinction
between σ and σ′. Sorted substitutions are such that if x : s then σ(x) ∈ Ts(F ,X ). Note that
for any such sorted substitution σ, t : s iff σ(t) : s. In the context of a many-sorted algebra,
we will only consider such sorted substitutions.

Given a sort s, a value v : s and a constructor pattern p, we say that p matches v
(denoted p≺≺ v) if there exists a substitution σ such that v = σ(p). Since p is linear, we can
also give an inductive definition to the pattern matching relation:

x ≺≺ v x ∈ X
c(p1, . . . , pn) ≺≺ c(v1, . . . , vn) iff ∧ni=1 pi ≺≺ vi, for c ∈ C

Starting from the observation that a pattern can be interpreted as the set of its instances,
the notion of ground semantics was introduced in [8] as the set of all ground constructor
instances of a pattern p ∈ Ts(C,X ): JpK = {σ(p) | σ(p) ∈ Ts(C)}. It can be shown [8] that,
given a pattern p and a value v, v ∈ JpK iff p≺≺ v.

A constructor rewrite rule (over Σ) is a pair of terms ϕ(l1, . . . , ln) _ r ∈ Ts(F ,X ) ×
Ts(F ,X ) with s ∈ S, ϕ ∈ D, l1, . . . , ln ∈ T (C,X ) and such that ϕ(l1, . . . , ln) is linear and
Var (r) ⊆ Var (l). A constructor term rewriting system (CTRS) is a set of constructor
rewrite rules R inducing a rewriting relation over T (F), denoted by −→R and such that
t −→R t′ iff there exist l _ r ∈ R, ω ∈ Pos (t), and a substitution σ such that t|ω = σ(l)
and t′ = t [σ(r)]ω.

3 Pattern-free terms and corresponding semantics

As we have already said, we want to ensure that the normal form of a term, if it exists, does
not contain a specific constructor and more generally that no subterm of this normal form
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matches a given pattern. The sort of the term provides some information on the shape of the
normal form obtained when reducing it w.r.t. a sort preserving CTRS. Indeed, the precise
language of the values of a given sort is implicitly given by the signature. Sometimes, it is
possible to describe normal forms by providing guarantees stronger than the ones obtained
from the signature. Such guarantees thus depend not only on sorts but also on the underlying
CTRS.

Since we want to check statically that some patterns never occur in a normal form
we annotate all defined symbols with the patterns that are supposed to be absent when
reducing a term headed by the respective symbol and we check that the CTRS defining the
corresponding functions are consistent with these annotations.

We focus first on the notion of pattern-free term and on the corresponding ground
semantics, and explain in the next sections how one can check pattern-free propeties and
subsequently verify the consistence of the symbol annotations with a given CTRS.

3.1 Pattern-free terms
We consider that every defined symbol f ∈ D is annotated with a pattern p ∈ T⊥(C,X ) =
T (C,X ) ∪ {⊥} and we use this notation to define pattern-free terms. Intuitively, a ground
term of the form f−p(t1, . . . , tn) should ultimately be reduced to a value containing no
subterms matched by p. Thus, if we consider the example given in the introduction, we can
consider two function symbols, flattenE−p : Expr 7→ Expr and flattenL−p : List 7→ List

with p = cons(lst(l1), l2), to indicate that the normal forms of any term headed by one of
these symbols contains no nested lists. On the other hand, the annotation of the function
symbol for the concatenation, concat−⊥ : List×List 7→ List, indicates that no particular
shape is expected for the reducts of the corresponding terms.

I Definition 3.1 (Pattern-free terms). Given a pattern p ∈ T⊥(C,X ),
a value v ∈ T (C) is p-free iff ∀ω ∈ Pos (v) , p≺6≺ v|ω;
a term t [f−qs (t1, . . . , tn)]ω ∈ T (F) is p-free iff ∀v ∈ Ts(C) q-free, t [v]ω is p-free;
a term t ∈ T (F ,X ) is p-free iff ∀σ such that σ(t) ∈ T (F), σ(t) is p-free.

A value is p-free if and only if p matches no subterm of the value. A ground term is p-free
if and only if replacing (all) the subterms headed by a defined symbol f−qs by any q-free
value of the same sort s results in a p-free term. Intuitively, this corresponds to considering
an over-approximation of the set of normal forms of an annotated term. For general terms,
verifying a pattern-free property comes to verifying the property for all the ground instances
of the term. While, in the case of a value, it can be checked by exploring all its subterms,
this is not possible for a general term since the property have to be verified by a potentially
infinite number of values. We present in Section 4.2 an approach for solving this problem.

We can already note that in some cases pattern-free properties can actually be implied
by the sort and when all terms of sort s are p-free we say that s excludes p. We can indeed
establish such a property by observing that s excludes any pattern whose sort is not in the
language of s. Moreover, given two constructor patterns p and q, we say that p destroys q iff
any p-free term is also q-free.

I Example 3.2. Consider the signature Σ with S = {s1, s2, s3} and F = C = {c1 : s2×s1 7→
s1, c2 : s3 7→ s1, c3 : s1 7→ s2, c4 : s3 7→ s2, c5 : s3 7→ s3, c6 : [] 7→ s3}.

It is easy to see that the only reachable sort from s3 is s3, i.e. any value of sort s3 can
only have subterms of sort s3. Therefore, s3 excludes all the patterns of the other sorts. All
the sorts are reachable from s1 and s2 and thus, these sorts exclude no pattern.
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One can also observe that c4(z) destroys c1(c4(z), y), since any term that does not contain
any instance of c4(z) cannot contain an instance of c1(c4(z), y). Reciprocally, c1(c4(z), y)
does not destroy c4(z) as we can easily construct a term that is c1(c4(z), y)-free but not
c4(z)-free (like c4(c6()) for example).

3.2 Generalized ground semantics
The notion of ground semantics presented in Section 2 and, in particular, the approach
proposed in [8] to compute differences (and thus intersections) of such semantics, can be
used to compare the shape of two constructor patterns p, q (at the root position). More
precisely, when JpK∩ JqK = ∅ we have that ∀σ, σ(q) /∈ JpK and therefore, we can establish that
∀σ, p≺6≺ σ(q). We can thus compare the semantics of a given pattern p with the semantics of
each of the subterms of a term t in order to check that t is p-free.

I Example 3.3. We consider the signature from Example 3.2. We can remark that Jc3(c2)K ⊆
Jc3(x)K and thus that c3(c2) is redundant w.r.t. c3(x); consequently c3(c2) is not c3(x)-free.
Moreover, we have Jc1(c4(c6), y)K ∩ Jc1(x, c2(c6))K = Jc1(c4(c6), c2(c6))K and thus neither
c1(c4(c6), y) is c1(x, c2(c6))-free nor c1(x, c2(c6)) is c1(c4(c6), x)-free.

Similarly, we can check that Jc3(c2)K∩Jc4(z)K = ∅ and Jc2K∩Jc4(z)K = ∅ and consequently,
we can deduce that c3(c2) is c4(z)-free.

The pattern-free properties in the above example could have been checked through pattern
matching by checking the subsumption relations between all the subterms and the considered
pattern. However, we actually want to establish a general method to verify pattern-free
properties for any term and we propose an approach which largely relies on the notion of
ground semantics introduced in [8] extended to take into account all terms in T (F ,X ):

I Definition 3.4 (Generalized ground semantics). Given a sort s ∈ S and a pattern p ∈
T⊥(C,X )

Jf−ps (t1, . . . , tn)K = {v | v ∈ Ts(C) ∧ v p-free},∀f−ps ∈ Ds
Jc(t1, . . . , tn)K =

{
c(v1, . . . , vn) | (v1, . . . , vn) ∈ Jt1K× . . .× JtnK},∀c ∈ C

JxsK =
⋃
c∈Cs

Jc(x1, . . . , xn)K.

The generalized ground semantics of a term rooted by a defined symbol represents an
over-approximation of all the possible values obtained by reducing the term with respect to
a TRS preserving the pattern-free properties, by taking into account the annotation of the
respective defined symbol. Note that this is a proper generalization of the definition of the
ground semantics in [8] and the two definitions are equivalent when restricted to constructor
terms.

For convenience, we consider also annotated variables whose semantics is that of any
term headed by a defined symbol with the same co-domain as the sort of the variable:

q
x−ps

y
= {v | v ∈ Ts(C) ∧ v p-free}

Thus, Jf−ps (t1, . . . , tn)K = Jx−ps K ,∀f−ps ∈ Ds. Note that x−⊥s has the same semantics as xs.
We denote by X a the set of annotated variables.

Moreover, given a term t ∈ T (F ,X ), we can systematically construct its symbolic
equivalent t̃ ∈ T (C,X a) by replacing all the subterms of t headed by a defined symbol by a
fresh variable of the corresponding sort and similarly annotated:

I Proposition 3.5. ∀t ∈ T (F ,X ), JtK =
q
t̃
y
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We can thus restrict in what follows to patterns using annotated variables and, as in [8],
we consider extended patterns built out of this kind of patterns:

p := X a | c(q1, . . . , qn) | p1 + p2 | p1 \ p2 | p1 × p2 | ⊥

with p, p1, p2 : s for some s ∈ S, c : s1× . . .×sn 7→ s ∈ C and ∀i ∈ [1, n], qi : si
The pattern matching relation can be extended to take into account disjunctions, con-

junctions and complements of patterns:

p1 + p2 ≺≺ v iff p1 ≺≺ v ∨ p2 ≺≺ v
p1 \ p2 ≺≺ v iff p1 ≺≺ v ∧ p2 ≺6≺ v

p1 × p2 ≺≺ v iff p1 ≺≺ v ∧ p2 ≺≺ v
⊥ ≺6≺ v

Intuitively, a pattern p1 + p2 matches any term matched by one of its components while a
pattern p1×p2 matches any term matched by both its components. The relative complement
of p2 w.r.t. p1, p1 \p2, matches all terms matched by p1 but those matched by p2. ⊥ matches
no term. × has a higher priority than \ which has a higher priority than +.

The notion of ground semantics can be also adapted to handle such patterns:

Jp1 + p2K = Jp1K ∪ Jp2K Jp1 \ p2K = Jp1K \ Jp2K Jp1 × p2K = Jp1K ∩ Jp2K J⊥K = ∅

In this context, if an extended pattern contains no ⊥ it is called pure, if it contains no ×
and no \ it is called additive, and if it contains no +, no × and no \, i.e. a term of T (C,X a),
it is called symbolic. We call regular patterns that contain only variables of the form x−⊥.
And finally, we call quasi-additive patterns that contain no × and only contains \ with the
pattern on the left being a variable and the pattern on the right being a regular additive
pattern.

I Example 3.6. We consider the signature from Example 3.2 enriched with the defined
symbols D = {f : s1 7→ s1, g : s2 7→ s2} such that f is supposed to eliminate the pattern
p1 = c1(c4(z), y) and g the pattern p2 = c4(z) (the corresponding TRS will be presented in
Section 5).

If we consider consider the term r1 = c1(g−p2(x), f−p1(y)), to construct its symbolic
equivalent, we replace f−p1(y) and g−p2(x) by y−p1

s1
and x−p2

s2
, respectively. Thus we have

r̃1 = c1(x−p2
s2

, y−p1
s1

). Similarly, for r2 = c3(f(y)), we have r̃2 = c3(y−p1
s1

).
We can also remark that p1 and p2 are regular patterns, that c1(x−p2

s2
\ p2, y

−p1
s1

) is a
quasi-additive pattern, and that, as for all symbolic equivalents, r̃1 and r̃2 are symbolic
patterns.

