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PUNCTUAL HILBERT SCHEME AND CERTIFIED APPROXIMATE SINGULARITIES

ANGELOS MANTZAFLARIS, BERNARD MOURRAIN AND AGNES SZANTO

Abstract. In this paper we provide a new method to certify that a nearby polynomial system has a
singular isolated root and we compute its multiplicity structure. More precisely, given a polynomial system
f = (f1, . . . , fN ) ∈ C[x1, . . . , xn]N , we present a Newton iteration on an extended deflated system that
locally converges, under regularity conditions, to a small deformation of f such that this deformed system
has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root
and the coefficients of the so-called inverse system that describes the multiplicity structure at the root. We
use α-theory test to certify the quadratic convergence, and to give bounds on the size of the deformation and
on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which
we provide a new description. We show in particular that some of its strata can be rationally parametrized
and exploit these parametrizations in the certification. We show in numerical experimentation how the
approximate inverse system can be computed as a starting point of the Newton iterations and the fast
numerical convergence to the singular root with its multiplicity structure, certified by our criteria.

1. Introduction

Local numerical methods such as Newton iterations have proved their efficiency to approximate and certify
the existence of simple roots. However for multiple roots they dramatically fail to provide fast numerical
convergence and certification. The motivation for this work is to find a method with fast convergence to an
exact singular point and its multiplicity structure for a small perturbation of the input polynomials, and to
give numerical tests that can certify it. The knowledge of the multiplicity structure together with a high
precision numerical approximation of a singular solution can be valuable information in many problems.

In [27] a method called later integration method is devised to compute the so-called inverse system or
multiplicity structure at a multiple root. It is used in [25] to compute an approximation of the inverse
system, given an approximation of that root and to obtain a perturbed system that satisfies the duality
property. However, this method did not give a way to improve the accuracy of the initial approximation of
the root and the corresponding inverse system. In [16] a new one-step deflation method is presented that
gives an overdetermined polynomial system in the coordinates of the roots and the corresponding inverse
system, serving as a starting point for the present paper. However, for certification, [16] refers to the
symbolic-numeric method in [1] that only works if the input system is given exactly with rational coefficients
and have a multiple root with the prescribed multiplicity structure.

In the present paper we give a solution for the following problem:

Problem 1.1. Given a polynomial system f = (f1, . . . , fN ) ∈ C[x]N and a point ξ ∈ Cn, deduce an iterative
method that converges quadratically to the triple (ξ∗, µ∗, ǫ∗) such that ξ∗ ∈ Cn, µ∗ defines the coefficients
of a basis Λ∗ = {Λ∗

1, . . . ,Λ
∗
r} ⊂ C[dξ∗ ] dual to the set Bξ∗ = {(x − ξ∗)β1 , . . . , (x − ξ∗)βr} ⊂ C[x] and ǫ∗

defines a perturbed polynomial system fǫ∗ := f + ǫ∗Bξ∗ with the property that ξ∗ is an exact multiple root
of fǫ∗ with inverse system Λ∗. Furthermore, certify this property and give an upper bound on the size of
the perturbation ‖ǫ∗‖.

The difficulty in solving Problem 1.1 is that known polynomial systems defining the coordinates of the
roots and the inverse system are overdetermined, and we need a square subsystem of it in the Newton
iterations to guarantee the existence of a root together with the quadratic convergence. Thus, roots of
this square subsystem may not be exact roots of the complete polynomial system, and we cannot certify
numerically that they are approximations of a root of the complete system. This is the reason why we

Key words and phrases. certification, singularity, multiplicity structure, Newton’s method, inverse system, multiplication
matrix.
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2 ANGELOS MANTZAFLARIS, BERNARD MOURRAIN AND AGNES SZANTO

introduce the variables ǫ that allow perturbation of the input system. One of the goals of the present paper
is to understand what kind of perturbations are needed and to bound their magnitude.

Certifying the correctness of the multiplicity structure that the numerical iterations converge to poses a
more significant challenge: the set of parameter values describing an affine point with multiplicity r forms
a projective variety called the punctual Hilbert scheme. The goal is to certify that we converge to a point
on this variety. We study an affine subset of the punctual Hilbert scheme and give a new description using
multilinear quadratic equations that have a triangular structure. These equations appear in our deflated
polynomial system, have integer coefficients, and have to be satisfied exactly without perturbation, otherwise
the solution does not define a proper inverse system, closed under derivation. Fortunately, the structure
allowed us to define a rational parametrization of a strata of the punctual Hilbert scheme, called the regular
strata. In turn, this rational parametrization allows certification when converging to a point on this regular
strata.

Our method comprises three parts: first, we apply the Integration Method (Algorithm 1) with input f
and ξ to compute an approximation of the multiplicity structure, second, an analysis and certification part
(see Section 6 and Algorithm 2), and third, a numerical iteration part converging to the exact multiple root
with its multiplicity structure for an explicit perturbation of the input system (see Section 5).

Related Work. There are many works in the literature studying the certification of isolated singular roots
of polynomial systems. One approach is to give separation bounds for isolated roots, i.e. a bound that
guarantees that there is exactly one root within a neighborhood of a given point. Worst case separation
bounds for square polynomial systems with support in given polytopes and rational coefficients are presented
in [10]. In the presence of singular roots, turned into root clusters after perturbations, these separation
bounds separate the clusters from each other and bound the cluster size. [32, 33, 11] give separation bounds
and numerical algorithms to compute clusters of zeroes of univariate polynomials. [8] extends α-theory and
gives separation bounds for simple double zeroes of polynomial systems, [12] extend these results to zeroes
of embedding dimension one.

Another approach, called deflation, comprises of transforming the singular root into a regular root of a
new system and to apply certification techniques on the new system. [18] uses a square deflated system
to prove the existence of singular solutions. [20] devises a deflation technique that adds new variables to
the systems for isolated singular roots that accelerates Newton’s method and [21] modifies this to compute
the multiplicity structure. [28] computes error bounds that guarantee the existence of a simple double
root within that error bound from the input, [22, 23] generalizes [28] to the breadth one case and give
an algorithm to compute such error bound. [24] gives verified error bounds for isolated and some non-
isolated singular roots using higher order deflations. [7, 30, 34, 31, 6, 15] give deflation techniques based on
numerical linear algebra on the Macaulay matrices that compute the coefficients of the inverse system, with
improvements using the closedness property of the dual space. [13, 14] give a new deflation method that
does not introduce new variables and extends α-theory to general isolated multiple roots for the certification
to a simple root of a subsystem of the overdetermined deflated system. In [16] a new deflated system is
presented, its simple roots correspond to the isolated singular points with their multiplicity structure. A
somewhat different approach is given in [1], where they use a symbolic-numeric certification techniques that
certify that polynomial systems with rational coefficients have exact isolated singular roots. More recently,
[19] design a square Newton iteration and provide separation bounds for roots when the deflation method of
[20] terminates in one iteration, and give bounds for the size of the clusters.

The certification approach that we propose is based on an algebraic analysis of some strata of the punctual
Hilbert scheme. Some of its geometric properties have been investigated long time ago, for instance in [4, 17, 5]
or more recently in the plane [2]. However, as far as we know, the effective description that we use and the
rational parametrization of the regular strata that we compute have not been developed previously.

2. Preliminaries

Let f := (f1, . . . , fN) ∈ C[x]N with x = (x1, . . . , xn). Let ξ = (ξ1, . . . , ξn) ∈ Cn be an isolated multiple
root of f . Let I = 〈f1, . . . , fN〉, mξ be the maximal ideal at ξ and Q be the primary component of I at ξ so
that

√
Q = mξ. The shifted monomials at ξ will be denoted for α = (α1, . . . , αn) ∈ Nn by

xα
ξ := (x1 − ξ1)

α1 · · · (x1 − ξn)
αn .
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Consider the ring of power series C[[dξ]] := C[[d1,ξ, . . . , dn,ξ]] and we denote dβ
ξ := dβ1

1,ξ · · · d
βn

n,ξ, with

β = (β1, . . . , βn) ∈ Nn. We identify C[[dξ]] with the dual space C[x]∗ by considering the action of dβ
ξ on

polynomials as derivations and evaluations at ξ, defined as

(1) dβ
ξ (p) := ∂β(p)

∣

∣

∣

∣

ξ

=
∂|β|p

∂xβ1

1 · · ·∂xβn
n

(ξ) for p ∈ C[x].

Hereafter, we reserve the notation d and di for the dual variables while ∂ and ∂xi
for derivation. We indicate

the evaluation at ξ ∈ Cn by writing di,ξ and dξ, and for ξ = 0 it will be denoted by d. The derivation with
respect to the variable di,ξ in C[[dξ]] is denoted ∂di,ξ

(i = 1, . . . , n). Observe that

1

β!
dβ
ξ ((x − ξ)α) =

{

1 if α = β,

0 otherwise,

where β! = β1! · · ·βn!.
For p ∈ C[x] and Λ ∈ C[[dξ]] = C[x]∗, let p ·Λ : q 7→ Λ(p q). We check that p = (xi−ξi) acts as a derivation

on C[[dξ]]: (xi − ξi) · dβ
ξ = ∂di,ξ

(dβ
ξ ) = βid

β−ei

ξ . Throughout the paper we use the notation e1, . . . , en for
the standard basis of Cn or for a canonical basis of any vector space V of dimension n. We will also use
integrals of polynomials in C[[dξ]] as follows: for Λ ∈ C[[dξ]] and k = 1, . . . , n, ∫

k

Λ denotes the polynomial

Λ∗ ∈ C[[dξ]] such that ∂dk,ξ
(Λ∗) = Λ and Λ∗ has no constant term. We introduce the following shorthand

notation

∫
k

Λ := ∫
k

Λ(d1,ξ, . . . , dk,ξ, 0, . . . , 0).(2)

For an ideal I ⊂ C[x], let I⊥ = {Λ ∈ C[[dξ]] | ∀p ∈ I,Λ(p) = 0}. The vector space I⊥ is naturally
identified with the dual space of C[x]/I. We check that I⊥ is a vector subspace of C[[dξ]] which is closed
under the derivations ∂di,ξ

for i = 1, . . . , n.

