
HAL Id: hal-02483219
https://inria.hal.science/hal-02483219

Submitted on 18 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of chemical batch reactors using
temperature control

Jérémy Rouot, Bernard Bonnard

To cite this version:
Jérémy Rouot, Bernard Bonnard. Optimization of chemical batch reactors using temperature control.
9th International Congress on Industrial and Applied Mathematics, Jul 2019, Valencia, Spain. �hal-
02483219�

https://inria.hal.science/hal-02483219
https://hal.archives-ouvertes.fr


Optimization of chemical batch reactors using
temperature control

Jérémy Rouot

EPF, France

joint work with B. Bonnard (INRIA & UBFC)

1 / 31



Chemical Networks with mass action kinetics

Graph Model :
Species {X1, . . . , Xm}.
Notations : R is the set of reactions of the form :

m∑
i=1

αi Xi −→
m∑

i=1
βi Xi

αi ,βi are stochiometric coefficients.
Feinberg-Horn-Jackson graph

Vertices : y = (α1, . . . ,αm)ᵀ, y′ = (β1, . . . ,βm)ᵀ

Orientation : y → y′

A B C (1)
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Rate dynamics y → y′ (Mass kinetics)

K (y → y′) = k(T )cy

k(T ) = A exp(− E
RT ) : Arrhenius law

E , A parameters, T temperature and R is the gas constant

c = (c1, . . . ,cm)ᵀ

ci : concentrations of the species Xi with

cy = c1
α1 . . .cαm

m

⇒ K (y → y′) depends only on y.
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Dynamics for the network

ċ(t) = F (c(t),T ) = ∑
y→y′∈R

K (y → y′) (y′−y)

The dynamics is defined by the graph.
More explicit representation of the dynamics.

Stochiometric subspace

S === span
{

y′−−−y, y →→→ y′ ∈∈∈R
}

Positive class (strict if > 0)

(c(0)+S)∩Rm
≥0

Lemma

The class (c(0)+S)∩Rm
>0 is invariant for the dynamics.
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Notations

Complex matrix : Y = (y1, . . . , yn) (n : number of complexes).

Incidence connectivity matrix : A === (ai j )i j
with for instance a21 = k1 indicating a reaction with constant k1 from the
first node of the graph to the second.

Laplacian matrix :

Ã = A−diag

(
n∑

i=1
ai 1, . . . , . . . ,

n∑
i=1

ai n

)

One has

ċ(t) = f (c(t),T ) =Y Ã cY

where cY = (c y1 , . . . ,c yn )ᵀ.
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Zero deficiency theorem

Definition (Deficiency)

Feinberg and Horn-Jackson : articles in Archive Rational Mechanics
Graph concept : deficiency : δ=== n −−− l −−− s where

n : number of vertices

l : number of connecting components

s : dimension of the stochiometric subspace

Definition

The network is weakly reversible if ∀ vertices (i , j ) such that ∃ oriented
path joining i to j , there exists an oriented path joining j to i .
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Assumption δ=== 0 (Zero deficiency assumption)

Theorem
1 If the network is not weakly reversible then for arbitrary kinetics, the

differential equation cannot have a positive equilibrium nor a positive
periodic trajectory.

2 If the network is weakly reversible, there exists within each strictly
positive compatibility class precisely one equilibrium c∗, this equilibrium
is locally asymptotically stable with (pseudo-Helmholtz) Lyapunov
function V (c,c∗) =∑

i
[
ci (ln(ci )− ln(c∗i )−1)+ c∗i

]
.

Moreover there is non trivial periodic orbit.

Application : Test bed cases :

case 1 : A B Ck1 k2 δ= 3−1−2 = 0 : not weakly reversible
case 2 : (McKeithan network)

A B Ck1 k2

k3

k4

δ= 3−1−2 = 0 : one single equilibirum
globally asymptotically stable
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Equilibrium for the McKeithan network

FIGURE – Phase portrait for the McKeithan model. (left) Focus ; (right) Node.
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Geometric Optimal Control
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Optimal Control Problem

dc

dt
= f (c,T ),

dT

dt
= u, u ∈ [u−,u+]

u(·) tracked the derivative of the temperature (related to the
Goh Transformation).

Single input Cω-control system :{
q̇ = F (q)+u G(q), |u| ≤ 1,
q = (c,T ) ∈Rn
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Formulation :
max c1(t f ) t f : time batch duration

Formulated as {
min t f , |u| ≤ 1
c1(t f ) = d is a desired quantity

N : terminal manifold of codimension 1.

