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e Ensemble of spin particles: mathematical model in Nuclear Magnetic Resonance

e (Multi)Saturation problem, constrast problem
— Optimal control problem (Mayer formalism)

e Geometric optimal control: Pontryagin Maximum Principle, second order opti-
mality conditions

e Numerical methods: Direct methods (Bocop software), Indirect methods (Ham-
path Software), Global methods based on SOS-moment approach (Globtipoly)



M;: magnetization vector of the spin particle i € {1...N}.
M;(t) = k M;(t) x B(t) + R(M;)
e dissipative term:
R(M;) = ( My, /T3, My, /T3, (M, — M)/ T} )

. M- equilibrium magnetizarion.
0- €9 g

. T!,T}: relaxation parameters,
signature of the species.
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QB(Z)ZBQ+Bl(t), -y
. By: strong static field.
. B = (By,By,0): control RF-field.
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1
M;(t) =S()qi(t), qi= (xi,yi,z), S(t)=exp(@tQ;), Q,=

S = O

0
0

o O O

uy = ucos(wt) —vsin(wt), u; = usin(mt) + vcos(wt)

d Xi —l/Tzi —Aa),-. 175) X 0
a i = Aoy —1/T; —w | |yi]+| O
Z —uy  w  —1/T{) \z My/T{

with Aw; the resonance offset.

Affine control system

q=Fo(q) +umFi(q) +ukq), q=I(q1,---.qn)
e saturation problem for N spins: minzy, g;(0) = (0,0,M}), qi(t;) =0, i=1,...N.

e contrast problem for 2 spins: min —|ga2(7)|?, :(0) = (0,0,M}), i = 1,2, q1(tf) =
0.

— Mayer problem



e system with k controls, state g € R”

m

q=Folq)+ Y wF(q), ueUCR", g(0)=qo
i=1

e final boundary condition: g(g(tf)) =0

e cost to minimize: min,cq c(q(tf)), % = admissible controls.

(¢*,u”) optimal = d p* € R”

JoH oH £

q* :%(CI phut), pr= —8—q(q 05 u’),  H(q,p,u) = (p,Folq)+ Y uiFi(q)).

i=1
maximization condition:

H(q",p*,u") = magH(q*,p*,u) — constant.
ue

transversality condition:

. dc, , L dgi .
pp) = pog (a'(t9) + L 0ig (a"(t), P00, 0=(01,....0) R’
i=1
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Definition 1. Extremal: solution (q,p,u) of the Hamiltonian system of the PMP.

Define the input state mapping for (7,qo) fixed:
ET,q() UEU (I(Ta QO7M)

Definition 2. u is singular on [0,T] if the Fréchet derivative of E is not of full rank

when evaluated at u and the corresponding trajectory q(.,qo,u) is called singular on
0,T].



reduction to the case: u; =0, u; = u,
My=1, T =mt.
['=1/mT;, y=1/mTy with 2T > y — Bloch ball = {q, |¢| < 1} invariant.

q=F(q)+uG(q), q=z), [u <1

Definition 3. e Regular extremal (bang): u=signHs, Hg= (p,G(q)),
e Singular extremal: Hg(q,p) =0...

Hg(q,p) = 0= {Hg,Hr}(q,p) =0,
— {{Hg,Hr},Hr}(q,p) +us{{Hs,Hr},Hs}(q,p) =0,

— us(q, p) is defined for (¢,p) € X, : Hs = {Hg,Hr} =0\ {{Hg,Hr },Hs} = 0.

Singular arcs are contained in the set {g, det(G(q),[F,G](q)) =0} with an expresion

of us(q).
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TIME MINIMAL SYNTHESIS FOR 1 SPIN (BONNARD ET AL.) 2012
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Time minimal solution (left) compared with inversion sequence (right).
(left): ¢ = Toin, (Timin known) — 8,876, &)
(right): Time minimal solutions: Bang-Singular: 6, 6}



MULTISATURATION PROBLEM OF TWO DIFFERENT SPECIES

N =2 spins, (q1,(I'1, 1)), (92,2, 1))
Optimal control problem: |u| <1.