Lemma 2.1. If Q is a mξ-primary isolated component of I, then Q⊥ = I⊥ ∩ C[dξ].

This lemma shows that to compute Q⊥, it suffices to compute all polynomials of C[dξ] which are in I⊥.
Let us denote this set D = I⊥ ∩ C[dξ]. It is a vector space stable under the derivations ∂di,ξ

. Its dimension

is the dimension of Q⊥ or C[x]/Q, that is the multiplicity of ξ, denoted rξ(I), or simply r if ξ and I is clear
from the context.

For an element Λ(dξ) ∈ C[dξ] we define the degree or order ord(Λ) to be the maximal |β| s.t. dβ
ξ appears

in Λ(dξ) with non-zero coefficient.
For t ∈ N, let Dt be the elements of D of order ≤ t. As D is of dimension r, there exists a smallest t ≥ 0

s.t. Dt+1 = Dt. Let us call this smallest t, the nil-index of D and denote it by δξ(I), or simply by δ. As D
is stable by the derivations ∂di,ξ

, we easily check that for t ≥ δξ(I), Dt = D and that δξ(I) is the maximal
degree of elements of D.

Let B = {xβ1

ξ , . . . ,xβr

ξ } be a basis of C[x]/Q. We can identify the elements of C[x]/Q with the elements

of the vector space spanC(B). We define the normal form N(p) of a polynomial p in C[x] as the unique
element b of spanC(B) such that p− b ∈ Q. Hereafter, we are going to identify the elements of C[x]/Q with
their normal form in spanC(B). For α ∈ Nn, we will write the normal form of xα

ξ as

(3) N(xα
ξ ) =

r
∑

i=1

µβi,α xβi

ξ .

2.1. The multiplicity structure. We start this subsection by recalling the definition of graded primal-dual
pairs of bases for the space C[x]/Q and its dual. The following lemma defines the same dual space as in
e.g. [7, 6, 23], but we emphasize on a primal-dual basis pair to obtain a concrete isomorphism between the
coordinate ring and the dual space.

Lemma 2.2 (Graded primal-dual basis pair). Let f , ξ, Q, D, r = rξ(f) and δ = δξ(f) be as above. Then
there exists a primal-dual basis pair (B,Λ) of the local ring C[x]/Q with the following properties:
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(1) The primal basis of the local ring C[x]/Q has the form

(4) B :=
{

xβ1

ξ ,xβ2

ξ , . . . ,xβr

ξ

}

.

We can assume that β1 = 0 and that the ordering of the elements in B by increasing degree. Define
the set of exponents in B as E := {β1, . . . , βr} ⊂ Nn.

(2) The unique dual basis Λ = {Λ1,Λ2, . . ., Λr} of D ⊂ C[dξ] dual to B has the form Λi =
1
βi!

dβi

ξ +
∑

|α|≤|βi|
α 6∈E

µβi,α
1
β!d

α
ξ .

(3) We have 0 = ord(Λ1) ≤ · · · ≤ ord(Λr), and for all 0 ≤ t ≤ δ we have Dt = span {Λj : ord(Λj) ≤ t} ,
where Dt denotes the elements of D of order ≤ t, as above.

A graded primal-dual basis pair (B,Λ) of D as described in Lemma 2.2 can be obtained from any basis

Λ̃ of D by first choosing pivot elements that are the leading monomials with respect to a graded monomial
ordering on C[d], these leading monomials define B, then transforming the coefficient matrix of Λ̃ into row
echelon form using the pivot leading coefficients, defining Λ.

A monomial set B is called a graded primal basis of f at ξ if there exists Λ ⊂ C[dξ] such that (B,Λ) is a
graded primal-dual basis pair and Λ is complete for f at ξ.

Next we describe the so-called integration method introduced in [27, 25] that computes a graded pair of
primal-dual bases as in Lemma 2.2 if the root ξ is given. The integration method performs the computation
of a basis order by order. We need the following proposition, a new version of [27, Theorem 4.2]:

Proposition 2.3. Let Λ1, . . . ,Λs ∈ C[dξ] and assume that ord(Λi) ≤ t for some t ∈ N. Suppose that the
subspace D := span(Λ1, . . . ,Λs) ⊂ C[dξ] is closed under derivation. Then ∆ ∈ C[dξ] with no constant term
satisfies ∂dk

(∆) ∈ D for all k = 1, . . . , n if and only if ∆ is of the form

∆ =

s
∑

i=1

n
∑

k=1

νki ∫
k

Λi(5)

for some νki ∈ C satisfying

s
∑

i=1

νki ∂dl
(Λi)− νli∂dk

(Λi) = 0 for 1 ≤ k < l ≤ n.(6)

Furthermore, (5) and (6) implies that

∂dk
(∆) =

s
∑

i=1

νki Λi for k = 1, . . . , n.(7)

Proof. Suppose Λ ∈ C[d] with no constant term satisfies ∂dk
(Λ) ∈ D for all k = 1, . . . , n. To prove (5), we

can proceed exactly as in the proof of [27, Theorem 4.2]: we write ∆ uniquely as

∆ = ∆1(d1, . . . , dn) + ∆2(d2, . . . , dn) + · · · ,+∆n(dn)

with ∆i ∈ C[di, . . . , dn] \ C[di+1, . . . , dn]. Then ∫
i

∂di
∆i = ∆i. Then we prove that by induction on k that if

σk := ∆1 + · · ·+∆k then

∆k =

s
∑

j=1

νkj ∫
k

Λj − (σk−1 − σk−1|dk=0)

and

σk = ∆k + σk−1 =

s
∑

j=1

νkj ∫
k

Λj + σk−1|dk=0

=

s
∑

j=1

νkj ∫
k

Λj +

s
∑

j=1

νk−1
j ∫

k

Λj |dk=0 + · · ·+
s

∑

j=1

ν1j∫
k

Λj |dk=0,···d2=0.
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Conversely, suppose that Λ ∈ C[d] with no constant term is of the form (5) satisfying (6). Define ∆̄1 =
σ̄1 :=

∑s
j=1 ν

1
j ∫
1

Λj and for k = 2, . . . n define

∆̄k :=
s

∑

j=1

νkj ∫
k

Λj − (σk−1 − σk−1|dk=0)

and σ̄k := ∆̄1 + · · · + ∆̄k. Then in the proof of [27, Theorem 4.2] it is shown that ∆̄k ∈ C[dk, . . . , dn] \
C[dk+1, . . . , dn] and

σ̄k =
s

∑

j=1

νkj ∫
k

Λj +
s

∑

j=1

νk−1
j ∫

k

Λj |dk=0 + · · ·+
s

∑

j=1

ν1j ∫
k

Λj |dk=0,···d2=0

so we get that ∂dk
(Λ) = ∂dk

(σ̄k) =
∑s

j=1 ν
k
j Λj ∈ Dt as claimed. �

Let Q be a mξ-primary ideal. Proposition 2.3 implies that if Λ = {Λ1, . . . ,Λr} ⊂ C[dξ] with Λ1 = 1ξ is

a basis of Q⊥, dual to the basis B = {xβ1

ξ , . . . ,xβr

ξ } ⊂ C[x] of C[x]/Q with ord(Λi) = |βi|, then there exist

νki,j ∈ C such that

∂dk
(Λi) =

∑

|βj|<|βi|

νki,j Λj.

Therefore, the matrix Mk of the multiplication map Mk by xk − ξk in the basis B of C[x]/Q is

Mk = [νkj,i]
T
1≤i,j≤r = [µβi,βj+ek

]1≤i,j≤r

using the notation (3) and the convention that νki,j = µβi,βj+ek
= 0 if |βi| ≥ |βj |. Consequently,

νki,j = µβi,βj+ek i, j,= 1, . . . , r, k = 1, . . . , n,

and we have

Λi =
∑

|βj|<|βi|

n
∑

k=1

µβi,βj+ek
∫
k

Λj

where µβi,βj+ek
is the coefficient of xβi

ξ in the normal form of x
βj+ek

ξ in the basis B of C[x]/Q.
Next we give a result that allows to simplify the linear systems involved in the integration method. We

first need a definition:

Definition 2.4. Let E ⊂ Nn be a set of exponents. We say that E is closed under division if β =
(β1, . . . , βn) ∈ E implies that β − ek ∈ E as long as βk > 0 for all k = 1, . . . , n. We also call the

corresponding primal basis B = {xβ1

ξ , . . . ,xβr

ξ } closed under division.

The following lemma provides a simple characterization of dual bases of inverse systems closed under
derivation, that we will use in the integration algorithm.

Lemma 2.5. Let B = {xβ1

ξ , . . . ,xβr

ξ } ⊂ C[x] be closed under division and ordered by degree. Let Λ =

{Λ1, . . . ,Λr} ⊂ C[dξ] be a linearly independent set such that

Λi =
∑

|βj |<|βi|

n
∑

k=1

µβi,βj+ek
∫
k

Λj .(8)

Then D = span{Λ1, . . . ,Λr} is closed under derivation iff for all i, s = 1, . . . , r, |βs| < |βi| and k 6= l ∈
{1, . . . , n} we have

∑

j:|βs|<|βj|<|βi|

µβi,βj+ek
µβj,βs+el

− µβi,βj+el
µβj,βs+ek

= 0.(9)

Furthermore, (B,Λ) is a graded primal-dual basis pair iff they satisfy (9) and

µβi,βj+ek
=

{

1 for βi = βj + ek

0 for βj + ek ∈ E, βi 6= βj + ek,
(10)
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Proof of Lemma 2.5. Assume Λ = {Λ1, . . . ,Λr} is linearly independent and D = span(Λ) is closed under
derivation. For t ∈ {0, . . . , δ} denote by {Λ1, . . . ,Λrt} = Λ ∩ C[dξ]t and Dt = span(Λ1, . . . ,Λrt). Then
by Proposition 2.3, Λ satisfy equations (7) for t = 0, . . . , δ and for j = 1, . . . , r, k = 1, . . . , n, we have
∂dk

(Λj) =
∑

|βs|<|βj|
µβj,βs+ek

Λs. Substituting this to (6) we get for i = 1, . . . , r
∑

|βj|<|βi|

µβi,βj+ek

∑

|βs|<|βj|

µβj,βs+el
Λs

−µβi,βj+el

∑

|βs|<|βj|

µβj ,βs+ek
Λs = 0.(11)

Then using linear independence and collecting the coefficients of Λs we get (9).
Conversely, assume that (9) is satisfied. Then (11) is also satisfied. We use induction on t to prove that Dt

is closed under derivation. For t = 0 there is nothing to prove. Assume Dt−1 is closed under derivation.
Then by Proposition 2.3 if |βj | < t then ∂dk

(Λj) =
∑

|βs|<|βj|
µβj,βs+ek

Λs for k = 1, . . . , n. Thus for |βi| = t,

(11) implies that
∑

|βj|<|βi|

µβi,βj+ek
∂dl

(Λj)− µβi,βj+el
∂dk

(Λj) = 0.

