M. Clerc, L. Bougrain, and F. Lotte, Brain-Computer Interfaces, vol.1, 2016.

J. R. Millán, R. Rupp, G. Müller-putz, R. Murray-smith, C. Giugliemma et al., Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges, 2010.

T. O. Zander and C. Kothe, Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general, J Neur Eng, vol.8, 2011.

C. Mühl, C. Jeunet, and F. Lotte, EEG-based workload estimation across affective contexts, Frontiers in Neuroscience, vol.8, pp.1-15, 2014.

C. Muhl, B. Allison, A. Nijholt, and G. Chanel, A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges. Brain-Computer Interfaces, 2015.

J. Frey, M. Daniel, M. Hachet, J. Castet, and F. Lotte, Framework for electroencephalography-based evaluation of user experience, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01251014

E. Peck, B. F. Yuksel, A. Ottley, R. Jacob, and R. Chang, Using fNIRS brain sensing to evaluate information visualization interfaces, 2013.

T. Gateau, G. Durantin, F. Lancelot, and F. Dehais, Real-time state estimation in a flight simulator using {fNIRS}, PloS one, vol.10, issue.3, 2015.

S. Fairclough, BCI and physiological computing for computer games: Differences, similarities & intuitive control, Proc ACM CHI, 2008.

B. F. Yuksel, K. B. Oleson, L. Harrison, E. M. Peck, D. Afergan et al., Learn piano with BACh: An adaptive learning interface that adjusts task difficulty based on brain state, 2015.

H. Ayaz and F. Dehais, Neuroergonomics: The Brain at Work and in Everyday Life, vol.01, p.2019

J. Frey, M. Hachet, and F. Lotte, EEG-based neuroergonomics for 3D user interfaces: opportunities and challenges, Le Travail Humain, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01394254

K. K. Ang, Z. Y. Chin, C. C. Wang, C. T. Guan, and H. H. Zhang, Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b, Frontiers in Neuroscience, vol.6, pp.1-9, 2012.

B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. Müller, Optimizing spatial filters for robust EEG single-trial analysis, IEEE Signal Processing Magazine, vol.25, issue.1, 2008.

R. Mahmoud, I. Shanableh, N. Bodala, and . Thakor, Novel Classification System for Classifying Cognitive Workload Levels under Vague Visual Stimulation, vol.1748, pp.1-12, 2017.

A. Brouwer, A. Maarten, J. B. Hogervorst, T. Van-erp, . Heffelaar et al., Estimating workload using {EEG} spectral power and {ERPs} in the n-back task, JNE, vol.9, issue.4, p.45008, 2012.

P. Zarjam, J. Epps, F. Chen, and N. H. Lovell, Estimating cognitive workload using wavelet entropy-based features during an arithmetic task, Computers in Biology and Medicine, vol.43, issue.12, pp.2186-2195, 2015.

D. Grimes, D. S. Tan, S. E. Hudson, P. Shenoy, and R. P. Rao, Feasibility and Pragmatics of Classifying Working Memory Load with an Electroencephalograph, Proc ACM CHI, pp.835-844, 2008.

G. Chanel, C. Rebetez, M. Bétrancourt, and T. Pun, Emotion Assessment From Physiological Signals for Adaptation of Game Difficulty, IEEE Trans Syst Man Cyb, Part A, vol.41, issue.6, pp.1052-1063, 2011.

B. Reuderink, C. Muhl, and P. M. Valence, arousal and dominance in the EEG during game play, IJAACS, vol.6, issue.1, 2013.

P. Rani, N. Sarkar, and C. Liu, Maintaining optimal challenge in computer games through real-time physiological feedback, 2005.

S. H. Fairclough, Fundamentals of physiological computing, Interacting with Computers, vol.21, issue.1-2, pp.133-145, 2009.

M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, A multimodal database for affect recognition and implicit tagging, IEEE Transactions on Affective Computing, vol.3, issue.1, pp.42-55, 2012.

W. Zheng, W. Liu, Y. Lu, B. Lu, and A. Cichocki, Emotionmeter: A multimodal framework for recognizing human emotions, IEEE Transactions on Cybernetics, vol.49, issue.3, pp.1110-1122, 2019.

J. A. Russell, A circumplex model of affect, Journal of Personality and Social Psychology, vol.39, issue.6, pp.1161-1178, 1980.
URL : https://hal.archives-ouvertes.fr/hal-01086372

H. Candra, M. Yuwono, R. Chai, H. T. Nguyen, and S. Su, EEG emotion recognition using reduced channel wavelet entropy and average wavelet coefficient features with normal Mutual Information method, Proc. IEEE EMBC, pp.463-466, 2017.

