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Fréchet mean and p-mean on the unit circle:
characterization, decidability, and algorithm

F. Cazals∗and B. Delmas†and T. O’Donnell‡

February 19, 2020

Abstract

The center of mass of a point set lying on a manifold generalizes the celebrated Euclidean centroid,
and is ubiquitous in statistical analysis in non Euclidean spaces. In this note, we give a complete charac-
terization of the weighted p-mean of a finite set of angular values on S1, based on a decomposition of S1

such that the functional of interest has at most one local minimum per cell. This characterization is used
to show that the problem is decidable for rational angular values –a consequence of Lindemann’s theorem
on the transcendence of π, and to develop an effective algorithm parameterized by exact predicates. A
robust implementation of this algorithm based on multi-precision interval arithmetic is also presented.
This implementation is effective for large values of n and p. Experiments on random sets of angles and
protein dihedral angles consistently show that the Fréchet mean (p = 2) yields a variance reduction of
∼ 20% with respect to the classically used circular mean.

Our derivations are of interest in two respects. First, efficient p-mean calculations are relevant to
develop principal components analysis on the flat torus encoding angular spaces–a particularly impor-
tant case to describe molecular conformations. Second, our two-stage strategy stresses the interest of
combinatorial methods for p-means, also emphasizing the role of numerical issues.

The implementation is available in the Structural Bioinformatics Library (http://sbl.inria.fr).

Keywords: Frechét mean, p-mean, data centering, principal component analysis, circular statistics, decid-
ability, robustness, multi-precision, angular spaces, molecular conformations

1 Introduction

1.1 Statistics on manifolds and p-means on S1

Fréchet mean and generalizations. The celebrated center of mass of a point set P in a Euclidean space
is the (a) point minimizing the sum of squared Euclidean to points in P . The center of mass plays a key
role in data analysis at large, and in particular in principal components analysis since the data are centered
prior to computing the covariance matrix and the principal directions. Generalizing these notions to non
Euclidean spaces is an active area of research, as many mathematical objects in science and engineering
turn out to live on Riemannian manifolds. Motivated by applications in structural biology (molecular
conformations), robotics (robot conformations), and medicine (shape and relative positions of organs), early
work focused on direct generalization of Euclidean notions. Analysis tailored to the unit circle and sphere
were developed under the umbrella of directional statistics [AJ91, MT93, MJ09]. In a more abstract setting,
generalizations of the center of mass in general metric spaces were first worked out – the so-called Fréchet
mean [Fré48], followed by a generalization to distributions on such spaces – the so-called Karcher man
∗Université Côte d’Azur, Inria, France
†INRAe, France
‡Université Côte d’Azur, Inria, France and INRAe, France
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[GK73]. In differential geometry, recent developments focused on the existence, uniqueness and calculation
of such objects [AM14, Pen18].

In fact, previous works span two complementary directions. On the one hand, efforts have focused
on mathematical properties of spaces generalizing affine spaces, so as to provide statistical summaries of
ensembles in terms of geometric objects of small dimension. On the other hand, algorithmic developments
have been performed to compute such objects. The case of the unit circle S1 provides the simplest compact
non Euclidean manifold to be analyzed. Despite its simplicity, this case turns out to be of high interest since
S1 encodes angles, a particularly important case e.g. to describe molecular conformations. In the sequel, we
focus on p-means defined on the unit circle S1, for p ≥ 1.

Consider n angles Θ0 = {θi}i=1,...,n. Practically, in processing real data, we shall consider that each
angle is given as a rational number. Consider the embedding of an angle onto the unit circle, that is
X(θ) = (cos θ, sin θ)

T. The geodesic distance between two points X(θ) and X(θi) on S1, denoted d(·, ·),
satisfies

d(X(θ), X(θi)) = 2 arcsin
‖X(θ)−X(θi‖

2
. (1)

This distance is also directly expressed using the angles:

d(X(θ), X(θi)) = min(| θ − θi |, 2π− | θ − θi |). (2)

Consider a set of positive weights {wi}i=1,...,n. For an integer p ≥ 1, consider the function involving the
weighted distances to all points, i.e.