Again, by Proposition 2.3 we get that Dt is closed under derivation.
Next, assume first that (B,Λ) is a graded primal-dual basis pair. This means that for i = 1, . . . , r and for l
such that |βl| ≤ |βi|

δi,l = Λi

(

xβl

ξ

)

=
n
∑

k=1

∑

|βj |<|βi|

µβi,βj+ek
∫
k

Λj

(

xβl

ξ

)

=
n
∑

k=1

∑

|βj |<|βi|

µβi,βj+ek
coeff(

dβl

βl!
, ∫
k

Λj)

Fix k to be the index of the last non-zero entry of βl. For all other k’s d
βl becomes zero when we substitute

0 into dk+1, . . . , dn in ∫
k

Λj. Thus,

Λi

(

xβl

ξ

)

=
∑

|βj|<|βi|

µβi,βj+ek
coeff(

dβl

βl!
, ∫
k

Λj)

=
∑

|βj|<|βi|

µβi,βj+ek
coeff(

dβl−ek

(βl − ek)!
,Λj).

Since E is closed under division, βl−ek = βm ∈ E for somem < l. By duality, we have that coeff( d
βm

(βm)! ,Λj) =

δm,j, so

Λi

(

xβl

ξ

)

= µβi,βm+ek = µβi,βl
.

To satisfy Λi

(

xβl

ξ

)

= δi,l we must have

µβi,βm+ek
=

{

1 if βi = βm + ek

0 if βm + ek = βl ∈ E but i 6= l.

Conversely, by induction on t = |βi| we have that deg(Λi) ≤ |βi|. Then Λi

(

xβl

ξ

)

= 0 when |βl| > |βi|. For

|βl| ≤ |βi|, Equations (10) imply that the coefficient of d
βl

βl!
in Λi is 0 if i 6= l and 1 if i = l. Therefore (B,Λ)

is a graded primal-dual basis pair. �

To compute the inverse system D of f at a point ξ, we will consider the additional systems of equations
in ξ and µ = {µβi,α}:
(12) Λi(fj) = 0 for 1 ≤ i ≤ r, 1 ≤ j ≤ N.

Throughout the paper we use the following notation:
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Notation 2.6. Let f1, . . . , fN ∈ C[x], ξ ∈ Cn and fix t ∈ N. Let Bt−1 = {xβ1

ξ , . . . , x
βrt−1

ξ } ⊂ C[xξ]t−1 be

closed under division and Λt−1 = {Λ1, . . . ,Λrt−1} ⊂ C[dξ]t−1 dual to Bt−1 with

∂dk
(Λj) =

∑

|βs|<|βj|

µβj ,βs+ek
Λs j = 1, . . . , rt−1, k = 1, . . . , n.

Consider the following homogeneous linear system of equations in the variables {νkj : j = 1, . . . , rt−1, k =
1, . . . , n}:

∑

j:|βs|<|βj|<t

ν
k
j µβj ,βs+el

− ν
l
j µβj ,βs+ek

= 0, 1 ≤ k < l ≤ n(13)

ν
k
j = 0 if βj + ek = βl for some 1 ≤ l ≤ rt−1(14)
(

rt−1
∑

j=1

n
∑

k=1

ν
k
j ∫
k

Λj

)

(fl) = 0 l = 1, . . . , N.(15)

We will denote by Ht the coefficient matrix of the equations in (13) and (14) and by Kt the coefficient
matrix of the equations in (13)-(15).

By Proposition 2.3 and Lemma 2.5, if Kt ν = 0 where ν = [νkj : j = 1, . . . , s, k = 1, . . . , n], then

Λ =
∑s

j=1

∑n
k=1 ν

k
j ∫
k

Λj ∈ (f)⊥ ∩ C[dξ]t = Dt. The main loop of the integration method described in

Algorithm 1 consists of computing the new basis elements in Dt and the new basis monomials in Bt of
degree t from the primal-dual basis pair (Bt−1,Λt−1) in degree t− 1.

Algorithm 1 produces incrementally a basis of D, similarly to Macaulay’s method. The algorithmic
advantage is the smaller matrix size in O(r n2 + N) instead of N

(

n+δ−1
δ

)

, where δ is the maximal degree
(depth) in the dual, cf. [25, 16].

Algorithm 1 Integration Method - Iteration t

Input: t > 0, f = (f1, . . . , fN ) ∈ C[x]N , ξ ∈ Cn, Bt−1 = {xβ1

ξ , . . . ,x
βrt−1

ξ } ⊂ C[x] closed under division and

Λt−1 = {Λ1, . . . ,Λrt−1} ⊂ C[dξ] a basis for Dt−1 dual to Bt−1, of the form (8).

Output: Either “Dt = Dt−1” or Bt = {xβ1

ξ , . . . ,x
βrt

ξ } for some rt > rt−1 closed under division and

Λt = {Λ1, . . . ,Λrt} with Λi of the form (8), satisfying (9), (10) and (12).

(1) Set up the coefficient matrix Kt of the homogeneous linear system (13)-(15) in Notation 2.6 in the

variables {νkj }j=1,...,rt−1, k=1,...,n associated to an element of the form Λ =
∑rt−1

j=1

∑n
k=1 ν

k
j ∫
k

Λj. Let

ht := dimkerKt.
(2) If ht = 0 then return “Dt = Dt−1”. If ht > 0 define rt := rt−1 + ht. Perform a triangulation of Ht by
row reductions with row permutations and column pivoting so that the non-pivoting columns correspond

to exponents βrt−1+1, . . . , βrt with strict divisors in Bt−1. Let Bt = Bt−1 ∪ {xβrt−1+1

ξ , . . . ,x
βrt

ξ }.
(3) Compute a basis Λrt−1+1, . . . ,Λrt ∈ C[dξ] of kerKt from the triangular reduction of Ht by setting the
coefficients of the non-pivoting columns to 0 or 1. This yields a basis Λt = Λt−1 ∪ {Λrt−1+1, . . . ,Λrt} dual

to Bt. The coefficients νki,j of Λi are µβi,βj+ek
in (8) so that Eq. (12) are satisfied. Eq. (10) are satisfied,

since Λt is dual to Bt.

The full Integration Method consists of taking Λ1 := 1ξ for t = 0, a basis of D0 and then iterating
algorithm Integration Method - Iteration t until we find a value of t when Dt = Dt−1. This implies
that the order δ = δξ(f) = t− 1. This leads to the following definition.

Definition 2.7. We say that Λ ⊂ C[dξ] is complete for f at ξ if the linear system Kt of the equations
(13)-(15) in degree t = δ + 1 = ord(Λ) + 1 is such that kerKδ+1 = {0}.

Notice that the full Integration Method constructs a graded primal-dual basis pair (B,Λ). The basis
Λ ⊂ (f)⊥ spans a space stable by derivation and is complete for f , so that we have span(Λ) = (f)⊥∩C[dξ] =
Q⊥ where Q is the primary component of (f) at ξ.
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To guarantee that Bt is closed under division, one could choose a graded monomial ordering ≺ of C[dξ]

and compute an auto-reduced basis of kerHt such that the initial terms for ≺ are dβi

ξ . The set Bt constructed
in this way would be closed under division, since Dt is stable under derivation. In the approach we use in
practice, we choose the column pivot taking into account the numerical values of the coefficients and not
according to a monomial ordering and we check a posteriori that the set of exponents is closed under division
(See Example 7.1).

The main property that we will use for the certification of multiplicities is given in the next theorem.

Theorem 2.8. If ξ∗ is an isolated solution of the system f(x) = 0 and B is a graded primal basis at ξ∗

closed under division, then the system F (ξ, µ) = 0 of all equations (9), (10) and (12) admits (ξ∗, µ∗) as an
isolated simple root, where µ∗ defines the basis Λ∗ of the inverse system of (f) at ξ dual to B, due to (8).

Proof. This is a direct consequence of [16, Theorem 4.11], since the system of equations (9)-(12) is equivalent
to the system (14) in [16, Theorem 4.11]. The equations (9) express the commutation of the transposed
of the parametric operator of multiplication in B, which are the same as the equations of commutation
of the operators. By Lemma 2.5, the equations (10) are equivalent to the fact that (B,Λ∗) is a graded
primal-dual basis pair. Finally, the equations (12) are the same as N (fi) = 0, i = 1, . . . , s where N is the
parametric normal form defined in [16][see Definition 4.7 and following remark]. Therefore the two systems
are equivalent. By [16, Theorem 4.11], they define the simple isolated solution (ξ∗, µ∗), where µ∗ defines the
basis Λ∗ dual to B due to (8). �

3. Punctual Hilbert scheme

The results in Sections 3 and 4 do not depend on the point ξ ∈ Cn, so to simplify the notation, we assume
in these sections that ξ = 0. Let m = (x1, . . . , xn) be the maximal ideal defining ξ = 0 ∈ Cn. Let C[d] be
the space of polynomials in the variables d = (d1, . . . , dn) and C[d]t ⊂ C[d] the subspace of polynomials in
d of degree ≤ t.