I Proposition 3.7. Let t ∈ T (F ,X ), p ∈ T⊥(C,X ), t is p-free iff ∀v ∈ JtK , v is p-free.

While this gives a more straightforward condition to the pattern-free property, by simply
having to check if every member of the ground semantics respects the pattern-free property,
there is still a possible infinite number of values to check.

That being said, the ground semantics was explicitly introduced in [8] as a means to
represent an infinite number of terms by a finite structure and to subsequently solve similar
problems. As stated in Proposition 3.7 checking that a term t is p-free comes to verify that each
value v in its ground semantics is p-free or equivalently that ∀v ∈ JtK ,∀ω ∈ Pos (v) , p≺6≺ v|ω,
i.e. that each value and each of its sub-terms is not matched by the pattern p. However,
the notion of ground semantics only provides a finite structure capable of representing the
potentially infinite set of instances of a term while here would need an extended notion of
ground semantics closed by the sub-term relation.
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4 Deep semantics for pattern-free properties

We introduce now an extended notion of ground semantics satisfying the above requirements,
show how it can be expressed in terms of ground semantics, and eventually provide a method
for checking the emptiness of the intersection of such semantics and thus, assert pattern-free
properties.

4.1 Deep semantics
The ground semantics of a term provides information essentially on the shape of the term at
the root position, and, as such, is not adequately suited to analyse pattern-free properties
that constrain the shape at all positions of the term. We introduce thus, the notion of deep
semantics which provides more comprehensive information on the shape of the (sub-)terms.

I Definition 4.1. (Deep semantics) Let t be an extended pattern, its deep semantics {[t]} is
defined as follows:

{[t]} = {u|ω | u ∈ JtK , ω ∈ Pos (u)}

Note first that, similarly to the case of generalized ground semantics, it is obvious that we
can always exhibit a symbolic pattern equivalent in terms of deep semantics to a given term,
i.e. ∀t ∈ T (F ,X ), {[t]} = {[t̃]}; consequently, we can focus on the computation of the deep
semantics of extended patterns. Following this observation and as an immediate consequence
of the definition we have a necessary and sufficient condition with regards to pattern-free
properties:

I Proposition 4.2 (Pattern-free vs Deep Semantics). Let p ∈ T (C,X ), t ∈ T (F ,X ), t is p-free
iff {[t̃]} ∩ JpK = ∅.

To check that the intersection in Proposition 4.2 is empty we first express, as shown
below, the deep semantics of a term as a union of ground semantics that we can then compare
one by one to the semantics of the considered pattern to verify emptiness.

Since the deep semantics is based on the generalized ground semantics, we can easily
establish a similar recursive definition for constructor patterns:

I Proposition 4.3. For any pattern p ∈ T⊥(C,X ), constructor symbol c ∈ C such that
c : s1× . . .×sn 7→ s, and terms (t1, . . . , tn) ∈ Ts1(C,X a)× . . .×Tsn(C,X a) we have

{[c(t1, . . . , tn)]} = Jc(t1, . . . , tn)K ∪
( n⋃
i=1

{[ti]}
)

For annotated variables we have {[x−ps ]} = {u|ω | u ∈ Jx−ps K , ω ∈ Pos (u)} and we can first
observe that the ground semantics of an annotated variable can be also defined as:

q
x−ps

y
=
⋃
c∈Cs

q
c(x−ps1

, . . . , x−psi
) \ p

y
(1)

By distributing the complement pattern on the subterms (see rule M7 in Figure 2), each of
the elements of the above union can be expressed as

q
c(x−ps1

, . . . , x−psn
) \ p

y
=

u

v
∑

q∈Qc(p)

c(x−ps1
\ q1, . . . , x

−p
sn
\ qn)

}

~ =
⋃

q∈Qc(p)

q
c(x−ps1

\ q1, . . . , x
−p
sn
\ qn)

y
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with Qc(p) a set of tuples q = (q1, . . . , qn) of patterns, with each qi being either ⊥ or a
subterm of p. For each q = (q1, . . . , qn) such that

q
c(x−ps1

\ q1, . . . , x
−p
sn
\ qn)

y
6= ∅ we have

{[c(x−ps1
\ q1, . . . , x

−p
sn
\ qn)]} =

q
c(x−ps1

\ q1, . . . , x
−p
sn
\ qn)

y
∪

n⋃
i=1

{[x−psi
\ qi]}

We denote Q′c(p) the set of all the tuples q satisfying the non-emptiness property and we
obtain

{[x−ps ]} = {u|ω | u ∈ Jx−ps K , ω ∈ Pos (u)}

=
{
u|ω | u ∈

⋃
c∈Cs

⋃
q∈Q′c(p)

q
c(x−ps1

\ q1, . . . , x
−p
sn
\ qn)

y
, ω ∈ Pos (u)

}
=

⋃
c∈Cs

⋃
q∈Q′c(p)

{
u|ω | u ∈

q
c(x−ps1

\ q1, . . . , x
−p
sn
\ qn)

y
, ω ∈ Pos (u)

}
=

⋃
c∈Cs

⋃
q∈Q′c(p)

{[c(x−ps1
\ q1, . . . , x

−p
sn
\ qn)]}

=
⋃
c∈Cs

⋃
q∈Q′c(p)

q
c(x−ps1

\ q1, . . . , x
−p
sn
\ qn)

y
∪

⋃
c∈Cs

⋃
q∈Q′c(p)

n⋃
i=1

{[x−psi
\ qi]}

= Jx−ps K ∪
⋃
c∈Cs

⋃
q∈Q′c(p)

n⋃
i=1

{[x−psi
\ qi]}

(2)

We can remark from this development than the x−psi
\ qi terms obtained represent the

possible direct subterms of any term matched by the variable. Hence the deep semantics of a
variable is the union of its ground semantics with the deep semantics of these terms.

I Example 4.4. We consider the symbolic patterns from Example 3.6 and express their
deep semantics as a union of the form explained above. We have {[c1(x−p2

s2
, y−p1
s1

)]} =q
c1(x−p2

s2
, y−p1
s1

)
y
∪ {[x−p2

s2
]} ∪ {[y−p1

s1
]}. Thus we now want to expand {[x−p2

s2
]} and {[y−p1

s1
]}.

In order to expand {[y−p1
s1

]}, we have to compute, ∀c ∈ Cs, the corresponding sets Qc(p1)
as shown in the development (2). We have Cs1 = {c1, c2} and thus, according to (1)

q
y−p1
s1

y
=

q
c1(x−p1

s2
, y−p1
s1

) \ c1(c4(z−⊥s3
), y−⊥s1

)
y
∪

q
c2(z−p1

s3
) \ c1(c4(z−⊥s3

), y−⊥s1
)
y

We can easily show that the complement relation in term of ground semantics corre-
sponds to set differences of cartesian products:

q
c1(x−p1

s2
, y−p1
s1

) \ c1(c4(z−⊥s3
), y−⊥s1

)
y

=q
c1(x−p1

s2
\ c4(z−⊥s3

), y−p1
s1

)
y
∪

q
c1(x−p1

s2
, y−p1
s1
\ y−⊥s1

)
y
and, as p2 = c4(z−⊥s3

), we then get:
q
y−p1
s1

y
=

q
c1(x−p1

s2
\ p2, y

−p1
s1

)
y
∪

q
c1(x−p1

s2
, y−p1
s1
\ y−⊥s1

)
y
∪

q
c2(z−p1

s3
)
y

HenceQc1(p1) = {(p2,⊥), (⊥, ys1
)} andQc2(p1) = {(⊥)}. Moreover,

q
c1(x−p1

s2
\ p2, y

−p1
s1

)
y

and
q
c2(z−p1

s3
)
y
are not empty (c1(c3(c2(c6)), c2(c6)) and c2(c6) belong respectively to each

of them) while
q
c1(x−p1

s2
, y−p1
s1
\ y−⊥s1

)
y
is clearly empty. Thus, as shown in (2), we have

{[y−p1
s1

]} =
q
y−p1
s1

y
∪ {[x−p1

s2
\ p2]} ∪ {[y−p1

s1
]} ∪ {[z−p1

s3
]}.

Similarly, for {[x−p2
s2

]} we have
q
x−p2
s2

y
=

q
c3(y−p2

s1
) \ p2

y
∪

q
c4(z−p1

s3
) \ p2

y
=

q
c3(y−p2

s1
)
y
∪q

c4(z−p1
s3
\ z−⊥s3

)
y
and hence Qc3(p2) = {(⊥)} and Qc4(p2) = {(zs3

)}. Moreover,
q
c3(y−p2

s1
)
y

is not empty (c3(c2(c6)) belongs to it) while
q
c4(z−p1

s3
\ z−⊥s3

)
y
is clearly empty. Thus we have

{[x−p2
s2

]} =
q
x−p2
s2

y
∪ {[y−p2

s1
]}.

We can now remark that, by considering x−ps as x−ps \⊥, we can generalise the development
(2) to calculate the deep semantics of a pattern of the form x−ps \ r where r is either ⊥ or a
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sum of constructor patterns. In order to express the deep semantics of annotated variables
as a union of ground semantics we thus have to compute a fixpoint for the equation

{[x−ps \ r]} =
q
x−ps \ r

y
∪
⋃
c∈Cs

⋃
q∈Q′c(r+p)

n⋃
i=1

{[x−psi
\ qi]}

Given a sort s, a constructor pattern p and a sum of constructor patterns r, we propose
a method to determine the set R of pairs (s′, p′), with s′ ∈ S and p′ being either ⊥ or a sum
of constructor patterns, reachable from x−ps \ r, i.e. such that we have:

{[x−ps \ r]} =
⋃

(s′,p′)∈R

q
x−ps′ \ p

′y

More precisely, we propose the algorithm getReachable presented in Figure 1 which computes
this set. Note that when r is ⊥ the algorithm computes the set of tuples reachable from x−ps .

Function getReachable(s, p, S, r)

Data:

s: current sort,
p: pattern of the pattern-free property,
S: set of couples (s′, p′) reached,
r: resulting pattern

Result: set of couples (s′, p′) reachable from x−ps \ r
if p : s then r ←− r + p

if Jxs \ rK = ∅ then return ∅
if ∃ (s, r′) ∈ S, Jr′K = JrK then return S

R←− S ∪ {(s, r)}
reachable←− False
for c ∈ Cs do

Qc ←− {(
m︷ ︸︸ ︷

⊥, . . . ,⊥)} with m = arity(c)
for i = 1 to n with r =

n∑
i=1

ri do

if ri(ω) = c then
tQc ←− ∅
for (q1, . . . , qm) ∈ Qc, k ∈ [1,m] do tQc.add((q1, . . . , qk + ri|k, . . . , qm))
Qc ←− tQc

for (q1, . . . , qm) ∈ Qc do
subRset←− ∅
for i = 1 to m do

subR←− getReachable(Dom (c) [i], p, R, qi)
if subR 6= ∅ then subRset.add(subR)

if |subRset| = m then
reachable←− True
for subR ∈ subRset do R←− R ∪ subR

if reachable then
return R

else
return ∅

Figure 1 Compute deep semantics of quasi-additive terms as a union of ground semantics.
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The general idea of the algorithm is to compute a fixpoint of the reachable pairs (s′, r′)
from x−ps \r. This is achieved through a recursion on the pairs (s′, r′) obtained by distributing
r and p (if p : s) on the constructors c ∈ Cs as done in (2) and illustrated in Example 4.4.
To ensure the termination of the algorithm we use the set S to store the pairs that have
been reached through the algorithm, and as any component of a tuple from Qc is either ⊥,
or a sum of subterms of p or r, the r′ obtained this way can therefore only be ⊥ or a sum of
subterms of p or of the original r (of which there is only a finite possible number).