A. Al-nafjan, M. Hosny, Y. Al-ohali, and A. Al-wabil, Recognition of affective states via electroencephalogram analysis and classification, Advances in Intelligent Systems and Computing, vol.722, pp.242-248, 2018.

S. Koelstra, C. Mühl, M. Soleymani, J. S. Lee, A. Yazdani et al., DEAP: A database for emotion analysis Using physiological signals, IEEE Transactions on Affective Computing, vol.3, issue.1, pp.18-31, 2012.

C. A. Kothe, S. Makeig, and J. A. Onton, Emotion recognition from EEG during self-paced emotional imagery, Proc. ACII, 2013.

F. Lotte, . Jeunet, . Chavarriaga, D. E. Bougrain, . Thompson et al., Turning negative into positives! Exploiting "negative" results in Brain-Machine Interface (BMI) research, Brain-Computer Interfaces, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02375400

C. A. Frantzidis, C. Bratsas, C. L. Papadelis, and P. D. Bamidis, Toward emotion aware computing: An integrated approach using multichannel neurophysiological recordings and affective visual stimuli, IEEE Trans. on Info Technology in Biomedicine, vol.14, issue.3, pp.589-597, 2010.

F. Yger, M. Berar, and F. Lotte, Riemannian approaches in Brain-Computer Interfaces: a review, IEEE TNSRE, vol.25, issue.10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01394253

R. T. Schirrmeister, J. T. Springenberg, L. D. Fiederer, M. Glasstetter, K. Eggensperger et al., Deep learning with convolutional neural networks for EEG decoding and visualization, Human Brain Mapping, 2017.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

A. Appriou, A. Cichocki, and F. Lotte, Towards robust neuroadaptive HCI: exploring modern machine learning methods to estimate mental workload from EEG signals, CHI, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01849055

H. Peng, F. Long, and C. Ding, Feature Selection Based On Mutual Information: Criteria of Max-Dependency,Max-Relevance, and Min-Redundancy, IEEE Trans Pattern Anal Mach Intell, vol.27, 2005.

M. Congedo, A. Barachant, and R. Bhatia, Riemannian geometry for eeg-based brain-computer interfaces; a primer and a review, Brain-Computer Interfaces, vol.4, issue.3, pp.155-174, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01570120

A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, Riemannian geometry applied to BCI classification, LVA/ICA, pp.629-636, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00602700

A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, Multiclass brain-computer interface classification by Riemannian geometry, IEEE Transactions on Biomedical Engineering, vol.59, issue.4, pp.920-928, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00681328

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine Learning in Python, J Mach Learn Res, vol.12, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

E. Combrisson and K. Jerbi, Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy, Journal of Neuroscience Methods, vol.250, pp.126-136, 2015.

A. Clerico, A. Tiwari, R. Gupta, S. Jayaraman, and T. H. Falk, Electroencephalography amplitude modulation analysis for automated affective tagging of music video clips, Front. Comp. Neuro, vol.11, 2018.

, As a PhD candidate he is part of Inria Bordeaux-Sud-Ouest, and member of the European Research Council (ERC) project "BrainConquest", aiming at improving Brain-Computer Interfaces (BCIs) users training. During his PhD, he is focusing on two main topics, first measuring learning-related mental states through both electroencephalographic and physiological signals, and second investigating machine learning algorithms for decoding such signals, Aurelien Appriou Aurlien Appriou received the M.Sc. (with honors), in cognitive science, 2015.

. D. Ph, . Dr, and . Sc, Under the guidance of Professor Cichocki, the new Laboratory Tensor Networks and Deep Learning for Applications in Biomedical Data Mining is established at SKOLTECH. The mission of the Laboratory is to perform cutting-edge innovative research in the design and analysis of deep neural networks, tensor networks and multiway component analysis for biomedical applications. He is author of more than 500 papers and six books in English. He is among the most cited Polish computer scientists and he is or has been associate editor of the international journals in signal processing, 1995.

. Fabien-lotte-fabien, His PhD Thesis received both the PhD Thesis award 2009 from AFRIF (French Association for Pattern Recognition) and the PhD Thesis award 2009 accessit (2nd prize) from ASTI (French Association for Information Sciences and Technologies), he was a research fellow at the Institute for Infocomm Research (I2R) in Singapore, working in the Brain-Computer Interface Laboratory, p.2008, 2009.

, he spent 1-year as a visiting scientist at RIKEN Brain Science Institute, Japan, in Cichocki's laboratory for advanced brain signal processing, he is a Research Director (DR2) at Inria, 2016.

, Brain-Computer Interfaces 1: foundations and methods" and "Brain-Computer Interfaces 2: technology and applications", published both in French and in English in 2016, as well as the book "Brain-Computer Interfaces Handbook: Technological and Theoretical Advance