For a vector space V , let Gr(V ) be the projective variety of the r dimensional linear subspaces of V , also
known as the Grassmannian of r-spaces of V . The points in Gr(V ) are the projective points of P(∧rV ) of
the form v = v1 ∧ · · · ∧ vr for vi ∈ V . Fixing a basis e1, . . . , es of V , the Plücker coordinates of v are the
coefficients of ∆i1,...,ir (v) of v =

∑

i1<···<ir
∆i1,...,ir (v) ei1 ∧ · · · ∧ eir . When V = C[d]r−1, a natural basis

is the dual monomial basis (d
α

α! )|α|<r. The Plücker coordinates of an element v ∈ Gr(C[d]r−1) for this basis
are denoted ∆α1,...,αr

(v) where αi ∈ Nn, |αi| < r.

If Λ = {Λ1, . . . ,Λr} is a basis of a r-dimensional space D in C[d]r−1 with Λi =
∑

|α|<r µi,α
d

α

α! , the Plücker

coordinates of D are, up to a scalar, of the form ∆α1,...,αr
= det

[

µi,αj

]

1≤i,j≤r
. In particular, a monomial set

B = {xβ1 , . . . ,xβr} ⊂ C[x]r−1 has a dual basis in D iff ∆β1,...,βr
(D) 6= 0. If (B = {xβi}ri=1,Λ = {Λi}ri=1) is a

graded primal-dual basis pair, then µi,βj
= δi,j . To keep our notation consistent with the previous sections,

the coordinates of Λi ∈ Λ when Λ is dual to B will be denoted by µβi,α instead of µi,α. By properties of
the determinant, the Plücker coordinates of D are such that

(16) µβi,α =
∆β1,...,βi−1,α,βi+1,...,βr

∆β1,...,βr

i = 1, . . . , r.

If D is the dual of an ideal Q = D⊥ ⊂ C[x] and B = {xβ1 , . . . ,xβr} is a basis of C[x]/Q so that ∆β1,...,βr
(D) 6=

0, the normal form of xα ∈ C[x]r−1 modulo Q = D⊥ in the basis B is

N(xα) =
r

∑

j=1

µβj ,α xβj =
r

∑

j=1

∆β1,...,βj−1,α,βj+1,...,βr

∆β1,...,βr

xβj .

(if deg(xα) ≥ r, then N(xα) = 0).

Definition 3.1. Let Hr ⊂ Gr(C[d]r−1) be the set of linear spaces D of dimension r in C[d]r−1 which are
stable by the derivations ∂di

with respect to the variables d (i.e. ∂di
D ⊂ D for i = 1, . . . , n). We called Hr

the punctual Hilbert scheme of points of multiplicity r.

If D ⊂ C[d] is stable by the derivations ∂di
, then by duality I = D⊥ ⊂ C[x] is a vector space of C[x]

stable by multiplication by xi, i.e. an ideal of C[x].
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Proposition 3.2. D ∈ Hr iff D⊥ = Q is an m-primary ideal such that dimC[x]/Q = r.

Proof. Let D ∈ Hr. We prove that D⊥ = Q is an m-primary ideal. As D is stable by derivation, Q = D⊥ is
an ideal of C[x]. This also implies that 1 ∈ D, so that Q ⊂ m. As dimD = dimC[x]/Q = r, δ = ord(D) is
finite and m

δ+1 ⊂ D⊥ = Q. Therefore, Q is m-primary, which shows the first implication.
Conversely, let Q be a m-primary ideal such that dimC[x]/Q = r. Then by Lemma 2.1, D = Q⊥ ⊂ C[d]t

is stable by derivation and of dimension r = dimC[x]/Q. Thus D ∈ Hr. This concludes the proof of the
proposition. �

For D ∈ Hr , for t ≥ 0 we denote by Dt the vector space of elements of D of order ≤ t. We verify that
D⊥

t = D⊥ +m
t+1. The next theorem follows from Proposition 2.3 and Lemma 2.5.

Theorem 3.3. For B ⊂ C[x] closed under division such that |B| = r and δ = deg(B), the following points
are equivalent:

(1) D ∈ Hr and Bt is a basis of C[x]/(D⊥ +m
t+1) for t = 1, . . . , δ.

(2) The dual basis Λ = {Λ1, . . . ,Λr} of B satisfies Λ1 = 1 and the equations (8), (9) and (10).

Proof. (1) ⇒ (2) Assume that D ∈ Hr and that Bt is a basis of C[x]/(D⊥ +m
t+1). Let Λt = {Λ1, . . . ,Λrt}

be a basis of Dt dual to Bt with rt = |Bt|. Then, for j = rt−1 + 1, . . . , rt, Λj ∈ Dt is such that

∂dk
(Λj) =

rt−1
∑

j=1

νi,kΛi

for t = 1, . . . , o. By Proposition 2.3, Equations (8) and (9) are satisfied. As Bt is dual to Λ1, . . . ,Λrt ,
Equation (10) are satisfied.

(2) ⇒ (1) Let Λi ∈ C[d]r−1 for i = 1, . . . , r be elements of C[d]r−1 dual to B, which satisfies Equations
(8), (9) and (10). By induction on t = 0, . . . , δ = deg(B), we prove that if Λt = {Λ1, . . . ,Λrt} is dual to
Bt, then Λ1, . . . ,Λrt ∈ C[d]t. The property is true for t = 0 since Λ1 = 1. If it is true for t − 1, for Λj

with j = rt−1 +1, . . . , rt we have by (8), (9) and Proposition 2.3, that ∂dk
(Λj) =

∑rt−1

j=1 νi,kΛi, k = 1, . . . , n.

Thus Λj ∈ C[d]t. This shows that Dt is stable by derivation where Dt ⊂ C[d]t is the vector space spanned
Λ1, . . . ,Λrt ∈ C[d]t. LetD = Dδ. Since, by (10), Bt is dual to Λ1, . . . ,Λrt ∈ C[d]t, we see that D∩C[d]t = Dt.
By Proposition 3.2, Q = D⊥ is a m-primary ideal such that dimC[x]/Q = dimD = |B| = r. Moreover,
since Bt is dual to the basis {Λ1, . . . ,Λrt} of Dt, Bt is a basis C[x]/(D⊥ + m

t+1). This proves the reverse
inclusion. �

For a sequence h = (h0, h1, . . . , hδ) ∈ Nδ+1
+ and 0 ≤ t ≤ δ, let ht = (h0, . . . , ht), rt =

∑t
i=0 hi. For r ≥ 1

we denote by Sr the set of sequences h of some length δ < r with hi 6= 0, h0 = 1 and rδ = r. For h ∈ Sr,
we consider the following subvarieties of Hrt :

Hht
= {D ∈ Hrt | dimDi = dimD ∩ C[d]i ≤ ri, i = 0, . . . , t}.

These are projective varieties in Hrt defined by rank conditions on the linear spaces D ∩C[d]i for D ∈ Hrt ,
that can be expressed in terms of homogeneous polynomials in the Plücker coordinates of D. In particular,
the varieties Hh := Hhδ

are projective subvarieties of Hr. They may not be irreducible or irreducible
components of Hr, but we have Hr = ∪h∈SrHh.

We will study a particular component of Hh, that we call the regular component of Hh, denoted H
reg
h

.
It is characterized as follows. Let H

reg
h0

= {〈1〉} = {C[d]0} = G1(C[d]0) and assume that H
reg
ht−1

has been

defined as an irreducible component of Hht−1 . Let

Wt = {(Dt−1, Et) | Dt−1 ∈ Hht−1 , Et ∈ Grt(C[d]t),

Dt−1 ⊂ Et,∀i ∂diEt ⊂ Dt−1}

The constraints Dt−1 ⊂ Et and ∂di
Et ⊂ Dt−1 for i = 1, . . . , n define a linear system of equations in the

Plücker coordinates of Et (see e.g. [9]), corresponding to the equations (5), (6). By construction, the
projection of Wt ⊂ Hht−1 × Grt(C[d]t) on the second factor Grt(C[d]t) is π2(Wt) = Hht

and the projection
on the first factor is π1(Wt) = Hht−1 .

There exists a dense subset Ut−1 of the irreducible variety H
reg
ht−1

(with Ut−1 = H
reg
ht−1

) such that the rank

of the linear system corresponding to (5) and (6) defining Et is maximal. Since π−1
1 (Dt−1) is irreducible (in
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fact linear) of fixed dimension for Dt−1 ∈ Ut−1 ⊂ H
reg
ht−1

, there is a unique irreducible component Wt,reg

of Wt such that π1(Wt,reg) = H
reg
ht−1

(see eg. [29][Theorem 1.26]). We define H
reg
ht

= π2(Wt,reg). It is an

irreducible component of Hht
, since otherwise Wt,reg = π−1

2 (H reg
ht

) would not be a component of Wt but
strictly included in one of the irreducible components of Wt.

Definition 3.4. Let πt : Hht
→ Hht−1 , D 7→ D ∩ C[d]t−1 be the projection in degree t− 1. We define by

induction on t, H
reg
h0

= {〈1〉} and H
reg
ht

is the irreducible component π−1
t (H reg

ht−1
) of Hht

for t = 1, . . . , δ.

4. Rational parametrization

Let B = {xβ1 , . . . ,xβr} ⊂ C[x]r−1 be a monomial set. In this section we assume that B is closed under
division and its monomials are ordered by increasing degree. For t ∈ N, we denote by Bt = B ∩ C[x]t, by
B[t] the subset of its monomials of degree t. Let ht = |B[t]|, rt =

∑

0≤i≤t ht = |Bt| and δ = deg(B).