Fp(θ) =
∑

i=1,...,n

wifi(θ), with fi(θ) = dp(X(θ), X(θi)). (3)

We denote its minimum
θ∗ = arg min

θ∈[0,2π)
Fp(θ). (4)

For units weights, the value θ∗ obtained for p = 2 corresponds to the Fréchet mean.
The previous expression can be seen as a distance to a point mass probability distribution on S1. For a

general probability distribution on S1, necessary and sufficient conditions for the existence of a Fréchet mean
have been worked out [Cha13]. In the same paper, the author proposes a quadratic algorithm–regardless of
numerical issues–to compute the Fréchet mean for the particular case of a point mass probability distribution.
In a more general setting, a stochastic algorithm finding p-means wrt a general measure on the circle has
also been proposed [AM16].

Remark 1. In the following the analysis presented in sections 2 and 3 does not depend on the weights in Eq.
3 – assuming these are rational numbers. To make notations lighter, we therefore omit them in the sequel of
the paper. However, our implementation does incorporate them.

Robustness and numerical issues. From the optimization standpoint, computing p-means on S1 turns
out to be a non convex problem, which can be decomposed into piecewise convex problems. The simplest
model of a computer to solve such (geometric) problems is the real RAM computer model, which assumes
that exact operations on real numbers are available at constant time per operation [PS85]. This model is
unrealistic due to rounding operations inherent to floating point representations [MBdD+18]. In particular,
erroneous evaluations of decisions due to rounding errors may trigger wrong decisions, and the algorithm may
loop, crash, or terminate with an wrong answer, a situation occurring even for the simplest 2D geometric
calculations [KMP+08].

Robust geometric algorithms, which deliver what they are designed for, can be developed using the
Exact Geometric Computation (EGC) paradigm [YD95], which is central in the Computational Geometry
Algorithms Library (CGAL) [cga]. The EGC relies on so-called exact predicates and constructions. A
predicate is a function whose output belongs to a finite set, while a construction exhibits a new geometric
object from the input data. For example, the predicate Sign(x) returns the sign {negative, null, positive} of
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Figure 1: Fréchet mean of four points on S1 (Functions) blue: function F2; green: derivative F
′

2; orange:
second derivative F

′′

2 (Points) red bullets: data points; black bullets: antipodal points; blue bullets: local
minima of the function; large blue bullet: Fréchet mean θ∗; green bullet: circular mean Eq. 23.

the arithmetic expression x. As we shall see, designing robust predicates for p-means on S1 turns out to be
connected to transcendental number theory since expressions involving π are dealt with. In particular, one
needs to evaluate the sign of such expressions, which raises decidability issues. May be not so surprisingly,
we note in passing that very few geometric problems involving transcendental numbers have been shown to
be decidable–see e.g. [CCK+06]. Fortunately, we shall see that our problem is so.

1.2 Contributions
This paper makes three contributions regarding p-means of a finite point set. First, we show that the function
Fp is determined by a very simple combinatorial structure, namely a partition of S1 into circle arcs. Second,
we give an explicit expression for Fp, deduce that the problem is decidable, and present an algorithm
computing p-means. Third, we present an effective and robust implementation, based on multi-precision
interval arithmetic.

2 p-mean of a finite point set on S1: characterization

2.1 Notations
In the following, angles are in [0, 2π). We first define:

Definition. 1. For each angle θi ∈ [0, π), we define θ+i = θi + π. The set of all such angles is denoted
Θ+ = {θ+i } For each angle θi ∈ [π, 2π), we define θ+− = θi − π. The set of all such angles is denoted
Θ− = {θ−i }. The antipodal set of Θ0 is the set of angles Θ± = Θ+ ∪Θ−.

Altogether, these angles yield the larger set

Θ = Θ0 ∪Θ±. (5)

Note that |Θ| = 2n since each angle in Θ0 also contributes one value in Θ+ or Θ+. Angles in Θ are generically
denoted αi or αj . Note however that when referring to an angle in the continuous interval [0, 2π), θ is used.
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Figure 2: The partition of S1 into circle arcs underlying the function Fp (A) The three elementary
intervals defined by angles in [0, π) and [π, 2π) respectively. Bold circle arcs indicate that fi has a transcen-
dental expression i.e. involves π. (B) Intersections of elementary intervals in I yield a partition of [0, 2π),
and associated piecewise functions.