I Proposition 4.5 (Correctness). Let s ∈ S, p ∈ T⊥(C,X ) and r : s a sum of constructor
patterns, if R = getReachable(s, p, ∅, r), then

{[x−ps \ r]} =
⋃

(s′,p′)∈R

q
x−ps′ \ p

′y

Moreover, we have {[x−ps \ r]} = ∅ iff R = ∅.

I Example 4.6. The reasonning illustrated in Example 4.4 is generalized by the getReachable
algorithm so as to compute the deep semantics of any term of the form x−ps \ r as an equation
comprising deep semantics of terms the same form. getReachable then tries to solve for
the fix-point of these equations, in order to express the requested deep semantics as a union
of ground semantics. More precisely, we get {[y−p1

s1
]} =

q
y−p1
s1

y
∪

q
z−p1
s3

y
∪

q
x−p1
s2
\ p2

y
and

{[x−p2
s2

]} =
q
x−p2
s2

y
∪

q
y−p2
s1

y
∪

q
z−p2
s3

y
, and therefore, the deep semantics of r̃1 = c1(x−p2

s2
, y−p1
s1

)
is the union of

q
c1(x−p2

s2
, y−p1
s1

)
y
,
q
y−p1
s1

y
,
q
z−p1
s3

y
,
q
x−p1
s2
\ p2

y
,
q
x−p2
s2

y
,
q
y−p2
s1

y
and

q
z−p2
s3

y
.

Each of these ground semantics can be compared to p1 to check that r1 is p1-free:q
y−p1
s1

y
∩ Jp1K,

q
z−p1
s3

y
∩ Jp1K and

q
(x−p1
s2
\ p2)

y
∩ Jp1K are all empty by definition of the

semantics of x−p1

Similarly,
q
x−p2
s2

y
∩ Jp1K,

q
y−p2
s1

y
∩ Jp1K and

q
z−p2
s3

y
∩ Jp1K are empty, because p2 destroys

p1.
Finally, as p1 = c1(p2, ys1

), we have
q
c1(x−p2

s2
, y−p1
s1

)
y
∩ Jp1K = {c1(t1, t2)|t1 ∈

q
x−p2
s2

y
∩

Jp2K , t2 ∈
q
y−p1
s1

y
∩

q
y−⊥s1

y
}, and as

q
x−p2
s2

y
∩ Jp2K is empty, so is

q
c1(x−p2

s2
, y−p1
s1

)
y
∩ Jp1K.

Thus, the Propositions 4.3 and 4.5 guarantee that the deep semantics of any symbolic
pattern and thus, of any term, can actually be expressed as the union of ground semantics of
quasi-additive patterns. As we have seen in Example 4.6, it is then possible to check that the
corresponding intersections with the semantics of a given pattern p are empty in order to
prove that a term is p-free. We will propose in the next section a method to automatically
verify that such intersections are indeed empty.

4.2 Establishing pattern-free properties
As we have already mentioned, an approach was proposed in [8] to compute the intersection
of ground semantics for constructor patterns. More precisely, a convergent TRS was used
to reduce any extended pattern (without annotations) into an equivalent sum, potentially
empty, of constructor patterns. We should point out that the conjuction in [8] was restricted
to patterns of the form x× p with x a (not annotated) variable.

A TRS naively adapted from the one in [8] to take into account annotated variables
would not be terminating, as explained later on. Moreover, compared to [8], in our case we
just need to check that the intersection of the semantics of quasi-additive patterns with the
semantics of a given pattern p is empty: to put it simply, we want a TRS that reduces a
pattern of the form t× p, with t a quasi-additive pattern and p a constructor pattern, to ⊥
if and only if its ground semantics is empty.
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Remove empty sets:
(A1) ⊥+ v ⇒ v

(A2) v +⊥ ⇒ v

Distribute sets:
(E1) δ(v1, . . . ,⊥, . . . , vn) ⇒ ⊥
(E2) ⊥× v ⇒ ⊥
(E3) v ×⊥ ⇒ ⊥
(S1) δ(v1, . . . , vi + wi, . . . , vn) ⇒ δ(v1, . . . , vi, . . . , vn) + δ(v1, . . . , wi, . . . , vn)
(S2) (w1 + w2)× v ⇒ (w1 × v) + (w2 × v)
(S3) w × (v1 + v2) ⇒ (w × v1) + (w × v2)
Simplify complements:
(M1) v \ x−⊥s ⇒ ⊥
(M2) v \ ⊥ ⇒ v

(M3) (v1 + v2) \ w ⇒ (v1 \ w) + (v2 \ w)
(M5) ⊥ \ v ⇒ ⊥
(M6) α(v1, . . . , vn) \ (v + w) ⇒ (α(v1, . . . , vn) \ v) \ w
(M7) α(v1, . . . , vn) \ α(t1, . . . , tn) ⇒ α(v1 \ t1, . . . , vn) + · · ·+ α(v1, . . . , vn \ tn)
(M8) α(v1, . . . , vn) \ β(w1, . . . , wm) ⇒ α(v1, . . . , vn) with α 6= β

Simplify conjunctions:
(T1) v × x−⊥s ⇒ v

(T2) x−⊥s × v ⇒ v

(T3) α(v1, . . . , vn)× α(w1, . . . , wn) ⇒ α(v1 × w1, . . . , vn × wn)
(T4) α(v1, . . . , vn)× β(w1, . . . , wm) ⇒ ⊥ with α 6= β

Simplify p-free:
(P1) x−ps × α(v1, . . . , vn) ⇒

∑
c∈Cs

c(z1
−p
s1
, . . . , zm

−p
sm

)× (α(v1, . . . , vn) \ p) with m = arity(c)

(P2) α(v1, . . . , vn)× (x−ps \ t) ⇒ (α(v1, . . . , vn)× x−ps ) \ t if {[x−ps \ t]} 6= ∅
(P3) x−qs × (x−ps \ t) ⇒ (x−qs × x−ps ) \ t if {[x−ps \ t]} 6= ∅
(P4) (x−ps \ t)× v ⇒ (x−ps × v) \ t if {[x−ps \ t]} 6= ∅
(P5) (x−ps \ t) \ u ⇒ x−ps \ (t+ u) if {[x−ps \ t]} 6= ∅
(P6) x−ps \ t ⇒ ⊥ if {[x−ps \ t]} = ∅

Figure 2 Rp : reduce pattern of the form t× p;
v, v1, . . . , vn, w,w1, . . . , wn range over quasi-additive patterns, u, t range over pure regular additive
patterns, t1, . . . , tn range over pure symbolic patterns, p, q range over constructor patterns, x ranges
over pattern variables. α, β expand to all the symbols in C, δ expands to all symbols in Cn>0.

To this end, we introde the TRS Rp presented in Figure 2. Most of the rules are inherited
from the system introduced in [8], the new ones concerning the conjunction and relations
with annotated variables. The rules generally correspond to their counterparts from set
theory where constructor patterns correspond to cartesian products and the other extended
patterns to the obvious set operations.

The rules A1, A2, resp. E2, E3, describe the behaviour of the conjunction, resp. the
disjunction, w.r.t. ⊥. Rule E1 indicates that the semantics of a pattern containing a sub-term
with an empty ground semantics is itself empty, while rule S1 expresses the distributivity of
conjunction over cartesian products. Similarly, rules S2 and S3 express the distributivity of
conjunction over disjunction.

The semantics of a variable of a given sort is the set of all ground constructor patterns of
the respective sort. Thus, the difference between the ground semantics of any pattern and
the ground semantics of a variable of the same sort is the empty set (rule M1). We should
emphasize that xs is a variable ranging over pattern variables at the object level and that zi
are fresh pattern variables seen as constants at the TRS level (i.e. xs matches any zis). The
rules M2 −M6 correspond to set operation laws for complements. Rule M7 corresponds
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to the set difference of cartesian products; the case when the head symbol is a constant
c corresponds to the rule c \ c ⇒ ⊥. Rule M8 corresponds just to the special case where
complemented sets are disjoint.

Similarly, the rules T1− T2 indicate that the intersection with the set of all terms has no
effect, rule T3 corresponds to distribution laws for the joint intersection, while T4 corresponds
to the disjointed case.

The ground semantics of a variable is obtained by considering for each constructor of the
appropriate sort the set of all terms having this symbol at the root position and taking the
union of all these sets (see Definition 3.4). The original TRS presented a rule encoding this
behaviour but we have now to take into account the variable annotations and this would
ultimately result into a rule of the form xs−p \ q ⇒

∑
c∈Cs

c(x1
s1
−p, . . . , xm

sm

−p) \ p \ q, which,
as mentioned earlier, would lead to non termination.

Instead of this rule, Rp uses rule P1 which is specific to the left side of a conjunction.
The rules P2, P3 and P4 expresses the respective behaviour of conjunction over complements
(A ∩ (B \ C) = (A \ C) ∩B = (A ∩B) \ C). We can now observe (and ensure) that, thanks
to the initial form of the reduced conjunction t× p and the preservation by Rp of the regular
property of a pattern, terms on the right of × symbol should always be regular. Thus, by
applying rule T1, Rp will always end up reducing the number of variables on the right hand
side of the conjunctions t× p. In other words, terms on the right of × will never be extended
and this intuitively guarantees the termination of the reduction.

Finally, we can observe that, thanks to the algorithm introduced in Figure 1, we can
determine if {[xs−p \ v]} = ∅. Moreover, by definition, {[t]} = ∅ if and only if JtK = ∅. Therefore,
the TRS is finalized by the rule P6, which eliminates (when possible) annotated variables.
Note that, in order to apply P6 exhaustively, Rp also needs a rule to perform \-factorization
around variables, resulting in the rule P5.—HC

HC: je trouve que l’explication des regles P n’est pas tres claire.
The TRS Rp obtained is proved to provide classical rewriting guarantees: convergence

and preservation of the semantics.

I Lemma 4.7 (Convergence). The rewriting system Rp is confluent and terminating.

I Proposition 4.8 (Ground semantics preservation). For any extended patterns p, q, if p →−→Rp q

then JpK = JqK.

While we cannot provide a simple description of the normal forms obtained by reduction of
a general extended patterns, Rp can be used to establish the emptyness of a given intersection:

I Proposition 4.9. Let t a quasi-additive pattern and p a constructor pattern, t× p →−→Rp
⊥

if and only if Jt× pK = ∅

Thanks to the above proposition and to the TRS Rp which allows one to check if a
conjuction reduces to ⊥, it is possible to systematically verify pattern-free properties for any
term in T (F ,X ).

5 Semantics preservation for CTRS

Pattern-free properties rely on the symbol annotations and assume thus a specific shape
for the normal forms of reducible terms. This assumption should be checked by verifying
that the CTRSs defining the annotated symbols are consistant with these annotations, i.e.
verifying that the semantics is preserved by reduction.
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I Definition 5.1 (Semantics preservation). A rewrite rule l _ r is semantics preserving iff
JrK ⊆ JlK. A TRS is semantics preserving iff all its rewrites rules are.