Let HB := {D ∈ Hr | Bt is a basis of C[x]/(D⊥ + m
t+1), t = 0, . . . , δ}. By Theorem 3.3, HB is the set

of linear spaces D ∈ Hr such that Dt = D ∩ C[d]t satisfy Equations (8) and (9). It is the open subset of
D ∈ Hh such that ∆Bt

(Dt) 6= 0 for t = 1, . . . , δ, where ∆Bt
:= ∆β1,...,βrt

denotes the Plücker coordinate for
Grt(C[d]t) corresponding to the monomials in Bt.

Since for D ∈ HB we have ∆B(D) 6= 0, we can define the affine coordinates of HB using the coordinates
of the elements of the basis Λ = {Λ1, . . . ,Λr} dual to B:

{

µβj ,α =
∆β1,...,βj−1,α,βj+1,...,βr

∆B

: j = 1, . . . , r, |α| < r

}

.

The following lemma shows that the values of the coordinates {µβi,βj+ek
: i, j = 1, . . . r, |βj | < |βi|, k =

1, . . . , n} uniquely define Λ.

Lemma 4.1. Let B = {xβ1 , . . . ,xβrt} closed under division, D ∈ HB and Λ = {Λ1, . . . ,Λr} be the unique

basis of D dual to B with Λi =
∑

|α|≤|βi|
µβi,α

d
α

α! for i = 1, . . . , r. Then Λ1 = 1 and for i = 2, . . . , r

Λi =
∑

|βj |<|βi|

n
∑

k=1

µβi,βj+ek
∫
k

Λj .

Thus, µβi,α is a polynomial function of {µβs,βj+ek
: |βs| ≤ |βi|, |βj | < |βs|, k = 1, . . . , n} for i =

1, . . . , r, |α| < |βi|.
Proof. Since D is closed under derivation, by Proposition 2.3 there exist ci,s,k ∈ C such that ∂dk

(Λi) =
∑

|βs|<|βi|
ci,s,kΛs. Then

µβi,βj+ek
= Λi(x

βj+ek) = ∂dk(Λi)(x
βj ) =

∑

|βs|<|βi|

ci,s,kΛs(x
βj ) = ci,j,k.

The second claim follows from obtaining the coefficients in Λ recursively from Λ1 = 1 and

Λi =
∑

|βj |<|βi|

n
∑

k=1

µβi,βj+ek
∫
k

Λj for i = 2, . . . , r.

�

We define µ := {µβi,βj+ek
}i,j=1,...r,|βj|<|βi|,k=1,...,n, µt := {µβi,βj+ek

∈ µ : |βi| ≤ t} ⊂ µ and µ[t] :=
{µβi,βj+ek

∈ µ : |βj | = t} ⊂ µt. The next definition uses the fact that Equations (13) and (14) are linear

in νkj with coefficients depending on µt−1:

Definition 4.2. Given Dt−1 ∈ HBt−1 with a unique basis Λt−1 = {Λ1, . . . ,Λrt−1} with Λi =
∑

|α|<t µβi,α
d

α

α!

for j = 1, . . . , rt−1 that is dual to Bt−1, uniquely determined by µt−1 = {µβi,βj+ek
: |βi| ≤ t− 1, |βj | < |βi|}

as above. Recall from Notation 2.6 that Ht is the coefficient matrix of the homogeneous linear system
(13) and (14) in the variables {νkj : j = 1, . . . , rt−1, k = 1, . . . , n}. To emphasize the dependence of its

coefficients on Dt−1 or µt−1 we use the notation Ht(Dt−1) or Ht(µt−1). For D ∈ H
reg
h

in an open subset,
the rank ρt of Ht(Dt−1) is maximal.
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The next definition describes a property of a monomial set B such that it will allow us to give a rational
parametrization of HB .

Definition 4.3. For t = 1, . . . , δ = deg(B) we say that Dt ∈ Grt(C[d]t) is regular for Bt if,

• dim(Dt) = rt = |Bt|,
• rankHt(Dt−1) = ρt the generic rank of Ht on H

reg
ht

,

• ∆B[t]
(D[t]) 6= 0 where ∆B[t]

(D[t]) is the Plücker coordinate of D[t] ∈ Ght
(C[d]r) corresponding to the

monomials in B[t].

Let Ut := {Dt ∈ H
reg
ht

: Dt is regular for Bt}. Then Ut is either an open dense subset of the irreducible

variety H
reg
ht

or empty if ∆B[t]
(D[t]) = 0 for all D ∈ H

reg
ht

. We say that B is a regular basis if Ut = H
reg
ht

(or Ut 6= ∅) for t = 1, . . . , δ.

We denote by γ[t] = dimGht
(kerHt(Dt−1)) for Dt−1 ∈ Ut−1 and γ =

∑δ
t=0 γ[t].

If the basis B is regular and closed under division, then H
reg
h

can be parametrized by rational functions
of free parameters µ. We present hereafter Algorithm 2 to compute such a parametrization iteratively.

Algorithm 2 Rational Parametrization - Iteration t

Input: t > 0, Bt = {xβ1 , . . . ,xβrt } ⊂ C[x]t closed under division and regular, µt−1 ⊂ µt−1 and

Φt−1 : µt−1 7→
(

qβj,α(µt−1)
)

|βj |≤t−1,|α|<r
with qβj ,α ∈ Q(µt−1) parametrizing a dense subset of H

reg
ht−1

.

Output: µt ⊂ µt and Φt : µt 7→
(

qβj,α

)

|βj |≤t,|α|<r
, qβj ,α∈Q(µt) extending Φt−1 and parametrizing a dense

subset of H
reg
ht

.

(1) Let Ht be as in Notation 2.6, ν = [νkj : j = 1, . . . , rt−1, k = 1, . . . , n]T . Decompose
Ht(Φt−1(µt−1)) · ν = 0 as

(17)
[

A(µt−1) B(µt−1) C(µt−1)
]





ν′

ν′′

ν



 = 0,

where ν′ is associated to a maximal set of independent columns of Ht(Φt−1(µt−1)),

ν′′ = {νkj : xβj+ek ∈ B[t]} and ν refers to the rest of the columns. If no such decomposition exists, return
“Bt is not regular”.
(2) For νkj ∈ ν′ express νkj = ϕk

j (ν, ν
′′) ∈ Q(µt−1)[ν, ν

′′]1 as the generic solution of the system
Ht(Φt−1(µt−1)) · ν = 0.
(3) For i = rt−1 + 1, . . . , rt do:

(3.1) Define µ[t],i :=
{

µβi,βj+ek
: νj,k ∈ ν

}

, µ′
[t],i = {µβi,βj+ek

: νkj ∈ ν′}, µ′′
[t],i = {µβi,βj+ek

: νkj ∈ ν′′},
and µt := µt−1 ∪

⋃rt

i=rt−1+1
µ[t],i.

(3.2) For µβi,βj+ek
∈ µ′′

[t],i set qβi,βj+ek
= µβi,βj+ek

= 1 if βi = βj + ek and 0 otherwise.

(3.3) For µβi,βj+ek
∈ µ′

[t],i define

qβi,βj+ek
:= ϕk

j (µ[t],i, µ
′′
[t],i) ∈ Q(µt)

(3.4) For |α| < r and µβi,α 6∈ µt find qβi,α using Lemma 4.1.

Proposition 4.4. Let B = {xβ1 , . . . ,xβr} ⊂ C[x]r−1 be closed under division and assume that B is a regular
basis. There exist a subset µ ⊂ µ with |µ| = γ and rational functions qβj,α(µ) ∈ Q(µ) for j = 1, . . . , r and
|α| < r, such that the map Φ : Cγ → HB defined by

Φ : µ 7→
(

qβj,α(µ)
)

j=1,...,r,|α|<r

parametrizes a dense subset of H
reg
h

.

Proof. Let us define, by induction on t, parameters µt with |µt| =
∑t

i=1 γ[i], and a rational parametrization
of a basis Λ1(µt), . . . ,Λrt(µt) of a generic element of H

reg
Bt

. For t = 0, we define Λ1 = 1 and µ0 = ∅. Assume



12 ANGELOS MANTZAFLARIS, BERNARD MOURRAIN AND AGNES SZANTO

that there exist µt−1 ⊂ µt−1 and a rational parametrization Λ1(µt−1), . . . ,Λrt−1(µt−1) of a basis dual to
Bt−1 for a generic element HBt−1 defined by the map

Φt−1 : µt−1 7→
(

qβj ,α(µt−1)
)

|βj|≤t−1,|α|<r
.

This means that imΦt−1 = HBt−1 . Denote by
Dt−1(µt−1) ∈ Grt−1(Q(µt−1)[d]t−1) the space spanned by
{Λ1(µt−1), . . . ,Λrt−1(µt−1)} over the fraction field Q(µt−1).

By Theorem 3.3 and Lemma 2.5, to define µt and to extend Dt−1(µt−1) to Dt(µt), we need to find
Λrt−1+1, . . . ,Λrt of the form

Λi =

rt−1
∑

j=1

n
∑

k=1

µβi,βj+ek
∫
k

Λj(µt−1) i = rt−1 + 1, . . . , rt,

satisfying the system of equations (13) and (14), i.e. such that

Λi ∈ kerHt(µt−1) for i = rt−1 + 1, . . . , rt,

where Ht(µt−1) = Ht

(

Φt−1(µt−1)
)

and Equations (12) are satisfied. Since B is a regular basis, the kernel
of Ht(µt−1) over Q(µt−1) contains a subspace D[t] of dimension ht = |B[t]| with ∆B[t]

(D[t]) 6= 0. Therefore,

the systems Ht(µt−1) ν = 0 with ν = [νkj : j = 1, . . . , rt−1, k = 1, . . . , n]T can be decomposed as

(18)
[

A(µt−1) B(µt−1) C(µt−1)
]





ν′

ν′′

ν



 = 0,

where ν′ is associated to a maximal set of independent columns of Ht(µt−1), ν
′′ = {νkj : xβj+ek ∈ B[t]} and

ν is associated to the remaining set of columns. Note that |ν| = dim(kerHt(µt−1)) − ht. Thus, ν′′ ∪ ν is
the set of free variables of the homogeneous system Ht(µt−1) ν = 0 and a general solution is such that the
variables in ν′ are linear functions of the variables in ν′′ and ν, with rational coefficients in µt−1.