To each angle θi, we associate three so-called elementary intervals (Fig. 2(A)):

• θi ∈ [0, π) : Ii,1 = (0, θi), Ii,2 = (θi, θ
+
i ), Ii,3 = (θ+i , 2π).

• θi ∈ [π, 2π) : Ii,1 = (0, θ−i ), Ii,2 = (θ−i , θi), Ii,3 = (θi, 2π).

2.2 Partition of S1

We also consider the partition of [0, 2π) induced by the intersection of the 3n intervals {Ii,1, Ii,2, Ii,3} (Fig.
2(B)). More specifically, we choose one interval (out of three) for each function fi, and intersect them all:

Definition. 2. The elementary intervals Ii,j define a partition of S1 based on the following intervals:

I =
{ ⋂
i=1,...,n

(Ii,1 ∨ Ii,2 ∨ Ii,3) with
⋂

i=1,...,n

Ii,j 6= ∅.
}
. (6)

In the sequel, open intervals from I are denoted (αj , αj+1).

Remark 2. From the previous definition, it appears that the intervals in I may be ascribed to nine types
since the left endpoint is an angle θi or an antipodal angle θ+i or θ−i , and likewise for the right endpoint.
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2.3 Piecewise expression for Fp

Function Fp. We use the previous intervals to unveil the piecewise structure of Fp. We define the following
piecewise functions (Fig 2(B)):

θi ∈ [0, π) : fi(θ) =


(θi − θ)p, for θ ∈ Ii,1,
(θ − θi)p, for θ ∈ Ii,2,
(2π + θi − θ)p, for θ ∈ Ii,3.

(7)

θi ∈ [π, 2π) : fi(θ) =


(2π + θ − θi)p, for θ ∈ Ii,1,
(θi − θ)p, for θ ∈ Ii,2,
(θ − θi)p, for θ ∈ Ii,3.

(8)

Remark 3. Let θmax be the antipodal value of the largest θi ∈ Θ0 larger than π, and θmin the antipode of the
smallest θi ∈ Θ0 smaller than π. Function Fp is transcendental in [0, θmax) and (θmin, 2π] – its expression
involves π. Also, function Fp is algebraic on (θmax, θmin). See Fig. 2.

Derivative of Fp. To study local minima of Fp, we focus on derivatives of Fp up to the second order. To
this end, we study the derivatives of each function fi. Since each fi is obviously smooth on open intervals,
and computing the derivatives of the terms in Eqs. 7 and 8 yields:

θi ∈ [0, π) : f ′i(θ) =


−p(θi − θ)p−1, for θ ∈ Ii,1,
p(θ − θi)p−1, for θ ∈ Ii,2,
−p(2π + θi − θ)p−1, for θ ∈ Ii,3,

(9)

θi ∈ [π, 2π) : f ′i(θ) =


p(2π + θ − θi)p−1, for θ ∈ Ii,1
−p(θi − θ)p−1, for θ ∈ Ii,2
p(θ − θi)p−1, for θ ∈ Ii,3.

(10)

To study possible discontinuities at points in αj ∈ Θ, we define:

∆f ′i|θ = lim
θ↘αj

f ′i(θ)− lim
θ↗αj

f ′i(θ) (11)

We now apply these formulae, distinguishing two cases, namely p = 1 and p > 1.

Properties of Fp: case p = 1.

Lemma. 1. For p = 1, function fi and its derivative satisfy:

• Function fi is continuous on S1.

• Function f ′i continuous on S1 except at θi and its antipodal value; at these points, ∆f ′i|θ is equal to 2
or -2.

Proof. For the continuity, one has

θi ∈ [0, π) :fi(θi) = 0, fi(θ
+
i ) = π,fi(0) = θi (12)

θi ∈ [π, 2π) :fi(θ
−
i ) = π,fi(θi) = 0, fi(0) = 2π − θi. (13)

5



For changes of the derivative at points and antipodal points, we get from Eqs. 9 and 10:

αj = θi ∈ [0, π) :


∆f ′i|θi = 2

∆f ′
i|θ+i

= −2

∆f ′i|0 = 0

αj = θi ∈ [π, 2π) :


∆f ′

i|θ−i
= −2

∆f ′i|θi = 2

∆f ′i|0 = 0

(14)

Using the previous properties, the global behavior of F1 is as follows:

Lemma. 2. Local minima of the function F1 are either isolated points or plateaus.