In particular, in the context of pattern eliminating transformation, we have CTRS with
rules of the form f−p(l1, . . . , ln) _ r. Therefore, since the semantics of the left-hand side of
the rewrite rule is the set of p-free values then such a rule is semantics preserving if and only
if its right-hand side is p-free, i.e. f−p(l1, . . . , ln) _ r is semantics preserving iff r is p-free.

The properties of the ground semantics thus ensure that semantics preservation of a
CTRS carries over to the induced rewriting relation:

I Proposition 5.2 (Semantics preservation). Given a semantics preserving CTRS R we have

∀t, v ∈ T (F), if t →−→R v, then JvK ⊆ JtK .

As an immediate consequence we obtain the preservation of the pattern-free properties:

I Corollary 5.3 (Pattern-free preservation). Given a semantics preserving CTRS R we have

∀t, v ∈ T (F), p ∈ T (C,X ), if t p-free and t →−→R v, then v p-free.

I Example 5.4. Given the signature from Example 3.6, we consider the following CTRS:

f(c1(x, y)) _ c1(g(x), f(y))
f(c2(z)) _ c2(z)

g(c4(z)) _ c3(c2(z))
g(c3(y)) _ c3(f(y))

We have seen in Example 4.6 that r1 = c1(g(x), f(y)) is p1-free. Similarly, using Rp to
generalize the reasonning, we can check that r2 = c3(f(y)) is p2-free.

Moreover, s3 excludes both p1 and p2, hence c2(zs3
) is p1-free and c3(c2(zs3

)) is p2-free
(which could again be established through Rp).

Thus the CTRS is semantics preserving, meaning that for all v1 ∈ Ts1(C), f(v1) is and
stays p1-free through every reduction step, and for all v2 ∈ Ts2(C), g(v2) is and stays p2-free
through every reduction step.

Thus, given the method presented in Section 4, we can check that the right-hand sides of
all rules verify the pattern-free property corresponding to the annotation of the head defined
symbol of the left-hand side. —HC

HC: Use root or head, but not both in the paper. head pour le symbol, root pour le term
We can therefore verify that a given CTRS is sound w.r.t. the chosen annotations.

I Example 5.5. Let’s consider the flatenning example presented in the introduction. We de-
fine a signature Σ = (S,F) with S = {Expr, List} and F = C ∪ D where C = {int :
Int 7→ Expr, str : String 7→ Expr, lst : List 7→ Expr, nil : [] 7→ List, conc :
Expr×List 7→ List}, with Int and String being builtin sorts, and D = {flattenE : Expr 7→
Expr, flattenL : List 7→ List, concat : List×List 7→ List}. Since we aim at eliminating
the pattern p = conc(lst(l1), l2), the defined symbols flattenE and flattenL are annotated
with the pattern p.

The corresponding functions can be implemented through the following CTRS:

flattenE(str(s)) _ str(s)
flattenE(lst(l)) _ lst(flattenL(l))
flattenL(nil()) _ nil()
flattenL(conc(str(s), l)) _ conc(str(s), f lattenL(l))
flattenL(conc(lst(l1), l2)) _ flattenL(concat(l1, l2))
concat(conc(e, l1), l2) _ conc(e, concat(l1, l2))
concat(nil(), l) _ l
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Thanks to the method introduced in Section 4 we can check that the right-hand sides of
the first 5 rules are p-free and hence, that the CTRS is semantics preserving. Consequently,
according to Proposition 5.3, we know that any term with a defined symbol head flattenE or
flattenL is p-free and stays p-free through the reduction. This CTRS is clearly terminating
and complete and thus, we can guarantee that the normal form of such terms are p-free
values.

6 Conclusion and perspectives

We have proposed a method to statically analyse constructor term rewrite systems and verify
the absence of patterns from the corresponding normal forms. We can thus guarantee not
only that some constructors are not present in the normal forms but we can also be more
specific and verify that more complex constructs cannot be retrieved in the result of the
reduction.

We suppose the existence of normal forms but the formalism does not rely on the
termination of the analysed rewriting systems; if the property is not verified a final value
is not obtained but the intermediate terms in the infinite reduction verify nevertheless the
pattern-free properties w.r.t. the specified annotations. Moreover, different termination
techniques and tools [14, 20] on termination analysis can be used to analyse the termination
of the rewriting systems we addressed in this paper.

We believe this formalism opens a lot of opportunities for further developments. In
particular, this method could be extended in the context of automatic rewriting rule generation
techniques, such as the one introduced in [7], in order to implement transformation approaches
of passes such as in [17]. Indeed, the formalism considered here relies on the same pattern
matching primitives as these techniques.

7 Related work

While the work presented in this paper presents an original approach to express and ensure a
particular category of syntactical guarantees associated to program transformation, a number
of different approaches presenting methods to obtain some guarantees for similar classes of
functions exist in the literature.
Tree automata completion Tree automata completion consists in techniques used to
compute an approximation of the set of terms reachable by a rewriting relation [12]. Such
techniques could therefore be applied to solve similar problems to the one presented in
this paper. The application of this approach is nevertheless usually conditioned by the
termination of both the TRS and the set of equational approximations used [26, 13]. Thus,
while providing a more precise characterization of the approximations of the normal forms,
these techniques are constrained by these termination conditions. Therefore we believe
the formalism presented in this paper provides a viable and original alternative to such
techniques, particularly in the context of verification of pass transformations [17].
Recursion schemes Some formalism propose to deal with higher order functions through
the use of higher order recursion schemes, a form of higher order grammars that are used as
generators of (possibly infinite) trees [18]. In such approaches the verification problems are
solved by model checking the recursion schemes generated from the given functional program.
Higher order recursion scheme have also been extended to include pattern matching [23] and
provide the basis for automatic abstraction refinement. These techniques address in a clever
way the control-flow analysis of functional programs while the formalism proposed in our
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work is more focused on providing syntactic guarantees on the shape of the tree obtained
through a pass-like transformation. The use of the annotation system also contributes to a
more precise way to express and control the considered over-approximation.
Tree transducers Besides terms rewriting systems, another popular approach for specifying
transformations consists in the use of tree transducers [19]. Transducers have indeed been
shown to have a number of appealing properties when applied for strings, even infinite [2],
and most notably can provide an interesting approach for model checking certain classes
of programs thanks to the decidability of general verification problems [1]. Though the
verification problems we tackle here are significantly more strenuous for tree trasnducers,
Kobayashi et al. introduced in [19] a class of higher order tree transducers which can be
modeled by recursion schemes and thus, provided a sound and complete algorithm to solve
verification problems over that class. We claim that annotated TRSs are easier to grasp when
specifying pass-like transformations and are less intrusive for expressing the pattern-free
properties.
Refinement types Formalisms such as refinement types [10] can be seen as an alternative
approach for verifying the absence, or presence, of specific patterns. In particular, notions
such as constructor subtypes [5] could be used to construct complex type systems whose
type checking would provide guarantees similar to the ones provided by our formalism. This
would however result in the construction of multiple type systems in order to type check
each transformation as was the case in the original inspiration of our work [17].
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A Proofs

I Proposition 3.5. ∀t ∈ T (F ,X ), JtK =
q
t̃
y

Proof. This is a direct proof by induction on the form of t. J

I Proposition 3.7. Let t ∈ T (F ,X ), p ∈ T⊥(C,X ), t is p-free iff ∀v ∈ JtK , v is p-free.

Proof. If t ∈ T (C), then JtK = {t}, hence the relation.
If t = u [f−q(t1, . . . , tm)]ω ∈ T (F) with f ∈ Ds, t is p-free iff ∀v ∈ Ts(C) q-free, u [v]ω is

p-free. We can prove by induction on the form of t that JtK =
⋃
v∈Jx−q

s K Ju [v]ωK.
The base case is when u = g−ρ(u1, . . . , un) with g ∈ Dζ . If ω = ε, then t = f−q(t1, . . . , tm)

thus JtK = Jx−qs K =
⋃
v∈Jx−q

s K JvK. Else JtK =
r
x−ρζ

z
and ∀v ∈ Ts(C) q-free, Ju [v]ωK =

r
x−ρζ

z
.

Hence JtK =
⋃
v∈Jx−q

s K Ju [v]ωK.
We can now consider the case when u = c(u1, . . . , un), with c ∈ Cζ , by induction. If

ω = ε, then t = f−q(t1, . . . , tm) thus JtK = Jx−qs K =
⋃
v∈Jx−q

s K JvK. Else ∃ i ∈ [1, n] such
that ω = i.ω′, thus t = c(u1, . . . , ui [f−q(t1, . . . , tm)]ω′ , . . . , un) and JtK = {c(v1, . . . , vn) |
(v1, . . . , vn) ∈ Ju1K× . . .× Jui [f−q(t1, . . . , tm)]ω′K× . . .× JunK}. Hence, by induction, JtK =⋃
v∈Jx−q

s K Ju [v]ωK.
Then a simple induction on the number of defined symbol in t ∈ T (F), gives us that t is

p-free if and only if ∀v ∈ JtK, v is p-free.
Finally, if t ∈ T (F ,X ), t is p-free iff ∀σ such that σ(t) ∈ T (F), σ(t) is p-free. Moreover,

we can prove by induction on the form of t that JtK = {u | ∃σ, u ∈ Jσ(t)K} =
⋃
σ Jσ(t)K. Then

∀σ, σ(t) ∈ T (F), hence the property. J

I Proposition 4.2 (Pattern-free vs Deep Semantics). Let p ∈ T (C,X ), t ∈ T (F ,X ), t is p-free
iff {[t̃]} ∩ JpK = ∅.

Proof. By definition, {[t̃]} = {u|ω | u ∈
q
t̃
y
, ω ∈ Pos (u)} = {u|ω | u ∈ JtK , ω ∈ Pos (u)},

thus {[t̃]} ∩ JpK = ∅ if and only if ∀u ∈ JtK , ω ∈ Pos (u) , p ≺6≺ u|ω, i.e. ∀u ∈ JtK , u is p-free.
Therefore, thanks to 3.7, t is p-free if and only if {[t̃]} ∩ JpK = ∅. J

I Proposition 4.3. For any pattern p ∈ T⊥(C,X ), constructor symbol c ∈ C such that
c : s1× . . .×sn 7→ s, and terms (t1, . . . , tn) ∈ Ts1(C,X a)× . . .×Tsn

(C,X a) we have

{[c(t1, . . . , tn)]} = Jc(t1, . . . , tn)K ∪
( n⋃
i=1

{[ti]}
)

Proof. We consider both inclusions separately. Let t ∈ {[c(t1, . . . , tn)]}, i.e. ∃u ∈ Jc(t1, . . . , tn)K , ω ∈
Pos (u) such that t = u|ω. If ω = ε, then t ∈ Jc(t1, . . . , tn)K, otherwise ω = i.ω′ with i ∈ [1, n]
and therefore ∃u′ ∈ JtiK such that t = u′|ω′ , i.e. t ∈ {[ti]}. Hence the direct inclusion. For the
indirect inclusion, we can first remark that any v ∈ Jc(t1, . . . , tn)K is also in {[c(t1, . . . , tn)]}.
Let’s now consider v ∈ {[ti]}, i.e. ∃ui ∈ JtiK , ω ∈ Pos (ui) such that v = ui|ω, then for all
u = c(u1, . . . , un) such that ∀j 6= i, uj ∈ JtjK, v = u|i.ω, i.e. v ∈ {[c(t1, . . . , tn)]}. Hence the
indirect inclusion. J

I Proposition 4.5 (Correctness). Let s ∈ S, p ∈ T⊥(C,X ) and r : s a sum of constructor
patterns, if R = getReachable(s, p, ∅, r), then

{[x−ps \ r]} =
⋃

(s′,p′)∈R

q
x−ps′ \ p

′y

Moreover, we have {[x−ps \ r]} = ∅ iff R = ∅.
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Proof. Let’s first take a look at {[x−ps \ r]}.
As {[x−ps \ r]} = {[x−ps \ (r + p)]} when p : s, we conflate r with r + p when p : s for the

rest of this proof (which is consistent with the behaviour of the first if of the algorithm).
We can also observe that Jx−ps \ rK ⊆ Jxs \ rK, therefore if the second semantics is empty

so is the first. On the other hand, if Jxs \ rK is not empty, then none of the pattern in r
are xs. Therefore we have Jxs \ rK =

q∑
c∈Cs

c(xs1
, . . . , xsn

) \ r
y
. And similarly, with the

conflated r, Jx−ps \ rK =
q∑

c∈Cs
c(x−ps1

, . . . , x−psn
) \ r

y
.