We obtain the coefficients of Λrt−1+1, . . . ,Λrt that satisfy equations (13) and (14) and (12) from the
general solutions of Ht(µt−1) ν = 0 by further specializing the variables in ν′′ to 0’s and 1’s, according the
duality conditions. Define

µ[t],i :=
{

µβi,βj+ek
: νj,k ∈ ν

}

⊂ µ[t] .

Thus, the parameters in µ[t] are linear functions of µ[t],i with rational coefficients in µt−1. The denominator

in these coefficients is a factor of the numerator of a maximal non-zero minor of A(µt−1). Note that the rest
of the coefficients of Λi are polynomial functions of the parameters µt−1 ∪ µ[t] by Lemma 4.1. Define

µt := µt−1 ∪
rt
⋃

i=rt−1+1

µ[t],i.

Thus, we get a parametrization of the coefficients of Λrt−1+1(µt), . . . ,Λrt(µt) in terms of µt, which defines
the degree t part of the map Φt : µt 7→ (qβj ,α(µt))|βj|≤t,|α|<r. For Dt ∈ HBt

, the coefficients of its basis dual
to Bt can be parametrized by Φt for parameter values µt such that a maximal non-zero minor of A(µt−1) in
Q(µt−1) does not vanish.

Note that the number of new parameters introduced is

|µt \ µt−1| = (rt − rt−1) · |µ[t],i| = ht

(

dimkerHt(µt−1)− ht

)

which is equal to γ[t] = dimGht
(kerHt(µt−1)) = dimGht

(kerHt(Dt−1)) for Dt−1 generic in Ut−1 as claimed.
To prove that Φt parametrizes a dense subset of the projective variety H

reg
ht

, note that the image im(Φt)

of Φt is a subset of Hht
, the Zariski closure Vt of im(Φt) is an irreducible subvariety of Hht

. Furthermore,
its projection πt−1(Vt) ⊂ Hht−1 is the closure of the image of im(Φt−1) since if Dt = imΦt(µ

∗
t ) then

Dt−1 = Dt ∩C[d]t−1 = Φt−1(µ
∗
t−1). By induction hypothesis,

πt−1(Vt) = imΦt−1 = H
reg
ht−1

.

Thus, Vt is the irreducible component of Hht
which projects onto H

reg
ht−1

, that is H
reg
ht

. �

Definition 4.5. We denote by Ht(µ) a maximal square submatrix of A in (17) such that det(Ht(µt−1)) 6= 0.
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The size of Ht(µ) is the size of ν
′ in (17), that is the maximal number of independent columns in Ht(µt−1).

Given an element D = Λ1 ∧ · · · ∧ Λr ∈ Gr(C[d]r−1), in order to check that D is regular for B, it is sufficient
to check first that ∆B(D) 6= 0 and secondly that |Ht(µ)| 6= 0 for all t = 0, . . . , δ, where µ = (µβ,α) is the ratio
of Plücker coordinates of D defined by the formula (16).

5. Newton’s iterations

In this section we describe the extraction of a square, deflated system that allows for a Newton’s method
with quadratic convergence. We assume that the sole input is the equations f = (f1, . . . , fN ) ∈ C[x]N , an
approximate point ξ ∈ Cn and a tolerance ε > 0.

Using this input we first compute an approximate primal-dual pair (B, Λ) by applying the iterative
Algorithm 1. The rank and kernel vectors of the matrices Kt (see Algorithm 1) are computed numerically
within tolerance ε, using SVD. Note that here and in Section 6 we do not need to certify the SVD computation
but we are only using SVD to certify that some matrices are full rank by checking that the distance to the
variety of singular matrices is bigger than the perturbation of the matrix. Thus we need a weaker test, which
relies only on a lower bound of the smallest singular value.

The algorithm returns a basis B = {xβ1

ξ , . . . ,xβr

ξ } with exponent vectors E = {β1, . . . , βr}, as well as

approximate values for the parameters µ = {µβi,βj+ek
: |βj | < |βi| ∈ E, k = 1, . . . , n}. These parameters

will be used as a starting point for Newton’s iteration. Note that, by looking at B, we can also deduce
the multiplicity r, the maximal order δ of dual differentials, the sequences rt = |Bt|, and ht = |B[t]| for
t = 0, . . . , δ.

Let F be the deflated system with variables (x, µ) defined by the relations (8) and Equations (9), (10)
and (12) i.e.

F (x,µ)=































∑

|βs|<|βj |<|βi|

µβi,βj+ek
µβj ,βs+el

− µβi,βj+el
µβj ,βs+ek

=0 (a)

for all i = 1, . . . , r, |βs| < |βi|, k 6= l ∈ {1, . . . , n}

µβi,βj+ek
=

{

1 for βi = βj + ek

0 for βj + ek ∈ E, βi 6= βj + ek,
(b)

Λi(fj) = 0, i = 1, . . . , r, j = 1, . . . , N. (c)

Here Λ1 = 1x and Λi =
∑

|βj |<|βi|

∑n
k=1 µβi,βj+ek

∫
k

Λj ∈ C[µ][dx] denote dual elements with parametric

coefficients defined recursively. Also, if Λi =
∑

|α|≤|βi|
µβi,α

d
α
x

α! then

Λi(fj) =
∑

|α|≤|βi|

µβi,α

∂α(fj)(x)

α!

which is in C[x, µ] by Lemma 4.1. Note, however, that (a) and (b) are polynomials in C[µ], only (c) depends
on x and µ. Equations (b) define a simple substitution into some of the parameters µ. Hereafter, we explicitly
substitute them and eliminate this part (b) from the equations we consider and reducing the parameter vector
µ.

By Theorem 2.8, if B is a graded primal basis for f at the root ξ∗ then the above overdetermined system
has a simple root at a point (ξ∗, µ∗).

To extract a square subsystem defining the simple root (ξ∗, µ∗) in order to certify the convergence, we
choose a maximal set of equations whose corresponding rows in the Jacobian are linearly independent. This
is done by extracting first a maximal set of equations in (a) with linearly independent rows in the Jacobian.
For that purpose, we use the rows associated to the maximal invertible matrix Ht (Definition 4.5) for each
new basis element Λi ∈ D[t] and t = 1, . . . , r. We denote by G0 the subsystem of (a) that correspond to rows
of Ht.

We complete the system of independent equations G0 with equations from (c), using a QR decomposition
and thresholding on the transposed Jacobian matrix of G0 and (c) at the approximate root. Let us denote
by F0 the resulting square system, whose Jacobian, denoted by J0, is invertible.

For the remaining equations F1 of (c), not used to construct the square system F0, define Ω = {(i, j) :
Λi(fj) ∈ F1}. We introduce new parameters ǫi,j for (i, j) ∈ Ω and we consider the perturbed system

fi,ǫ = fi −
∑

j|(i,j)∈Ω

ǫi,j x
βj

ξ .
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The perturbed system is fǫ = f − ǫB, where ǫ is the N × r matrix with [ǫ]i,j = ǫi,j if (i, j) ∈ Ω and [ǫ]i,j = 0
otherwise. Denote by F (x, µ, ǫ) obtained from F (x, µ) by replacing Λj(fi) by Λj(fi,ǫ) for j = 1, . . . , r, i =
1, . . . , N . Then the equations used to construct the square Jacobian J0 are unchanged. The remaining
equations are of the form

Λj(fi,ǫ) = Λj(fi)− ǫi,j = 0 (i, j) ∈ Ω.

Therefore the Jacobian of the complete system F (x, µ, ǫ) is a square invertible matrix of the form

Jǫ :=

(

J0 0
J1 Id

)

where J1 is the Jacobian of the system F1 of polynomials Λj(fi) ∈ C[x, µ] with (i, j) ∈ Ω.
Since Jǫ is invertible, the square extended system F (x, µ, ǫ) has an isolated root (ξ∗, µ∗, ǫ∗) corresponding

to the isolated root (ξ∗, µ∗) of the square system F0. Furthermore, Λ∗
j (fi) = ǫ∗i,j = 0 for (i, j) ∈ Ω. Here

Λ∗
1, . . . ,Λ

∗
r ∈ C[dξ∗ ] are defined from (ξ∗, µ∗) recursively by

Λ∗
1 = 1ξ∗ and Λ∗

i =
∑

|βj|<|βi|

n
∑

k=1

µ∗
βi,βj+ek

∫
k

Λ∗
j .(19)

We have the following property:

Theorem 5.1. If the Newton iteration

(ξk+1, µk+1) = (ξk, µk)− J0(ξk, µk)
−1

F0(ξk, µk),

starting from a point (ξ0, µ0) converges when k → ∞, to a point (ξ∗, µ∗) such that B is a regular basis for
the inverse system D∗ associated to (ξ∗, µ∗) and D∗ is complete for f , then there exists a perturbed system

fi,ǫ∗ = fi −
∑

j|(i,j)∈Ω ǫ∗i,j x
βj

ξ∗ with ǫ∗i,j = Λ∗
j (fi) such that ξ∗ is a multiple root of fi,ǫ∗ with the multiplicity

structure defined by µ∗.

Proof. If the sequence (ξk, µk) converges to the fixed point (ξ∗, µ∗), then we have F0(ξ
∗, µ∗) = 0 and in

particular, G0(ξ
∗, µ∗) = 0 where G0(ξ

∗, µ∗) = 0 is the subset of equations selected from (a).
As µ∗ is regular for B, if it satisfies G0(ξ

∗, µ∗) = 0, it must satisfy all equations (a). Therefore µ∗ defines
a point D∗ = Λ∗

1 ∧ · · · ∧ Λ∗
r ∈ H

reg
B .