N = {c1 = d}

c1

c1(0) < d

(T,c2, . . . ,cm)

n n
d
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Necessary optimality conditions Pontryagin Maximum
Principle (1956)

Statement : {
q̇ = F (q)+u G(q), |u| ≤ 1,
min t f , q(t f ) ∈ N

H(q, p,u) = p · (F (q)+u G(q)), p ∈Rn \ {0} : adjoint vector

H : pseudo-Hamiltonian and the maximized Hamiltonian is

M(q, p) = max
|u|≤1

H(q, p,u), q, p are fixed
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Theorem

Assume (q∗(·), p∗(·)) is a time minimal solution on [0, t∗f ] then there exists
p∗(·) such that a.e. on [0, t∗f ] :

q̇∗(·) = ∂H

∂p
(q∗(t ), p∗(t ),u∗(t )), ṗ∗(·) =−∂H

∂q
(q∗(t ), p∗(t ),u∗(t )) (2)

the maximization condition is satisfied

H(q∗(t ), p∗(t ),u∗(t )) = M(q∗(t ), p∗(t )).

Moreover

t 7→ M(q∗(t ), p∗(t )) is constant and ≥ 0 and at the final time one has the
transversality condition :

p∗(t f ) ⊥ Tq∗(t f )N (3)
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Extremals are solutions of (2). BC-extremal : transversality condition (4)
satisfied.

Maximization condition

regular :
u(t ) = signp(t ) ·G(q(t)) a.e.

Finite number of switches : Bang-Bang

singular :
p(t ) ·G(q(t)) = 0 ∀t

Exceptional extremals : M = 0.
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Moreover

t 7→ M(q∗(t ), p∗(t )) is constant and ≥≥≥ 0.

Transversality condition :

p∗(t f ) ⊥ Tq∗(t f )N (4)

Extremals are solutions of (2). BC-extremal : transversality condition (4)
satisfied.

Maximization condition

regular :
u(t ) = signp(t ) ·G(q(t)) a.e.

Finite number of switches : Bang-Bang
singular :

p(t ) ·G(q(t)) = 0 ∀t

Exceptional extremals : M = 0.
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Computations of singular extremals and properties

Notation : X ,Y : two vector fields on Rn

Lie bracket :

[X ,Y ](q) = ∂X

∂q
Y (q)− ∂Y

∂q
X (q)

z = (q, p) HX (z) = p ·X (q)
Poisson bracket :

{HX , HY }(z) = p · [X ,Y ](q)

Computations HG (z) = p ·G(q) = 0
Differentiating twice w.r.t. time gives the two equations

d

dt
HG (z) = dHG · ż = {HG , HF +u HG } = {HG,HF} = 0

{{HG,HF},HF}(z)+u {{HG,HF},HG}(z) = 0

Then if {{HG , HF }, HG }(z) 6= 0 then we compute û and plug it in H to obtain the
true Hamiltonian.
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Generalized Legendre-Clebsch condition

{{HG , HF }, HF }(z) ≥ 0

⇒ necessary optimality condition (High Order Maximum Principle, Krener).

Strict Legendre-Clebsch condition

{{HG , HF }, HF }(z) > 0

Classification of singular extremals
M = HF : constant value

M = 0 : Exceptional case

M > 0 : {{HG , HF }, HG }(z) > 0 : Hyperbolic case (fast)

M > 0 : {{HG , HF }, HG }(z) < 0 : Elliptic case (slow)
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Classification of regular extremals (Ekeland - IHES, Kupka - TAMS)
Denote :

σ+ : bang arc with u =+1

σ− : bang arc with u =−1

σs : singular arc u = us ∈]−1,1[

σ1σ2 is the arc σ1 followed by σ2.

Switching surface :

Σ : {p ·G(q) = 0}

Φ(t ) = p(t ) ·G(q(t)) is the switching function.
Φ̇(t ) = p(t ) · [G ,F ](q(t))
Φ̈(t ) = p(t ) · ([[G ,F ],F ](q(t))+u(t ) [[G ,F ],G](q(t))

)
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Ordinary Switching time : t ∈]0, t f [ such that Φ(t ) = 0 and Φ̇(t ) 6= 0

Lemma

Near z(t ) every extremal solution projects onto σ+σ− if Φ̇(t ) < 0 and σ−σ+ if
Φ̇(t ) > 0

Fold case : If Φ(t ) = Φ̇(t ) = 0 then z(t ) ∈Σ′

Φ̈ε(z(t )) = p(t ) · ([[G ,F ],F ](q(t))+ε [[G ,F ],G](q(t))
)

, ε=±1
Assumption : Σ′ : surface of codimension two, Φ̈ε(z(t )) 6= 0 for ε=±1.
z(t ) : fold point

Case 1 : parabolic case Φ̈+(t )Φ̈−(t ) > 0

Case 2 : hyperbolic case Φ̈+(t ) > 0 and Φ̈−(t ) < 0

Case 3 : elliptic case Φ̈+(t ) < 0 and Φ̈−(t ) > 0

us is the singular control defined by

p(t ) · ([[G ,F ],F ](q(t))+us(t ) [[G ,F ],G](q(t))
)= 0
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σ+
Σ

σ−

Σσ+
σ−

σs Σ

Fold case

In the parabolic case |u0| > 1 and the singular arc is not admissible.