Moreover, given that Jc(p1, . . . , pn) \ c(q1, . . . , qn)K = J
∑n
i=1 c(p1, . . . , pi \ qi, . . . , pn)K and

Jc(p1, . . . , pn) \ c′(q1, . . . , qm)K = Jc(p1, . . . , pn)K, where n is the arity of c and c 6= c′. There-
fore, we can construct a set Qc(r) of typle of size n, with n the arity of c, by sucessively
distributing the patterns of r that have the given constructor c as root as follow:

q
c(x−ps1

, . . . , x−psn
) \ r

y
=

q
c(x−ps1

, . . . , x−psn
) \ (r1 + . . .+ rk)

y
with ∀i, ri(ε) = c

=
q
(c(x−ps1

\ ⊥, . . . , x−psn
\ ⊥) \ c(r1

1, . . . , r
1
n)) \ (r2 + . . .+ rk)

y

=
t( ∑

i∈[1,n]
c(x−ps1

\ ⊥, . . . , x−psi
\ r1

i , . . . , x
−p
sn
\ ⊥)

)
\ (c(r2

1, . . . , r
2
n) + . . .+ rk)

|

=
t( ∑

j∈[1,n]

∑
i∈[1,n]

c(x−ps1
\ ⊥, . . . , , x−psj

\ r2
j , . . . , x

−p
si
\ r1

i , . . . , x
−p
sn
\ ⊥)

)
\ (r3 + . . .+ rk)

|

...

=
t ∑
q∈Qc(r)

c(x−ps1
\ q1, . . . , x

−p
sn
\ qn)

|

Therefore, we have:

q
x−ps \ r

y
=


∅ if Jxs \ rK = ∅r∑

c∈Cs

∑
q∈Qc(r) c(x−ps1

\ q1, . . . , x
−p
sn
\ qn)

z

=
⋃
c∈Cs

⋃
q∈Qc(r)

q
c(x−ps1

\ q1, . . . , x
−p
sn
\ qn)

y else

Finally, if ∃ i ∈ [1, n] such that
q
x−psi
\ qi

y
= ∅ then {[c(x−ps1

\ q1, . . . , x
−p
sn
\ qn)]} = ∅, oth-

erwise we have {[c(x−ps1
\ q1, . . . , x

−p
sn
\ qn)]} =

q
c(x−ps1

\ q1, . . . , x
−p
sn
\ qn)

y
∪
⋃
i∈[1,n] {[x−psi

\ qi]}.
And thus:

{[x−ps \ r]} =


∅ if ∨ Jxs \ rK = ∅

∀c ∈ Cs, Q′c(r) = ∅
Jx−ps \ rK ∪

⋃
c∈Cs

⋃
q∈Q′c(r)

⋃
i∈[1,n]

{[x−psi
\ qi]} else

with Q′c(r) = {q | q ∈ Qc(r) ∧ ∀i ∈ [1, n],
q
x−psi
\ qi

y
6= ∅}.

Based on this, we introduce the following duals:

I Definition A.1. Let p ∈ T⊥(C,X ), a couple (s, r), with s ∈ S and r a sum of constructor
patterns such that r = ⊥ ∨ r : s, and S finite set of such couples,

bx−ps \ rc =


∅ if ∨ Jxs \ rK = ∅

∀c ∈ Cs, Q′c(r) = ∅
{(s, r)} ∪

⋃
c∈Cs

⋃
q∈Q′c(r)

⋃
i∈[1,n]

bx−psi
\ qic else

Such that, thanks to the above reasoning, we have {[x−ps \ r]} =
⋃

(s′,p′)∈bx−p
s \rc

q
x−ps′ \ p′

y

and bx−ps \ rc = ∅ iff Jx−ps \ rK = ∅. Thus Q′c(r) = {q | q ∈ Qc(r)∧∀i ∈ [1, n], bx−psi
\ qic 6=

∅}.
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bx−ps \ rcS =


∅ if Jxs \ rK = ∅
S else if ∃ (s, r′) ∈ S, Jr′K = JrK
∅ else if ∀c ∈ Cs, QS∪{(s,r)}

c (r) = ∅
{(s, r)} ∪

⋃
c∈Cs

⋃
q∈QS∪{(s,r)}

c (r)

⋃
i∈[1,n]

bx−psi
\ qicS∪{(s,r)} else

with QSc (r) = {q | q ∈ Qc(r) ∧ ∀i ∈ [1, n], bx−ps \ rcS 6= ∅}
Moreover, we note {[x−ps \ r]}\S =

⋃
(s′,p′)∈bx−p

s \rcS\S
q
x−ps′ \ p′

y

I Proposition A.2. Let p ∈ T⊥(C,X ), a couple (s, r), with s ∈ S and r a sum of constructor
pattern such that r = ⊥∨ r : s, and S a finite set of such couples. We have bx−ps \ rc 6= ∅ if
and only if bx−ps \ rc∅ 6= ∅

In order to prove this proposition, we consider the following (possibly infinite) tree
structure: N = 〈(s′, p′), c, q, L〉 such that c : s1× . . .×sn 7→ s′ ∈ C, q ∈ Qc(p′ + p) and
L = [N1, . . . , Nn] with ∀i,Ni = 〈(si, ri), [. . .]〉 and JriK = JqiK. We remark that Qc(p′ + p) is
correctly defined if and only Jxs′ \ (p′ + p)K 6= ∅, then if such a tree exists, we have, for all
nodes ((s′, p′), [. . .]), Jxs′ \ (p′ + p)K 6= ∅.

As JrK = Jr′K implies Jx−ps \ rK = Jx−ps \ r′K, by construction, if {[x−ps \ r]} 6= ∅, then exists
such a tree. And conversely, if exists such a tree, as for all nodes 〈(s′, p′), [. . .]〉, Jxs′ \ (p′ + p)K 6=
∅, then we can construct a term t by assigning to each node the value of the constructor label,
such that, by construction, t : s and t is p-free, hence t ∈ Jx−ps \ rK, hence {[x−ps \ r]} 6= ∅.

Let’s now prove that bx−ps \ rc∅ 6= ∅ if and only if exists such a tree. If there exists such
tree, we can prove that for each node N = 〈(s′, p′), [. . .]〉 of this tree bx−ps′ \ p′cS 6= ∅ with S
the set of pairs (ζ, ρ) of each node in the path from the root of the tree to N . If the tree is
finite, this is obviously true for each leaf. Otherwise, there is at least one infinite branch,
and as each p′ is a sum of a subterm r and subterms of p, there is only a finite number of
such terms with a different ground semantics (as Ju+ uK = JuK). Hence, for each infinite
branch, there is a node N = 〈(ζ, ρ), [. . .]〉 such that the path from the root of the tree to
N contains a node 〈(ζ, ρ′), [. . .]〉 with JρK = Jρ′K, hence bx−ps′ \ p′cS . We can then prove by
induction that this holds for each node. Thus, we have, for the root node, bx−ps \ rc∅ 6= ∅. If
bx−ps \ rc∅ 6= ∅, by construction of bx−ps \ rc∅, we can build a tree such that for each node
N = 〈(s′, p′), [. . .]〉 of this tree bx−ps′ \ p′cS 6= ∅ with S the set of pairs (ζ, ρ) of each node in
the path from the root of the tree to N , with each branch of the tree terminating on a node
〈(ζ, ρ), c, [. . .]〉 such that c is of arity 0 or exists a node 〈(ζ, ρ′), [. . .]〉 with JρK = Jρ′K in which
case we can repeat infinitely the path between the 2 nodes to get the desired tree.

Thus we have bx−ps \ rc 6= ∅ if and only if bx−ps \ rc∅ 6= ∅.

I Proposition A.3. Let p ∈ T⊥(C,X ), a couple (s, r), with s ∈ S and r a sum of constructor
pattern such that r = ⊥ ∨ r : s, and S a finite set of such couples. We have:
1. If bx−ps \ rcS 6= ∅ then ∀(s′, p′) with q : s or q = ⊥, bx−ps \ rcS∪{(s′,p′)} 6= ∅;
2. ∀(s′, p′) with q : s′ or q = ⊥, if bx−ps \ rcS∪{(s′,p′)} 6= ∅ then ∀S′ such that bx−ps′ \ p′cS′ 6=
∅, bx−ps \ rcS∪S′ 6= ∅;

3. ∀(s′, p′), if bx−ps′ \ p′cS 6= ∅, then {[x−ps \ r]}\S∪{(s′,p′)} ⊆ {[x−ps \ r]}\S ∪ {(s′, p′)};
4. ∀(s′, p′), if bx−ps′ \ p′cS 6= ∅, then {[x−ps \ r]}\S ⊆ {[x−ps \ r]}\S∪{(s′,p′)} ∪ {[x

−p
s′ \ p′]}\S.

In order to prove these 5 properties by induction, we consider the arguments to have
the following form: ∀p ∈ T⊥(C,X ), (ζ, ρ) ∈ s×T⊥(C,X ) with ρ = ⊥ ∨ ρ : ζ, ∀S finite set of
such couples, ∀(s, r) such that r is either ⊥ a sum of uniquely appearing (as Jt+ tK = JtK)
subterms of p or ρ of sort s.

We can now perform an induction on S, where the base case is S such that it contains any
possible sum of uniquely appearing subterms of p or ρ (which there is only a finite number).
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In that case, we do have ∀(s, r) with where r is such a sum, ∀S′ ⊇ S, bx−ps \ rcS′ = S′, by
definition, and therefore all 5 properties hold.