As (Λ∗
i ) is a basis of D∗ dual to B and fi,ǫ∗ = fi −

∑

j:(i,j)∈Ω ǫ∗i,j x
βj

ξ∗ with ǫ∗i,j = Λ∗
j (fi) for (i, j) ∈ Ω, we

have that if (i, j) ∈ Ω then Λ∗
j (fi,ǫ∗) = Λ∗

j (fi)− ǫ∗i,j = 0. Otherwise Λ∗
j (fi,ǫ∗) = Λ∗

j (fi), since it is one of the

equations selected in (c) to construct the system F0 and F0(ξ
∗, µ∗) = 0. This shows that

fǫ∗ = (fi,ǫ∗)
N
i=1 ⊂ (D∗)⊥ .

Since fǫ∗ is obtained from f by adding elements in B, the system (c), at order δ+1 for fǫ∗ and f are equivalent.
Thus D∗ is complete for f and fǫ and D∗ = (fǫ∗)

⊥ ∩C[dξ∗ ] is the inverse system at ξ∗ of the system fǫ∗ . �

6. Certification

In this section we describe how to certify that the Newton iteration defined in Section 5 quadratically
converges to a point that defines an exact root with an exact multiplicity structure of a perturbation of the
input polynomial system f . More precisely, we are given f = (f1, . . . , fN) ∈ C[x]N , B = {xβ1 , . . . ,xβr} ⊂
C[x] in increasing order of degrees and closed under division, δ := |βr|. We are also given the deflated
systems F (x, µ), its square subsystem F0(x, µ) defined in Section 5 and F1(x, µ) the remaining equations in

F (x, µ). Finally, we are given ξ0 ∈ Cn and µ0 = {µ(0)
βi,βj+ek

∈ C : i, j = 1, . . . , r, |βj| < |βi|, k = 1, . . . , n}.
Our certification will consist of a symbolic and a numeric part:

Regularity certification. We certify that B is regular (see Definition 4.3). This part of the certification
is purely symbolic and inductive on t. Suppose for some t − 1 < δ we certified that Bt−1 is regular and
computed the parameters µt−1 and the parametrization

Φt−1 : µt−1 7→
(

qβi,α(µt−1)
)

|βi|≤t−1,|α|≤t−1

(Algorithm 2). Then to prove that Bt is regular, we consider the coefficient matrix Ht of equations (13) and
(14). We substitute the parametrization Φt−1 to get the matrices Ht(µt−1). We symbolically prove that
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the rows of Ht(µt−1) (Definition 4.5) are linearly independent and span all rows of Ht(µt−1) over Q(µt−1).
If that is certified, we compute the parameters µt and the parametrization Φt : µt 7→ (qβi,α(µt))|βi|≤t,|α|≤t

as in Algorithm 2 inverting the square submatrix Ht of Ht such that the denominators of qβi,α for |βi| = t
divide det(Ht(µt−1)) 6= 0.

Singularity certification.

(C1) We certify that the Newton iteration for the square system F0 starting from (ξ0, µ0) quadratically

converges to some root (ξ∗, µ∗) of F0, such that ‖(ξ0, µ0)− (ξ∗, µ∗)‖2 ≤ β̃, using α-theory.
(C2) We certify that D∗ = span(Λ∗) is regular for B (see Definition 4.3), by checking that |Ht(µ∗)| 6= 0 for

t = 1, . . . , δ (See Definition 4.5), using the Singular Value Decomposition of Ht(µ0) and the distance

bound β̃ between µ∗ and µ0.
(C3) We certify that Λ∗ is complete for f at ξ∗ (see Definition 2.7), where Λ∗ ⊂ C[dξ∗ ] is the dual systems

defined from (ξ∗, µ∗) recursively as in (19). This is done by checking that kerKδ+1(ξ
∗, µ∗) = {0}

(See Definition 2.7), using the Singular Value Decomposition of Kδ+1(ξ0, µ0) and the distance bound

β̃ between (ξ∗, µ∗) and (ξ0, µ0).

Let us now consider for a point-multplicity structure pair (ξ0, µ0) γ̃ := supk≥2 ‖DF−1
0 (ξ0, µ0)

DkF0(ξ0,µ0)
k! ‖ 1

k−1 ,

β̃ := 2‖DF−1
0 (ξ0, µ0)F0(ξ0, µ0)‖, α̃ := β̃ γ̃ and for a matrix function A(ξ, µ), let L1(A; ξ0, µ0; b) be a bound

on its Lipschitz constant in the ball Bb(ξ0, µ0) of radius b around (ξ0, µ0) such that ‖A(ξ, µ)−A(ξ0, µ0)‖ ≤
L1(A; ξ0, µ0; b) ‖(ξ, µ)−(ξ0, µ0)‖ for (ξ, µ) ∈ Bb(ξ0, µ0). For a matrix M , let σmin(M) be its smallest singular
value. We have the following result:

Theorem 6.1. Let B = {xβ1 , . . . ,xβr} ⊂ C[x] be closed under division and suppose B is regular. Suppose
that α̃ < α̃0 := 0.26141,
L1(Kδ+1; ξ0, µ0; β̃) β̃ < σmin(Kδ+1(ξ0, µ0)) and for t = 1, . . . , δ it holds that L1(Ht;µ0; β̃) β̃ < σmin(Ht(µ0)).
Then the Newton iteration on the square system F0 starting from (ξ0, µ0) converges quadratically to a point
(ξ∗, µ∗) corresponding to a multiple point ξ∗ with multiplicity structure µ∗ of the perturbed system fǫ∗ =

f − ǫ∗Bξ∗ such that ‖ǫ∗‖ ≤ ‖F1(ξ0, µ0)‖+ L1(F1; ξ0, µ0; β̃) β̃, where Bξ∗ = {xβ1

ξ∗ , . . . ,x
βr

ξ∗}.

Proof. By the α-theorem [3][Chap. 8, Thm. 1], the Newton iteration on F0 starting from (ξ0, µ0) converges
quadratically to a point (ξ∗, µ∗) such that

‖(ξ∗, µ∗)− (ξ0, µ0)‖ < β̃ .

We deduce that

‖Kδ+1(ξ
∗, µ∗)−Kδ+1(ξ0, µ0)‖ ≤ L1(Kδ+1; ξ0, µ0; β̃) ‖(ξ

∗, µ∗)− (ξ0, µ0)‖
< σmin(Kδ+1(ξ0, µ0)).

ThereforeKδ+1(ξ
∗, µ∗) is within a ball aroundKδ+1(ξ0, µ0) of matrices of maximal rank, since σmin(Kδ+1(ξ0, µ0))

is the distance between Kδ+1(ξ0, µ0) and the set of matrices not of maximal rank.
Thus kerKδ+1(ξ

∗, µ∗) = {0}. A similar argument shows that |Ht(µ∗)| 6= 0 for t = 1, . . . , δ. By Theorem 5.1,
(ξ∗, µ∗) defines a multiple root ξ∗ with multiplicity structure µ∗ for the perturbed system fǫ∗ = f − ǫ∗Bξ∗

with

‖ǫ∗‖ = ‖F1(ξ
∗
, µ

∗)‖ ≤ ‖F1(ξ0, µ0)‖ + ‖F1(ξ
∗
, µ

∗)− F1(ξ
∗
, µ

∗)‖

≤ ‖F1(ξ0, µ0)‖+ L1(F1; ξ0, µ0; β̃) ‖(ξ
∗
, µ

∗)− (ξ∗0 , µ
∗
0)‖

≤ ‖F1(ξ0, µ0)‖+ L1(F1; ξ0, µ0; β̃) β̃. �

7. Experimentation

In this section we work out some examples with (approximate) singularities. The experiments are carried
out using Maple, and our code is publicly available at https://github.com/filiatra/polyonimo.

Example 7.1. We consider the equations

f1 = x3
1 + x2

2 + x2
3 − 1, f2 = x3

2 + x2
1 + x2

3 − 1, f3 = x3
3 + x2

1 + x2
2 − 1,

the approximate root ξ0 = (0.002, 1.003, 0.004) and threshold ε = 0.01. In the following we use 32-digit
arithmetic for all computations.



16 ANGELOS MANTZAFLARIS, BERNARD MOURRAIN AND AGNES SZANTO

We shall first compute a primal basis using Algorithm 1. In the first iteration we compute the 3×3 matrix
K1 = K1(ξ0). The elements in the kernel of this matrix consists of elements of the form Λ = ν11d1 + ν21d2 +
ν31d3. The singular values of K1(ξ0) are (4.1421, 0.0064, 0.0012), which implies a two-dimensional kernel,

since two of them are below threshold ε. The (normalized) elements in the kernel are Λ̃2 = d1 − 0.00117d2
and Λ̃3 = d3 − 0.00235d2. Note that d2 was not chosen as a leading term. This is due to pivoting used in
the numeric process, in order to avoid leading terms with coefficients below the tolerance ε. The resulting
primal basis B1 = {1, x1, x3} turns out to be closed under derivation.

Similarly, in degree 2 we compute one element Λ̃4 = d1d3 − 0.00002d21 − 0.00235d1d2 + 5.5 · 10−6d22 −
0.00117 · d2d3 − 0.00002d23 + 5.9 · 10−6d2.

In the next step, we have kerK3 = {0}, since the minimum singular value is σmin = 0.21549, therefore
we stop the process, since the computed dual is approximately complete (cf. Definition 2.7). We derive that
the approximate multiple point has multiplicity r = 4 and one primal basis is B = {1, x1, x3, x1x3}.

The parametric form of a basis ofD1 is kerK1 = 〈Λ2 = d1+µ2,1d2,Λ3 = d3+µ3,1d2〉. Here we incorporated
(10), thus fixing some of the parameters according to primal monomials x1 and x3.

