Sub-quadratic time for Riemann-Roch spaces. The case of smooth divisors over nodal plane projective curves - Archive ouverte HAL Access content directly
Conference Papers Year : 2020

Sub-quadratic time for Riemann-Roch spaces. The case of smooth divisors over nodal plane projective curves

(1) , (2) , (1)
1
2

Abstract

We revisit the seminal Brill-Noether algorithm in the rather generic situation of smooth divisors over a nodal plane projective curve. Our approach takes advantage of fast algorithms for polynomials and structured matrices. We reach sub-quadratic time for computing a basis of a Riemann-Roch space. This improves upon previously known complexity bounds.
Fichier principal
Vignette du fichier
paper.pdf (361.03 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02477371 , version 1 (13-02-2020)

Identifiers

Cite

Simon Abelard, Alain Couvreur, Grégoire Lecerf. Sub-quadratic time for Riemann-Roch spaces. The case of smooth divisors over nodal plane projective curves. ISSAC 2020 - 45th International Symposium on Symbolic and Algebraic Computation, Jul 2020, Kalamata, Greece. pp.14-21, ⟨10.1145/3373207.3404053⟩. ⟨hal-02477371⟩
292 View
352 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More