Let’s now consider the induction step of all 5 properties: we suppose that ∀(ζ ′, ρ′) the
properties hold for S ∪ {(ζ ′, ρ′)}, let’s prove that they do for S:
1. If bx−ps \ rcS 6= ∅ then ∀(s′, p′) with q : s or q = ⊥, bx−ps \ rcS∪{(s′,p′)} 6= ∅;

If s′ = s and Jp′K = JrK, then the property is obvisouly true. Otherwise, as bx−ps \ rcS 6= ∅,
we know that Jxs \ rK 6= ∅ and that ∃ c ∈ Cs such that QS∪{(s,r)}

c (r) 6= ∅, i.e. ∃ q ∈ Qc(r)
such that ∀i ∈ [1, n], bx−psi

\ qicS∪{(s,r)} 6= ∅. We can then apply the inductive property
and we get ∀i ∈ [1, n], bx−psi

\ qicS∪{(s,r),(s′,p′)} 6= ∅ and therefore, QS∪{(s,r),(s′,p′)}
c (r) 6=

∅. Thus either ∃ (s, r′) ∈ S, Jr′K = JrK and bx−ps \ rcS∪{(s′,p′) = S ∪ {(s′, p′)}, or
bx−ps \ rcS∪{(s′,p′) is defined by the else clause and contains at least (s, r).
So in both cases, bx−ps \ rcS∪{(s′,p′)} 6= ∅.

2. ∀(s′, p′) with q : s′ or q = ⊥, if bx−ps \ rcS∪{(s′,p′)} 6= ∅ then ∀S′ such that bx−ps′ \ p′cS′ 6=
∅, bx−ps \ rcS∪S′ 6= ∅;
We procede the exact same way.

3. ∀(s′, p′), if bx−ps′ \ p′cS 6= ∅, then {[x−ps \ r]}\S∪{(s′,p′)} ⊆ {[x−ps \ r]}\S ∪ {(s′, p′)};
If s′ = s and Jp′K = JrK, then the property is obvisouly true. Otherwise, as bx−ps′ \ p′cS 6= ∅,
we have, thanks to the previous 2 properties, ∀(s′′, p′′), bx−ps′′ \ p′′cS∪{(s,r)} 6= ∅ if and only
if bx−ps′′ \ p′′cS∪{(s,r),(s′,p′)} 6= ∅. Thus, for all c ∈ Cs, QS∪{(s

′,p′),(s,r)}
c (r) = Q

S∪{(s′,p′)}
c (r).

Therefore, if one is empty, so is they other, and both semantics then verify the property.
Finally, if neither Jxs \ rK nor all QSc (r) are empty, we have:

{[x−ps \ r]}\S∪{(s′,p′)} = Jx−ps \ rK ∪
⋃
c∈Cs

⋃
q∈QS∪{(s,r),(s′,p′)}

c (r)

⋃
i∈[1,n]

{[x−psi
\ qi]}\S∪{(s,r),(s′,p′)}

= Jx−ps \ rK ∪
⋃
c∈Cs

⋃
q∈QS∪{(s,r)}

c (r)

⋃
i∈[1,n]

{[x−psi
\ qi]}\S∪{(s,r),(s′,p′)}

⊆ Jx−ps \ rK ∪
⋃
c∈Cs

⋃
q∈QS∪{(s,r)}

c (r)

⋃
i∈[1,n]

{[x−psi
\ qi]}\S∪{(s,r)} by induction

And so {[x−ps \ r]}\S∪{(s′,q)} ⊆ {[x−ps \ r]}\S .
4. ∀(s′, p′), if bx−ps′ \ p′cS 6= ∅, then {[x−ps \ r]}\S ⊆ {[x−ps \ r]}\S∪{(s′,p′)} ∪ {[x

−p
s′ \ p′]}\S ;

We procede the exact same way.

Finally, thanks to these properties, we have, if bx−ps \ rcS 6= ∅:

{[x−ps \ r]}\S = Jx−ps \ rK ∪
⋃
c∈Cs

⋃
q∈QS∪{(s,r)}

c (r)

⋃
i∈[1,n]

{[x−psi
\ qi]}\S∪{(s,r)}

= Jx−ps \ rK ∪
⋃
c∈Cs

⋃
q∈QS

c (r)

⋃
i∈[1,n]

{[x−psi
\ qi]}\S∪{(s,r)}

⊆ Jx−ps \ rK ∪
⋃
c∈Cs

⋃
q∈QS

c (r)

⋃
i∈[1,n]

{[x−psi
\ qi]}\S

and:

{[x−ps \ r]}\S = Jx−ps \ rK ∪
⋃
c∈Cs

⋃
q∈QS∪{(s,r)}

c (r)

⋃
i∈[1,n]

{[x−psi
\ qi]}\S∪{(s,r)}

= Jx−ps \ rK ∪
⋃
c∈Cs

⋃
q∈QS

c (r)

⋃
i∈[1,n]

{[x−psi
\ qi]}\S∪{(s,r)}

= Jx−ps \ rK ∪
⋃
c∈Cs

⋃
q∈QS

c (r)

⋃
i∈[1,n]

({[x−psi
\ qi]}\S∪{(s,r)} ∪ {[x−ps \ r]}\S)

⊇ Jx−ps \ rK ∪
⋃
c∈Cs

⋃
q∈QS

c (r)

⋃
i∈[1,n]

{[x−psi
\ qi]}\S
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Therefore, if bx−ps \ rcS 6= ∅: {[x−ps \ r]}\S = Jx−ps \ rK ∪
⋃
c∈Cs

⋃
q∈QS

c (r)

⋃
i∈[1,n]

{[x−psi
\ qi]}\S

And thus, for S = ∅ and as bx−ps \ rc∅ = ∅ ⇐⇒ Jx−ps \ rK = ∅:

{[x−ps \ r]}\∅ =


∅ if ∨ Jxs \ rK = ∅

∀c ∈ Cs, Q′c(r) = ∅
Jx−ps \ rK ∪

⋃
c∈Cs

⋃
q∈Q′c(r)

⋃
i∈[1,n]

{[x−psi
\ qi]}\∅ else

Which is equivalent to the definition of {[x−ps \ r]}, thus:

{[x−ps \ r]}\∅ = {[x−ps \ r]}

Finally, by looking at the algorithm, we can observe that getReachable(s, p, S, r) =
bx−ps \ rcS . To do so, we reference each return cases of the algorithm by (R1), (R2), (R3)
and (R4), in order of appearance.

As mentionned at the beginning of the proof, we start by conflating r with r + p when
p : s thanks to the first if of the algorithm. Thanks to the second if we then have an empty
return on (R1) when Jxs \ rK = ∅. And the third if leads to returning S on (R2) when
∃ (s, r′) ∈ S, Jr′K = JrK.

If the algorithm did not return on (R1), we then have, with the conflated r, Jx−ps \ rK =q∑
c∈Cs

c(x−ps1
, . . . , x−psn

) \ r
y
. Thus the algorithm loops on c ∈ Cs. The first nested for loop

computes the setQc(r) of n-tuple such that
q
c(x−ps1

, . . . , x−psn
) \ r

y
=

r∑
q∈Qc(r) c(x−ps1

\ q1, . . . , x
−p
sn
\ qn)

z

obtained by successively distributing the patterns of r that have the given constructor c as
root. The second for loop then recursively call getReachable on the couples (si, qi) obtained
this way, and updates R with the results obtained.

As we remarked, at this point we have Jx−ps \ rK = ∅ if and only if, ∀c ∈ Cs, Q′c(r) = ∅,
hence the boolean variable reachable that stays false when ∀c ∈ Cs, QS∪{(s,r)}

c (r) = ∅,
resulting in an empty return (R4). Similarly,

q
c(x−ps1

\ q1, . . . , x
−p
sn
\ qn)

y
is empty if and

only if ∃ i such that
q
x−psi
\ qi

y
= ∅, so R is updated with the result of the recursive calls for

a given c ∈ Cs and q ∈ Qc(r) only if none of these recursive calls returns an empty result.
We thus have the concatenated result as describe in the formula above on return (R3).

J

I Lemma 4.7 (Convergence). The rewriting system Rp is confluent and terminating.

Proof. A meta-encoding of a complete approximation of the rule schema Rp is provided in
Appendix B. Automatic termination proof tools such as TTT2and AProVEhave been used
to prove that this meta-encoding is terminating and we can thus directly conclude to the
termination of Rp

We show the local confluence of the system by proving that all critical pairs induced by
rewrite rules of the system converge. We have the following critical pairs:
(A1)− (A2) (converge directly),
(A1)− (S1) and (A2)− (S1) (converge with E1 and A1/A2),
(A1)− (S2) and (A2)− (S2) (converge with E2 and A1/A2),
(A1)− (S3) and (A2)− (S3) (converge with E3 and A1/A2),
(A1)− (M3) and (A2)− (M3) (converge with M5 and A1/A2),
(A1)− (M6) and (A2)− (M3) (converge with M2),
(E1)− (M6) (converge with M5 and E1, twice M5),
(E1)− (M7) only left possible (converge with M5 and M2, n times E1, n times A1/A2),
(E1)− (M8) left (converge with M5 and E1),
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(E1)− (M8) right (converge with M2),
(E2)− (E3) (converge directly),
(E2)− (S3) and (E3)− (S2) (converge with twice S2/S3, A1/A2),
(E2)− (T1) and (E3)− (T2) (converge directly),
(S1)− (M6) (converge with M3, twice M6 and S1, twice M3),
(S1)− (M7) only left possible (converge with M3, twice M7 and M3, n times S1),
(S1)− (M8) left (converge with M3, twice M8 and S1),
(S1)− (M8) right (converge with M6, twice M8),
(S1)− (T3) left (converge with S2, twice T3 and S2, S1),
(S1)− (T3) right (converge with S3, twice T3 and S3, S1),
(S1)− (T4) left (converge with S2, twice T4, A1/A2),
(S1)− (T4) right (converge with S3, twice T4, A1/A2),
(S1)− (P1) (converge with S3, twice P1 and S1, M3, S3),
(S2)− (S3) (converge with S3 and S2),
(S2)− (T1) (converge with twice T1),
(S3)− (P4) (converge with twice P4 and S3, twice M6),
(S3)− (T2) (converge with twice T1),
(M1)− (M3) (converge with twice M1, A1/A2),
(M1)− (M5) (converge directly),
(M1)− (P6) (converge directly),
(M2)− (M3) (converge with twice M1),
(M2)− (M5) (converge directly),
(T1)− (T2) (converge directly),
(T1)− (P4) (converge with T1),
(T2)− (P3) (converge with T2). J

I Proposition 4.8 (Ground semantics preservation). For any extended patterns p, q, if p →−→Rp
q

then JpK = JqK.

Proof. We prove that the ground semantics of the left-hand side and right-hand side of the
rewrite rules of Rp are the same.

In the case of the rule (E1), as we have Jδ(p1, . . . , pn)K = {δ(t1, . . . , tn) | (t1, . . . , tn) ∈
Jp1K×. . .×JpnK} and the ground semantics of⊥ is empty, so is the semantics of delta(v1, . . . ,⊥, . . . , vn).
Hence the equality of ground semantics of the 2 sides of the rule. For the rule (S1), we have:
Jδ(v1, . . . , vi + wi, . . . , vn)K = {δ(t1, . . . , tn) | (t1, . . . , tn) ∈ Jv1K× . . .× Jvi + wiK× . . .× JvnK}

= {δ(t1, . . . , tn) | (t1, . . . , tn) ∈ Jv1K× . . .× JviK ∪ JwiK× . . .× JvnK}
= {δ(t1, . . . , tn) | (t1, . . . , tn) ∈ Jv1K× . . .× JviK× . . .× JvnK}
∪{δ(t1, . . . , tn) | (t1, . . . , tn) ∈ Jv1K× . . .× JwiK× . . .× JvnK}

= Jδ(v1, . . . , vi, . . . , vn)K ∪ Jδ(v1, . . . , wi, . . . , vn)K
For rules (M7) and (T3), we consider both inclusion separately:

(M7): If v ∈ Jα(v1, . . . , vn) \ α(t1, . . . , tn)K, then v ∈ Jα(v1, . . . , vn)K and v /∈ Jα(t1, . . . , tn)K.
As Jα(p1, . . . , pn)K = {α(w1, . . . , wn) | (w1, . . . , wn) ∈ Jp1K×. . .×JpnK}, v = α(w1, . . . , wn)
such that ∀i ∈ [1, n], wi ∈ JviK and ∃ j ∈ [1, n], wj ∈ JtjK. Therefore, wj ∈ JvjK \ JtjK and
thus v ∈ Jα(v1, . . . , vj \ tj , . . . , vn)K, and finally v ∈

r∑
k∈[1,n] α(v1, . . . , vk \ tk, . . . , vn)

z
.