Proof. On any open interval from I, function F1 is linear, which reflects the fact that when θ increases,
we approach or move away with respect to any θi. Given the possible options for the derivative drops –
Eq. 14, at any angle from Θ, we face three options for the derivative: its sign does not change in which
case the function keeps increasing or decreasing; its sign changes – in which case the function admits a local
extremum; or it become null, in which case the function admits a local minimum which is a plateau. This
latter case occurs when n is even, for an interval admitting the same number of of points from Θ0 on each
side.

Properties of Fp: case p > 1.

Lemma. 3. For p > 1, function fi and its derivatives satisfy:

• Function fi is continuous on S1.

• The derivative f ′i is continuous on S1 except at the antipodal value of θi, where ∆f ′i|antipode(θi) =

−2p πp−1.

• The second order derivative f ′′i is non negative on S1.

Proof. For the continuity, one has

θi ∈ [0, π) :fi(θi) = 0, fi(θ
+
i ) = πp,fi(0) = θpi (15)

θi ∈ [π, 2π) :fi(θ
−
i ) = πp,fi(θi) = 0, fi(0) = (2π − θi)p. (16)

For changes of the derivative at points and antipodal points, we get from Eqs. 9 and 10:

αj = θi ∈ [0, π) :


∆f ′i|θi = 0

∆f ′
i|θ+i

= −2p πp−1

∆f ′i|0 = 0.

αj = θi ∈ [π, 2π) :


∆f ′

i|θ−i
= −2p πp−1

∆f ′i|θi = 0

∆f ′i|0 = 0.

(17)

Finally, the positivity of f
′′

i stems from the second derivative of terms in Eqs. 9 and 10.

The previous lemma tells us that F
′

p incurs drops at antipodal points, and then keeps increasing again
on the interval starting at that point. Finding local minima of Fp therefore requires finding those intervals
from I where F

′

p vanishes, which happens at most once. We conclude with:

Lemma. 4. For p > 1, function Fp has at most one local minimum on each interval in I.
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3 Algorithm
The observations above are not sufficient to obtain an efficient algorithm: since there are 2n intervals and
since the function has linear complexity on each of them, a linear number of function evaluations has quadratic
complexity. We get around this difficulty by maintaining the expression of the function at angles in Θ.

3.1 Analytical expressions and nullity of F
′
p

Function Fp and its derivative. We first derive a compact, analytical expression of Fp and F
′

p. Following
Eqs. 7 and 8, the expressions of fi(θ) and f ′i(θ) can be written as

f ′i(θ) = ki × (ai + εiθ)
p−1, with ki ∈ {−p, p}, ai ∈ {−θi, 2π − θi, θi, 2π + θi}, εi ∈ {−1,+1}. (18)

On open intervals (αj , αj+1), the function reads as the following polynomial

Fp(θ) =

n∑
i=1

(ai + εiθ)
p =

p∑
j=0

bjθ
j , with bj =

n∑
i=1

(
p

j

)
ap−ji εji . (19)

Similarly, the derivative F
′

p(θ) reads as a degree p− 1 polynomial:

F
′

p(θ) =

n∑
i=1

ki(ai + εiθ)
p−1 =

p−1∑
j=0

cjθ
j , with cj =

n∑
i=1

ki

(
p− 1

j

)
ap−1−ji εji . (20)

Nullity of F
′

p: algebraic versus transcendental expressions. The previous equations call for two
important comments. First, from the combinatorial complexity standpoint, if the coefficients of the poly-
nomials are known, evaluating Fp and F

′

p has cost O(p). Second, from the numerical standpoint, locating
local minima of Fp requires finding intervals from I on which F

′

p vanishes. Identifying such intervals is key
to the robustness of our algorithm. Practically, since an interval is defined by two consecutive values in the
set Θ, we need to check that the sign of F

′

p differs at these endpoints. The cornerstone is therefore to decide
the sign of F

′

p at angles in Θ (input angles or their antipodes), and the following is a simple consequence of
Lindemann’s theorem on the transcendence of π:

Lemma. 5. If the angular values θi ∈ Θ0 are rational numbers, checking whether F
′

p(αi) 6= 0 for any αi ∈ Θ

is decidable. Moreover, when F
′

p has a transcendental expression and αi is rational, F
′

p 6= 0.