The parametric form of the matrix K2(ξ,µ) of the integration method at degree 2 is

















ν1
1 ν2

1 ν3
1 ν1

2 ν2
2 ν3

2 ν1
3 ν2

3 ν3
3

(9) 0 0 0 0 0 −µ2,1 0 1 −µ3,1

(9) 0 0 0 0 0 −1 1 0 0
(9) 0 0 0 µ2,1 -1 0 µ3,1 0 0

Λ(f1) 3ξ21 2ξ2 2ξ3 3ξ1 µ2,1 0 3ξ1 µ3,1 1
Λ(f2) 2ξ1 3ξ22 2ξ3 1 3µ2,1 ξ2 0 0 3µ3,1 ξ2 1
Λ(f3) 2ξ1 2ξ2 3ξ23 1 µ2,1 0 0 µ3,1 3ξ3

















,

where the columns correspond to the parameters in the expansion (5):

Λ4 = ν1
1d1 + ν2

1d2 + ν3
1d3 + ν1

2d
2
1 + ν2

2(d1d2 + µ2,1 d2
2)

+ν3
2 (d1d3 + µ2,1 d3d2) + ν1

3 (µ3,1 d1d2) + ν2
3(µ3,1 d2

2) + ν3
3(d

2
3 + µ3,1 d2d3)

Setting Λ4(x1x3) = 1 and Λ4(x1) = Λ4(x3) = Λ4(1) = 0, we obtain ν11 = ν31 = 0 and ν32 = 1. The dual
element of order 2 has the parametric form

Λ4 = d1d3 + µ4,1 d2 + µ4,2 d
2
1 + µ4,3 d1d2 + µ4,6 d

2
3+(20)

+ (µ2,1 + µ3,1µ4,6 )d2d3 + (µ2,1 µ4,4 + µ3,1µ4,5 )d
2
2

(ν21 = µ4,1, ν
1
2 = µ4,2, ν

2
2 = µ4,3, ν

1
3 = µ4,4, ν

2
3 = µ4,5, ν

3
3 = µ4,6). Overall 8 parameters are used in the

representation of D2.
The highlighted entries of K2(ξ,µ) form the non-singular matrix H2 in Definition 4.5, therefore D2 is

regular for B (cf. Definition 4.3). We obtain the polynomial parameterization µ4,3 = µ2,1 µ4,2 +µ3,1 , µ4,4 =
1, µ4,5 = µ2,1 + µ3,1µ4,6 with the free parameters µ̄ = (µ2,1, µ3,1, µ4,1, µ4,2, µ4,6). There is no denominator
since det H2 = 1.

We now setup the numerical scheme. The overdetermined and deflated system F (x,µ) consists of 15
equations:
µ2,1µ4,2 + µ3,1 − µ4,3 ,−µ4,4 + 1 ,−µ2,1µ4,4 − µ3,1µ4,6 + µ4,5,
Λ1(f1)=f1,Λ1(f2)=f2,Λ1(f3)=f3,Λ2(f1)=2µ2,1x2 + 3x2

1 ,
Λ2(f2)=3µ2,1x

2
2 + 2x1,Λ2(f3)=2µ2,1x2 + 2x1,Λ3(f1)=2µ3,1x2 + 2x3,

Λ3(f2)=3µ3,1x
2
2 + 2x3 ,Λ3(f3)=2µ3,1x2 + 3x2

3 ,
Λ4(f1)=µ2,1µ4,3+µ3,1µ4,5+2µ4,1x2+3µ4,2x1+µ4,6 ,
Λ4(f2)=3µ2,1µ4,3x2+3µ3,1µ4,5x2+3µ4,1x

2
2+µ4,2+µ4,6 ,

Λ4(f3)=µ2,1µ4,3+µ3,1µ4,5+2µ4,1x2+3µ4,6x3+µ4,2

We now consider JF (ξ0,µ0). This Jacobian is of full rank, and we can obtain a maximal minor by
removing Λ1(f2),Λ1(f3),Λ2(f3) and Λ3(f3) from F . We obtain the square 11× 11 system denoted by F0.

The initial point of the Newton iterations is ξ0 = (0.002, 1.003, 0.004) and the approximation of the
variables µi,j provided by the numerical integration method: µ0 = (−0.00117,−0.00235,5.9·10−6,−0.00002,−
0.00235,1.0,− 0.00117,− 0.00002) .

We now use Theorem 6.1 to certify the convergence to a singular system. We can compute for (ξ0,µ0)

the value β̃ ≈ 0.01302. Moreover, σmin(Kδ+1(ξ0,µ0)) = 0.21549 and the minimum singular value of the

highlighted submatrix of K2(ξ0,µ0) is equal to one. Therefore β̃ is at least one order of magnitude less than
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both of them, which is sufficient, since the involved Lipschitz and γ̃ constants are of the order of 1 for the input
polynomials. In the first iteration we obtain β̃ ≈ 0.00011 which clearly indicates that we are in the region of
convergence. Indeed, the successive residuals for 4 iterations are 0.00603, 4.0·10−5, 2.07·10−9, 8.6·10−18, 3.55·
10−35. Clearly, the residual shrinks with a quadratic rate1. We obtain ξ4 = (1.8 · 10−37, 1.0, 2.8 · 10−36) and
the overdetermined system is satisfied by this point: ‖F (ξ4,µ4)‖∞ = 8 · 10−35; the resulting dual structure
is D∗

2 = {1, d1, d3, d1d3}.
Example 7.2. We demonstrate how our method handles inaccuracies in the input, and recovers a nearby
system with a true multiple point. Let

f1 = x1
2 + x1 − x2 + 0.003 , f2 = x2

2 + 1.004x1 − x2.

There is a cluster of three roots around ξ0 = (0.001,−0.002). Our goal is to squeeze the cluster down to a
three-fold real root. We use 32 digits for the computation. Starting with ξ0, and a tolerance equal to 10−2

Algorithm 1 produces an approximate dual 1, d1 + 1.00099651d2, d
2
1 + 1.00099651d1d2 + 1.00266222d22 +

0.99933134d2 and identifies the primal basis B = {1, x1, x
2
1} using pivoting on the integration matrix. The

sole stability condition reads µ1,1 − µ2,2 = 0, and Λ1 = 1, Λ2 = d1 + µ1,1d2, Λ3 = d21 + µ1,1d1d2 + µ2,1d2 +
µ2,2µ1,1d

2
2.

The nearby system that we shall obtain is deduced by the residue in Newton’s method. In particular,
starting from ξ0, we consider the square system given by removing the equations Λ1(f1) = 0 and Λ2(f2) = 0.
The rank of the corresponding Jacobian matrix remains maximal, therefore such a choice is valid. Newton’s
iterations converge quadratically to the point (ξ5,µ5) = (1.1 · 10−33, 1.2 · 10−33, 1, 1, 1). The full residual is
now

F (ξ5,µ5) = (0, 0.003,−10−32, 10−32, 0.004, 0, 0) .

This yields a perturbation f̃1 ≈ f1 − 0.003 and f̃2 ≈ f2 − 0.004(x1 − ξ∗1) to obtain a system with an
exact multiple root at the origin (cf. Th. 6.1). Of course, this choice of the square sub-system is not
unique. By selecting to remove equations Λ1(f1) = 0 and Λ1(f2) = 0 instead, we obtain (ξ5,µ5) =
(0.00066578,−0.00133245, 1.001, 1.0, 1.001) and the residual F (ξ5,µ5) = (0, 0.005, 0.002, 0, 0, 0, 0), so that
the nearby system

f∗
1 ≈ x1

2 + x1 − x2 + 0.008, f∗
2 ≈ x2

2 + 1.004x1 − x2 + 0.002

has a singularity at the limit point ξ∗ ≈ (0.00066578,−0.00133245) described locally by the coefficients
µ∗ ≈ (1.001, 1.0, 1.001).

Finally, consider the two square sub-systems as above, after changing f1, f2 to define an exact three-fold
root at the origin (i.e. f1 = x1

2 + x1 − x2, f2 = x2
2 + x1 − x2). Newton’s iteration with initial point

ξ0 on either deflated system converges quadratically to (ξ,µ) = (0,1). This is a general property of the
method: exact multiple roots and their structure are recovered by this process if ξ0 is a sufficiently good
initial approximation (cf. Section 5). We plan to develop this aspect further in the future.

Example 7.3. We show some execution details on a set of benchmark examples in taken from [7], see
also [26]. For this benchmark, we are given systems and points with multiplicities. We perturb the given
points with a numerical perturbation of order 10−2. We use double precision arithmetic and setup Newton’s
iteration; with less than 10 iterations, the root was approximated within the chosen accuracy.

In Table 1, “IM” is the maximal size of the (numeric) integration matrix that is computed to obtain
the multiplicity, “#µ” is the number of new parameters that are needed for certified deflation, “SC” is the
number of stability constraints that were computed and “OS” stands for the size of the overdetermined
system (equations × variables). This is the size of the Jacobian matrix that must be computed and inverted
in each Newton’s iteration. We can observe that the number of parameters required can grow significantly.
Moreover, these parameters induce non-trivial denominators in the rational functions qβj ,α(µ) of Prop. 4.4.
for the instances cmbs1, cmbs2 and KSS.

Acknowledgments. This research was partly supported by the H2020-MSCA-ITN projects GRAPES (GA
860843) and POEMA (GA 813211) and the NSF grant CCF-1813340.

1The convergence is seen up to machine error. If we increase the accuracy to 150 digits the rate remains quadratic for 7
iterations: . . . 3.55 · 10−35, 6.78 · 10−70, 4.15 · 10−140, 5.1 · 10−281 .
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System r/n IM SC #µ OS
cmbs1 11/3 27× 23 75 74 108× 77
cmbs2 8/3 21× 17 21 33 45× 36
mth191 4/3 10× 9 3 9 15× 12
decker2 4/2 5× 5 4 8 12× 10
Ojika2 2/3 6× 5 0 2 6× 5
Ojika3 4/3 12× 9 15 14 27× 17
KSS 16/5 155× 65 510 362 590× 367
Capr. 4/4 22× 13 6 15 22× 19
Cyclic-9 4/9 104× 33 36 40 72× 49

Table 1. Size of required matrices and parameters for deflation.
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