Hence the first inclusion. We can show that if v ∈
r∑

k∈[1,n] α(v1, . . . , vk \ tk, . . . , vn)
z
,

then v ∈ Jα(v1, . . . , vn) \ α(t1, . . . , tn)K similarly in order to prove the second inclusion.
(T3): If v ∈ Jα(v1, . . . , vn)× α(w1, . . . , wn)K, then v ∈ Jα(v1, . . . , vn)K and v ∈ Jα(w1, . . . , wn)K.

As Jα(p1, . . . , pn)K = {α(t1, . . . , tn) | (t1, . . . , tn) ∈ Jp1K × . . . × JpnK}, v = α(t1, . . . , tn)
such that ∀i ∈ [1, n], ti ∈ JviK and ti ∈ JwiK. Therefore, ∀i ∈ [1, n], ti ∈ JviK ∩ JwiK and
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thus v ∈ Jα(v1 × w1, . . . , vn × wn)K. Hence the first inclusion. Similarly, we can show
that if v ∈ Jα(v1 × w1, . . . , vn × wn)K, then v ∈ Jα(v1, . . . , vn)× α(w1, . . . , wn)K, to prove
the second inclusion.

For the rest of the rules but (P1), the definition of ground semantics of extended patterns
and properties of set operations give us the equality between the ground semantics of 2 side
of each rule in a fairly straightforward manner. In particular, in the case of rules (M1), (T1)
and (T2), we can remark that, as we only consider well-sorted extended patterns, in these 3
rules we have v : s and therefore JvK ⊆

q
x−⊥s

y
. Hence the equality of ground semantics of

the 2 sides of these rules.
Finally, we just need to consider (P1). For this, let’s prove that:

Jx−ps K =
⋃
c∈Cs

q
c(x−ps1

, . . . , x−psn
) \ p

y
(1)

Let’s consider both inclusion separately. Let t ∈
⋃
c∈Cs

q
c(x−ps1

, . . . , x−psn
) \ p

y
, i.e. ∃ c ∈ Cs

such that t ∈
q
c(x−ps1

, . . . , x−psn
)
y
and t /∈ JpK. Thus ∃ (t1, . . . , tn) ∈

q
x−ps1

y
× . . .

q
x−psn

y
such

that p ≺6≺ t = c(t1, . . . , tn). Therefore, t : s and ∀ω ∈ Pos (t) , p ≺6≺ t|ω, i.e. t is p-free.
Hence t ∈ Jx−ps K. Let t ∈ Jx−ps K, then t : s and t is p-free. Thus ∃ c : s1× . . .×sn 7→
s, (t1, . . . , tn) ∈ Ts1(C)× . . .×Tsn

(C) such that t = c(t1, . . . , tn) with ∀i ∈ [1, n], ti is p-free.
Therefore, t ∈

q
c(x−ps1

, . . . , x−psn
)
y
and, as p ≺6≺ t, t /∈ JpK. Hence t ∈

q
c(x−ps1

, . . . , x−psn
) \ p

y
,

and finally t ∈
⋃
c∈Cs

q
c(x−ps1

, . . . , x−psn
) \ p

y
.

Therefore, we have Jx−ps K =
q∑

c∈Cs
c(x−ps1

, . . . , x−psn
) \ p

y
hence

Jx−ps × α(v1, . . . , vn)K =
q(∑

c∈Cs
c(x−ps1

, . . . , x−psn
) \ p

)
× α(v1, . . . , vn)

y

=
( ⋃
c∈Cs

q
c(x−ps1

, . . . , x−psn
) \ p

y
)
∩ Jα(v1, . . . , vn)K

=
( ⋃
c∈Cs

q
c(x−ps1

, . . . , x−psn
)
y
\ JpK

)
∩ Jα(v1, . . . , vn)K

=
⋃
c∈Cs

q
c(x−ps1

, . . . , x−psn
)
y
∩
(
Jα(v1, . . . , vn)K \ JpK

)
=

t ∑
c∈Cs

c(x−ps1
, . . . , x−psn

)×
(
α(v1, . . . , vn) \ p

)|
J

I Proposition 4.9. Let t a quasi-additive pattern and p a constructor pattern, t× p →−→Rp
⊥

if and only if Jt× pK = ∅

Proof. In order to prove this property, we first introduce the notion of depth of an extended
pattern:

depth(x−ps ) = depth(x−ps \ w) = depth(⊥) = 1
depth(c(t1, . . . , tn)) = 1 +maxi∈[1,n](depth(ti))
depth(t1 + t2) = max(depth(t1), depth(t2))
depth(t1 \ t2) = depth(t1)

We know that Rp is confluent and terminating, thus it is normalizing. We then consider
the following lemma:

I Lemma A.4. Let t be additive, respectively quasi-additive, pattern, t ↓Rp is a additive,
respectively quasi-additive, pattern such that depth(t ↓Rp

) ≤ depth(t).
Moreover the normal form t ↓Rp= v is either ⊥ or a pure term such that ∀ω+ ∈

Pos (v) , v(ω+) = + =⇒ ∀ω < ω+, v(ω) = + and JtK = ∅ if and only if v = ⊥
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We can first observe that the only rule that apply on a additive pattern are A1, A2, E1
and S1 (and the same rules plus M1 and P6 for additive patterns). Moreover, for each rule,
that it reduces a additive, respectively quasi-additive, pattern into a additive, respectively
quasi-additive, pattern. Therefore, the normal form of a additive, respectively quasi-additive,
pattern, is indeed a additive, respectively quasi-additive, pattern.

Moreover, the depth mesure induces a monotonic ordering over quasi-additive patterns
with regard to the ≤ operators, i.e. depth(u) ≤ depth(v) implies depth(t [u]ω) ≤ depth(t [v]ω).
Finally, as the depth is descreasing on all applicable rules, we know that depth(t ↓Rp) ≤
depth(t).

Let’s now suppose that v = t ↓Rp
contains a sum below a constructor, i.e. contains a

subterm of the form c(v1, . . . , vi + ui, . . . , vn), which would be a redex for S1, and thus v
would not be a normal form. Therefore, v does not contain a sum below a constructor.

Finally, if t ↓Rp= ⊥ then Proposition 4.8 ensures that JtK = J⊥K = ∅. We note v = t ↓Rp ,
once again we know that JtK = JvK, let’s prove that if JvK = ∅ then v = ⊥. We suppose that
v 6= ⊥ and we prove by induction that v is not in normal form.

If v = x−ps \ u and JvK = ∅, then rule P6 applies, thus v is not in normal form. If
v = v1 + v2, then Jv1K = Jv2K = ∅, thus by induction, either v1 = v2 = ⊥ in which case both
A1 and A2 applies, or at least one of them is not in normal form. In both cases, v is not
in normal form. Finally, if v = c(v1, . . . , vn), then ∃ i ∈ [1, n] such that JviK = ∅, thus by
induction, either vi = ⊥ and rule E1 applies or vi is not in normal form. In both cases, v is
not in normal form.

Therefore, if v 6= ⊥ is a quasi-additive such that JvK = ∅, then v is not in normal form.
Thus, if JtK = ∅, then t ↓Rp

= ⊥.
We can also note that if t is regular, so is t ↓Rp

.
We can now remark that the rules that reduces the conjunction only apply when the

pattern on the left side of the × operator is a quasi-additive pattern. Thus we consider in a
first time the reduction of this term:

I Lemma A.5. Let t a quasi-additive pattern, u a regular additive pattern, (t \ u) ↓Rp
is a

quasi-additive pattern such that depth((t \ u) ↓Rp
) ≤ depth(t \ u)

Thanks to the previous lemma, by confluence, we can suppose that t and u are in normal
form, we then prove this lemma by induction on the form of t and u.

In the case when u = x−⊥s , rule M1 applies to t \ u and reduces it to v = ⊥ which cannot
be reduced furthermore. Moreover depth(⊥) = 1 ≤ depth(t \ u). In the case when u = ⊥,
rule M2 applies to t \ u and reduces it to t, and as we supposed t in normal form, it cannot
be reduced anymore. Moreover depth(t) = depth(t \ u).

In other cases, we procede by induction:
if u = u1 +u2, we have to consider the different form of t. If t = x−ps , the only rule that can
apply is P6, which, if it does, reduces t\u to⊥, thus, either way, the term v obtained cannot
be reduced furthermore and is quasi-additive pattern with depth(v) = 1 = depth(t \ u).
If t = x−ps \ u′, the only rules that can apply are P5 and P6. If P5 applies, it reduces
t \ u to x−ps \ (u′ + u) for which only P6 can apply. If P6 applies, it reduces t \ u to
⊥ \ u, which is then reduced to ⊥ by M5, and x−ps \ (u′ + u) to ⊥. In all cases, the
the term v obtained cannot be reduced furthermore and is quasi-additive pattern with
depth(v) = 1 = depth(t \ u). If t = c(t1, . . . , tn), rule M6 applies to t \ u and reduces it
to (t \ u1) \ u2. Moreover, by induction on u, v′ = (t \ u1) ↓Rp

and v = (v′ \ u2) ↓Rp

are both quasi-additive patterns such that depth(v) ≤ depth(v′) ≤ depth(t \ u). Hence,
by confluence, v = (t \ u) ↓Rp

. Finally, if t = t1 + t2, then rule M3 applies to t \ u and
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reduces it to (t1 \ u) + (t2 \ u). Moreover, by induction on t, v1 = (t1 \ u) ↓Rp
and

v2 = (t2 \ u) ↓Rp are both quasi-additive patterns such that depth(v1) ≤ depth(t \ u) and
depth(v2) ≤ depth(t \ u). Therefore, depth(v1 + v2) ≤ depth(t\)u, and t \ u →−→Rp

v1 + v2.
So as v1 + v2 is a quasi-additive pattern we know that v = (v1 + v2) ↓Rp= (t \ u)Rp is a
quasi-additive pattern such that depth(v) ≤ depth(v1 + v2) ≤ depth(t \ u).
if u = c(u1, . . . , un), with ∀i ∈ [1, n], ui a regular symbolic pattern (as u is in normal form),
we have to consider the different form of t. If t = x−ps , the only rule that can apply is P6,
which, if it does, reduces t\u to ⊥, thus, either way, the term v obtained cannot be reduced
furthermore and is quasi-additive pattern with depth(v) = 1 = depth(t\u). If t = x−ps \u′,
the only rules that can apply are P5 and P6. If P5 applies, it reduces t\u to x−ps \ (u′+u)
for which only P6 can apply. If P6 applies, it reduces t \u to ⊥\u, which is then reduced
to ⊥ by M5, and x−ps \ (u′ + u) to ⊥. In all cases, the the term v obtained cannot be
reduced furthermore and is quasi-additive pattern with depth(v) = 1 = depth(t \ u).
For the case when t = c′(t1, . . . , tm), if c 6= c′, rule M8 applies to t \ u and reduces
it to t. Otherwise rule M7 applies to t \ u and reduces it to

∑
i∈[1,n] c(t1, . . . , ti \

ui, . . . , tn), and by induction on t, ∀i, vi = (ti \ ui) ↓Rp
a quasi-additive pattern such

that depth(vi) ≤ depth(ti \ ui). Therefore, t \ u →−→Rp

∑
i∈[1,n] c(t1, . . . , vi, . . . , tn) and

by monotonicity, depth(
∑
i∈[1,n] c(t1, . . . , vi, . . . , tn)) ≤ depth(t \ u). Moreover, w =∑

i∈[1,n] c(t1, . . . , vi, . . . , tn) is a quasi-additive pattern, so according to the previous
lemma, v = w ↓Rp is a quasi-additive pattern such that depth(v) ≤ depth(w). Hence, by
confluence, v = (t \ u) ↓Rp

and depth(v) ≤ depth(t \ u). Finally, if t = t1 + t2, we procede
identically as for u = u1 + u2.

