D. T. Larose, Odkrywanie wiedzy z danych: wprowadzenie do eksploracji danych, Wydawnictwo Naukowe PWN, 2006.

Y. Wang, Y. Zhang, Y. Yu, and C. Zhang, Data Mining Based Approach for Jobshop Scheduling, Proceedings of 2013 4th International Asia Conference on Industrial Engineering and Management Innovation (IEMI2013), 2014.

C. Kittidecha and K. Yamada, Application of Kansei Engineering and Data Mining in the Thai Ceramic Manufacturing, Journal of Industrial Engineering International, issue.14, pp.757-766, 2018.

E. Ruschel, E. A. Santos, and E. F. Loures, Establishment of Maintenance Inspection Intervals: An Application of Process Mining Techniques in Manufacturing, Journal of Intelligent Manufacturing, pp.1-20, 2018.

R. Knosala, Zastosowania metod sztucznej inteligencji w inzynierii produkcji, 2002.

M. D. Akhtar, V. K. Manupati, M. L. Varela, G. D. Putnik, A. M. Madureira et al., Manufacturing Services Classification in a Decentralized Supply Chain Using Text Mining, Hybrid Intelligent Systems. HIS 2017. Advances in Intelligent Systems and Computing, vol.734, pp.186-193, 2018.

M. D. Giess and S. J. Culley, Investigating Manufacturing Data for Use within Design, Proceedings of ICED 03, the 14th International Conference on Engineering Design, vol.31, 2003.

R. P. Biuk-aghai and S. J. Simoff, An Integrative Framework for Knowledge Extraction in Collaborative Virtual Environments, Proceedings of the 2001 International ACM SIGGROUP Conference on Supporting Group Work, pp.61-70, 2001.

M. V. Tomasello, G. Vaccario, and F. Schweitzer, Data-driven modeling of collaboration networks: a cross-domain analysis, EPJ Data Science, vol.6, 2017.

Y. Zuo and Y. Kajikawa, Prediction of collaborative relationships by using network representation learning, IEEE International Conference on Systems, Man, and Cybernetics, pp.69-74, 2017.

A. Cox, J. Sanderson, and G. Watson, Supply Chains and Power Regimes: Toward an Analytic Framework for Managing Extended Networks of Buyer and Supplier Relationships, Journal of Supply Chain Management, vol.37, pp.28-35, 2001.

J. B. Mere, A. G. Marcos, J. A. Gonzalez, and V. L. Rubio, Estimation of mechanical properties of steel strip in hot dip galvanising lines, Ironmaking & Steelmaking, vol.31, issue.1, pp.43-50, 2004.

A. Krimpenis, P. G. Benardos, G. Vosniakos, and A. Koukouvitaki, Simulation-based selection of optimum pressure die-casting process parameters using neural nets and genetic algorithms, Int J Adv Manuf Technol, vol.27, issue.5, pp.509-517, 2006.

L. Cser, J. Gulyas, L. Szucs, A. Horvath, L. Arvai et al., Different Kinds of Neural Networks in Control and Monitoring of Hot Rolling Mill, Engineering of Intelligent Systems, pp.791-796, 2001.

D. S. Chang and S. Jiang, Assessing quality performance based on the on-line sensor measurements using neural networks, Computers & Industrial Engineering, vol.42, issue.2, pp.417-424, 2002.

R. P. Cherian, P. S. Midha, and A. G. Pipe, Modelling the relationship between process parameters and mechanical properties using Bayesian neural networks for powder metal parts, International Journal of Production Research, vol.38, issue.10, pp.2201-2214, 2000.

C. Hu and S. Su, Hierarchical clustering methods for semiconductor manufacturing data, IEEE International Conference on Networking, Sensing and Control, vol.2, pp.1063-1068, 2004.

W. Chen, S. Tseng, and C. Wang, A novel manufacturing defect detection method using association rule mining techniques, Expert Systems with Applications, vol.29, issue.4, pp.807-815, 2005.

G. Koksal, I. Batmaz, and M. C. Testik, A review of data mining applications for quality improvement in manufacturing industry, Expert Systems with Applications, issue.38, pp.13448-13467, 2011.

M. Perzyk and A. Soroczynski, Comparative Study of Decision Trees and Rough Sets Theory as Knowledge Extraction Tools for Design and Control of Industrial Processes, International Journal of Industrial and Manufacturing Engineering, issue.4, pp.234-239, 2010.