® q(tr) =(0,0), ¢ = (q1,92),

e Mayer cost: c¢(q(ty)),

e Dynamic: ¢; = Fi(qi) +u1 Fi(q:) + u2 Fi(g:), i=1,2 where
F(; — _Fixi axi - Fiyi ayi + % (1 _Zi) aZi)
Fll = —7Z; 8yi +yi 8Z,'> le = Z; axl. — X; 8Zl..

Maximization condition of the PMP. ifw=(q,p)¢X={w, H =H,=0}:

uj=H;/\/H}+H}, Hj=(p,F}), j=1.2

Singular extremals:  u singular = (¢, p,u) is an extremal satisfying

JoH JH OH
q:a—, p:—a—, WZO where H = Hy+u Hy +ux H>.
pP q 10



STRATIFICATION OF THE SURFACE X = {w = (q,p), H = H, = 0}.

X=X UX,UX;
olfw=(q,p) €L, =X\ {H,,H,} =0, singular control:

({Ha,Ho}(w),{Ho,H1}(w))
{Hy,Hy }(w)

... but it's not an admissible control |ul| > 1.

e Goh condition: {H|,H,} =0.
If weXn {Hl,Hz} =0, then

us(w) =

{Ho,H} = {Hy,Hy} =0

We get 3 relations that we differentiate w.r.t. the time and the singular control
u, satisfies
A(w)+us;B(w) =0

us is defined provided w € Xy : Hy =Hy={H{,Hy} =0\ detB=0.
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With
t A ({{H07H1}7H0}) B— ({{H07H1}7H1} {{Ho,H:},H>}
- \{{Ho,H>2},Ho} )"~ \{{Ho,Ha},H} {{Ho,H>},H>}

Remark 4. It is possible to write u; function of g only.

)
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Y3:Hy=H,={H,H;} ={Ho,H} = {Ho,H,} =det(B) =0

We can find singular extremals in 3.

® VoX| — X2V divides det B,

e x; = x = 0 is invariant by the singular flow imposing u; =0
—> detB =0 is forced to be invariant,

o {Hi,Hy}(w) = (py, X1 — px;y1) + (Py,X2 — pxyy2) is first integral (symmetry of rev-
olution).

Proposition 5. The singular extremals of the single-input case with u, =0 are
extremals of the bi-input case with the additional condition: x| = py, = x = px, = 0.

It amounts to study the single input system
q=F(q)+uFi(q), q=»z)
with singular control

ug(w) = _{{Ho,H1},Ho}(w)
S {{Ho,H1},Hi}(w)
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APPLICATION: MULTISATURATION OF THE SAME SPECIES WITH

B{-INHOMOGENEITY

q = (q1,92), same relaxations parameters (I",7y) for ¢; and ¢s.

pixels with different B

)
min f¢ V/
st. ¢1=Fo(q1) +ukFi(q), . |
42 = Fo(q2) +u(1—€) Fi(qa), |
q1(ty) = q2(ty) = 0,
Q(O) = ((031)7(071))' .

Additionnal constraint: H =0 (77 free).
Singular control in Hy=H; = {H;,Hp} = detB = 0:

_D'(q)
D(q)

D:dCt(F(),Fl,[Fl,F()],[[Fl,F()],FlD,D,:det(F(),Fl,[Fl,F()],[[F],F()],F()]).
— analysis of the flow of Fy—D'/DF i.e. of

X(q) = D(q) Fo(q) —D'(q) Fi(q)

us(q) =

14



Non trivial algebraic problem
(Grobner basis).

Theorem 6. For € # 1, the equilibirum points of X are all contained in {D(q) =
0} N{D'(q) = 0}.

Proposition 7. {D=0}n{D’' =0} is an algebraic variety of dimension 2 whose com-
ponents are located in the hyperplane z; =z, and in the hypersurface (¢ —1)z1y, +
22y1 = 0.

Algebraic analysis of these components = computations of equilibirum points.

Further analysis: behaviours of the solutions of X near these equilibrium points using
linearized methods.
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