We can also note that if t is regular, so is (t \ u) ↓Rp
.

Finally, we now just need to prove:

I Lemma A.6. Let t a quasi-additive pattern, u a regular quasi-additive pattern (t× u) ↓Rp

is a quasi-additive pattern

Thanks to the previous lemma, by confluence, we can suppose that t and u are in normal
form, we then prove this lemma by induction on the depth of u and the form of t and u.

The base case is for u such that depth(u) = 1. We procede by induction on the form u

such that depth(u) = 1. If u = x−⊥s , the only rule that applies to t \ u is T2, which reduces
it to t.

If u = x−⊥s \ v with v a regular additive pattern, we procede by induction on t. If
t = c(t1, . . . , tn) or t = x−ps or t = x−ps \w the only rules that applies to t\u are, respectively,
P2 or P3 or P4, which with T1 reduces it to t \ v. So thanks to the previous lemma we know
that (t \ v) ↓Rp

is a quasi-additive pattern. Finally, if t = t1 + t2, then rule S2 applies to
t \ u and reduces it to (t1 × u) + (t2 × u). Moreover, by induction on t, v1 = (t1 × u) ↓Rp

and v2 = (t2 × u) ↓Rp
are both quasi-additive patterns. So, as v1 + v2 is a quasi-additive

pattern, we know that (v1 + v2) ↓Rp= (t \ u) ↓Rp is a quasi-additive pattern.
If u = c(), we procede by induction on the form of t. If t = c(), then rule T3 applies

to t × u and reduces it to c(). If t = c′(t1, . . . , tn) with c′ 6= c, then rule T4 applies to
t \ u and reduces it to ⊥. If t = x−ps , then rule P1 applies to t × u and reduces it to∑
d∈Cs

d(x−ps1
, . . . , x−psn

)× (c() \ p). If p = c(), then rule M7 applies to c() \ p and reduces it to
⊥, leading to rule E2 applying and ultimately reducing t \ u to ⊥. If p = c′(p1, . . . , pn) with
c′ 6= c, then rule M8 applies to c() \ p and reduces it to c(), and because we only consider
well sorted extended patterns, c ∈ Cs, thus repeatedly applying S3, T4, A1/ A2 and finally
T3 utimately reduces t \ u to c(). Finally, if t = t1 + t2, we procede exactly the same way as
in the case when u = x−⊥s \ v to prove the induction step on the form of t.
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Finally, if u = u1 + u2 with depth(u1) = depth(u2) = 1, then rule S3 applies to t \ u
and reduces it to (t× u1) + (t× u2). Moreover, by induction on u, v1 = (t× u1) ↓Rp and
v2 = (t× u2) ↓Rp

are both quasi-additive patterns. So as v1 + v2 is a quasi-additive pattern
we know that (v1 + v2) ↓Rp= (t \ u)Rp is a quasi-additive pattern.

We know suppose depth(u) = n > 1 and for all quasi-additive pattern υ such that
depth(υ) < n, for all quasi-additive pattern τ , (τ \ υ) ↓Rp is quasi-additive pattern. Let’s
prove by induction on the form of t and u that for all quasi-additive pattern t (t \ u) ↓Rp

is
a quasi-additive pattern.

If u = c(u1, . . . , um) with ∀i ∈ [1,m], depth(ui) < n, we procede by induction on the
form of t. For the case when t = c′(t1, . . . , tm′), if c 6= c, then rule T4 applies to t \ u and
reduces it to ⊥. Otherwise, rule T3 applies to t× u and reduces it to c(t1 × u1, . . . , tn × um).
Moreover, by induction on the depth of u we know that ∀i ∈ [1,m], vi = (ti × ui) ↓Rp

is
a quasi-additive pattern, thus c(v1, . . . , vm) is a quasi-additive pattern and we know that
c(v1, . . . , vm) ↓Rp

= (t \ u) ↓Rp
is a quasi-additive pattern. If t = x−ps , then rule T4 applies

to t \ u and reduces it to
∑
d∈Cs

d(x−ps1
, . . . , x−psm′

)× (u \ p). Thanks to the previous lemma,
we know that (u \ p) ↓Rp

is a quasi-additive pattern which depth is less than or equal to
n, and we can easily show that its either ⊥ or a sum of quasi-additive patterns of the form
c(w1, . . . , wn), with ∀i ∈ [1,m], depth(wi) < n. If (u \ p) ↓Rp= ⊥, then rule E3 applies and
thus (t× u) ↓ Rp = ⊥. Otherwise, by applying recursively S2/S3, T4/T3, and A1/A2 we
get t× u →−→Rp

∑
c(x−ps1

× w1, . . . , x
−p
sm
× wm). Moreover, by induction on the depth of u we

know that ∀i ∈ [1,m], vi = (ti × wi) ↓Rp
is a quasi-additive pattern, thus

∑
c(v1, . . . , vm) is

a quasi-additive pattern and we know that (
∑
c(v1, . . . , vm)) ↓Rp

= (t \ u) ↓Rp
is a quasi-

additive pattern. Finally, if t = t1 + t2, we procede exactly the same way as in the case when
u = x−⊥s \ v to prove the induction step on the form of t.

Finally, if u = u1 + u2, we procede exactly the same way as in the case depth(u) = 1 to
prove the induction step on the form u when depth(u) > 1.

In conclusion, we know that for t a quasi-additive pattern, (t× p) ↓Rp is a quasi-additive
patterns. Moreover, according to Proposition 4.8 if the semantics of t× p is empty, so is the
semantics of its normal form and thus, thanks to the first lemma of this proof, its normal
form is ⊥. J

I Proposition 5.2 (Semantics preservation). Given a semantics preserving CTRS R we have

∀t, v ∈ T (F), if t →−→R v, then JvK ⊆ JtK .

Proof. As all constructor rewrite rules are of the form f(l1, . . . , ln) _ r, we have ∀σ, Jσ(r)K ⊆
JrK ⊆ JlK = Jσ(f(l1, . . . , ln))K. Moreover, ∀t ∈ T (F),∀u, v ∈ T (C) JvK ⊆ JuK implies
∀ω ∈ Pos (t) Jt [v]ωK ⊆ Jt [u]ωK. Therefore, by definition of the rewriting relation induced by
such a semantics preserving rule, we have ∀u, v ∈ T (F), u −→R v implies JvK ⊆ JuK. J

B Meta encoding of the rewriting system Rp

The meta encoding of the rule schemas in Figure 2 is given below in a syntax usable by
AProVE/TTT2. Both AProVE and TTT2 can be used to prove the termination of this
rewriting system.

(VAR u u1 u2 v v1 v2 w f g lu lv l lacc n m i tail sig p q)
(RULES

plus(bot,v) -> v
plus(v,bot) -> v
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appl(f,lv) -> split(f,lv,nil)
split(f,cons(u,lu),lv) -> split(f,lu,cons(u,lv))
split(f,cons(bot,lu),lv) -> bot
split(f,cons(plus(u1,u2),lu),lv) ->

plus(Appl(f,rest(lu,cons(u1,lv))),
Appl(f,rest(lu,cons(u2,lv))))

split(f,nil,lv) -> frozen(f,rest(nil,lv))
rest(lu,nil) -> lu
rest(lu,cons(u,lv)) -> rest(cons(u,lu),lv)

times(bot,v,sig) -> bot
times(v,bot,sig) -> bot

times(plus(u1,u2),v,sig) ->
plus(times(u1,v,sig),times(u2,v,sig))

times(v,plus(u1,u2),sig) ->
plus(times(v,u1,sig),times(v,u2,sig))

minus(v, var(n,bot)) -> bot
minus(v, bot) -> v
minus(plus(v1,v2), w) ->

plus(minus(v1, w), minus(v2, w))

minus(bot, appl(f,lv)) -> bot

minus(appl(f,lu), plus(v,w)) ->
minus(minus(appl(f,lu),v),w)

minus(appl(f,lu), appl(f,lv)) ->
genm7(f,lu,lv,len(lu))

genm7(f,lu,lv,z) -> bot
genm7(f,lu,lv,suc(i)) ->

plus(genm7(f,lu,lv,i),
appl(f,diff(lu,lv,suc(i))))

diff(nil,nil,i) -> nil
diff(cons(u,lu),cons(v,lv),s(s(i))) ->

cons(u,diff(lu,lv,s(i)))
diff(cons(u,lu),cons(v,lv),s(z)) ->

cons(minus(u,v),lu)
len(nil) -> z
len(cons(u,lu)) -> s(len(lu))

minus(appl(f,lu), appl(g,lv)) -> appl(f,lu)
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times(v, var(n,bot), sig) -> v
times(var(n,bot), v, sig) -> v

times(appl(f,lu), appl(f,lv), sig) -> dist(appl(f,nil), prod(lu,lv,nil,sig)))
prod(cons(u,lu),cons(v,lv),lacc,sig) -> prod(lu,lv,cons(times(u,v,sig),lacc),sig)

dist(appl(f,l), prod(nil,nil,nil,sig)) -> appl(f,l)
dist(appl(f,l), prod(nil,nil,cons(u,lu),sig)) -> dist(appl(f,cons(u,l)), prod(nil,nil,lu,sig))

times(appl(f,lu), appl(g,lv), sig) -> bot

times(var(n,p), appl(f,lv), sig) ->
times(gensum(sig,p),minus(appl(f,lv), p), sig)

gensum(nilsig,p) -> bot
gensum(conssig(f,n,tail),p) ->

plus(appl(f,genvar(n,p)), gensum(tail,p))
genvar(z,p) -> nil
genvar(s(n),p) -> cons(var(s(n),p),genvar(n,p))

times(appl(f,lu), minus(var(m,p), t), sig) -> minus(times(appl(f,lu), var(m,p), sig), t)

times(var(n,p), minus(var(m,q), t), sig) -> minus(times(var(n,p), var(m,q), sig), t)

times(minus(var(n,p),v), t, sig) -> minus(times(var(n,p),v,sig), t)
minus(minus(var(n,p),v), t) -> minus(var(n,p),plus(v,t))

minus(var(n,p),v) -> bot
)
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