Theorem
Kupka TAMS In the neighborhood of z(t ) every extremals projects onto :

Parabolic case : σ+σ−σ+ or σ−σ+σ−
Hyperbolic case : σ±σsσ±
Elliptic case : every extremal is of the form σ+σ−σ+σ− . . . (Bang-Bang)
but the number of switches is not uniformly bounded.
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Application to Chemical Networks
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Time minimal synthesis for chemical systems
min t f |u| ≤ 1
q̇ = F (q)+u G(q)
c1(t f ) ∈ N = {c1 = d}

Methods : Two steps :
1 Calculation of the time minimal syntheses near the terminal manifold
2 Bounds on the number of switches

N
q0

n

Step 1: Take q0 ∈ N, z0 = (q0,n(q0)) where n(q0) is the normal vector of N at
q0.
Find, in a small neighborhood U of q0, the time minimal closed loop control
u∗(q) to reach N starting from q in minimal time.
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Computations : q̇ = F (q)+u G(q), q(t f ) ∈ N
Synthesis : u∗(q) means

determine the switching locus
Ex. :

N

σ+
σ−

W : switching locus

determine the splitting locus or the cut locus C where two distinct
optimal trajectories occur.
Ex. :

N

C :cut locus
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Tools : Singularity theory N = { f −1(0)}

expand at q0 with Taylor series : jet spaces.

compute : Normal form to estimate W,C near q0. The tools are simple but
the classification is complicated.

Ex. : Two reactions only. (C ,T ) ∈R3 q̇ = F +u G and N = f −1(0).
Generic case z0 = (q0,n(q0)).
G is tangent to N : Then p ·G = 0 so p is normal to N.
Using classification of extremals at a point such that p ·G(q) = 0,
p · [G ,F ](q) 6= 0 :

N

σ+

q0

n

or

N

σ−

q0

n

depending on the sign of p · [G ,F ](q0).
... but there are more complicated situations
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Define :
S the singular locus : {q ∈ N; n · [G ,F ](q) = 0}
E the exceptional locus : {q ∈ N; n ·F (q) = 0}
For S : from the classification near a fold point one has :

Hyperbolic case
Elliptic case
Parabolic case

To make the analysis we construct a semi-normal form : q = (x, y, z) near 0
ẋ = 1+a(x) z2 +2b(x)y z + c(x)y2 + . . .
ẏ = d(x) y +e(0)+ . . .
ż = (u − û(x))+ f (x)y + g (0)z + . . .

with
N is identified to x = 0
the singular arc is identified to σs : t → (t ,0,0) with singular control û.
a(0) < 0 hyperbolic if |û| < 1.
a(0) > 0 : elliptic if |û| < 1.
parabolic if |û| > 1.
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Synthesis : There exists a C 0-foliation by planes such that in each plane the
synthesis is :

Case : Hyperbolic.

N ∩ y =constant
σs

σ+σ+

σ− σ−

Note that the synthesis is σ+σsσ− hence the temperature is not
constant.

Case : Parabolic. For instance, a synthesis is

N ∩ y =constantσ+

σ−Switching locus
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The McKeithan network

T +M B Ck1 k2

k3

k4

Stratification of the terminal manifold :
E S

D ·D ′′ < 0

D ·D ′′ > 0usat

usat

equilibrium

n ·F > 0

usat

y

v

FIGURE – Stratification of the surface x = d for the McKeithan reaction. Dotted line :
elliptic, red line : hyperbolic.
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Bridge phenomenon

Local (planar) simplified model (inspired from the saturation problem in
Magnetic Resonance Imaging) :

min
u(·)

t f q̇(t ) = F (q(t ))+u G(q(t )), t ∈ [0, t f ]

where

q = (x, y), F = (1−x2 y)
∂

∂y
, G =−(y −1)

∂

∂x
+x

∂

∂y
.

Singular lines L : det(G , [G ,F ])(q) = 0

fast if D(q) ·D ′′(q) > 0

slow if D(q) ·D ′′(q) < 0

where D(q) = det(G(q), [G ,F ](q), [[G ,F ] ,G] (q))
and D ′(q) = det(G(q), [G ,F ](q), [[G ,F ] ,F ] (q))
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Singular sets

D ·D ′′<0

D ·D ′′>0
y0

L

L ′

y

x

det(G
, [G

,F
])=

0

The Singular control along L is

us(q) =−D ′(q)

D(q)

and is not bounded.

29 / 31



Trajectories : bridge

Bridge connecting two switching points of the singular set.
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Conclusion

General techniques to handle complicated networks :
Geometric approach : Find coordinates to analyze the syntheses
→ applicable to general networks

Details :
T. Bakir, B. Bonnard, J. Rouot Geometric Optimal Control Techniques to
Optimize the Production of Chemical Reactors using Temperature Control
(submitted 2019)
B. Bonnard, G. Launay, M. Pelletier,
Classification générique de synthèses temps minimales avec cible de
codimension un et applications,
Annales de l’I.H.P. Analyse non linéaire 14 no.1 (1997) 55–102.

Even a simple network A → B →C can give complex optimal solution : work in
progress on the McKeithan network.
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