Proof. We first consider the case αi ∈ Θ0, and distinguish the two types of intervals – see Rmk 3.
First, consider an interval where Fp has an algebraic expression. We face a purely algebraic problem, and
deciding whether F

′

p(αi) 6= 0 can be done using classical bounds, e.g. Mahler bounds [LPY05, YYD+10].
Second, consider an interval where Fp has a transcendental expression. Then, F

′

p(αi) can be rewritten as a
polynomial of degree p− 1 in π. Lindemann’s theorem on the transcendence of π implies that F

′

p(αi) 6= 0.

Consider now the case where αi ∈ Θ±, that is αi = αj ± π. Each individual term fi
′(αi) also has the

form (ciπ + qi)
p−1, with ci ∈ N and qi ∈ Q, so that the latter case also applies.

3.2 Algorithm: case p = 1

We sort the angles in Θ and initialize F
′

p(θ) at the value it has before the first element of Θ. When crossing
a sample point F

′

p increases by 2 (Lemma 1). When crossing an antipodal point F
′

p decreases by two. The
nature of local minima is given by lemma 2. If the number of sample points is odd whenever crossing a
sample point if the derivative goes from -1 to 1 this point is a minimum. If the number of points is even
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whenever there are two consecutive sample points if the derivative goes from -2 to 0 to 2, then, the circle
arc between these two points is an extended local minimum – a plateau.

Assume the coefficients of Fp have been stored in a vector B of size p+ 1. As noticed above, evaluating
Fp at a given angle has cost O(p). The overall algorithms therefore has complexity O(n log n+ np).

3.3 Algorithm: case p > 1

Following the previous analysis, finding the p-mean(s) involves the following five steps (see Algorithm 1):

• (Step 0) Construct the set Θ;

• (Step 1) Sort angles in Θ;

• For all intervals in I:

– (Step 2) Identify the intervals where F
′

p vanishes;

– (Step 3) Compute the unique root of F
′

p;

– (Step 4) Evaluate Fp at a local minimum;

– (Step 5) Maintain the polynomials Fp and F
′

p.

In the sequel, we analyze the complexity of these steps.

(Step 0) Construct the set Θ. This step has linear complexity.

(Step 1) Sort angles in Θ. This step has complexity O(n log n).

(Step 2) Identify the intervals where F
′

p vanishes. By lemmas 3 and 4, there is at most one local
minimum per interval, which requires checking the signs of F

′

p to the right and left bounds of an interval
(αj , αj+1). Using the functional forms encoded in vector C, computing these derivatives has the same
complexity as the previous step. However, this step calls for two important comments:

• For αi ∈ Θ, checking whether F
′

p(αi) 6= 0 is decidable – lemma 5. However, the arithmetic nature
of the number αi must be taken into account, as rational numbers (input angles) and transcendental
numbers (antipodal points) must be dealt with using different arithmetic techniques. See below.

• Not all intervals (αj , αj+1) can provide a root. Indeed, once F
′

p(αi) > 0, since the individual second
order derivatives are positive, F

′

p cannot vanish until one crosses one αj ∈ Θ±. As we shall see, this
observation is easily accommodated in algorithm 1.

In the sequel, we denote SD(p−1) the cost of deciding the sign (negative, zero, positive) of F
′

p(θ), for θ ∈ Θ.

(Step 3) Compute the unique root of F
′

p. Since F
′

p is piecewise polynomial, finding its real root has
constant time complexity for p ≤ 5. Otherwise, a numerical method can be used [KRS16].

In the sequel, we denote RF(p− 1) the cost of isolating the real root of a degree p− 1 polynomial.

(Step 4) Evaluate Fp at a local minimum. Once the angle θm corresponding to a local minimum has
been computed, we evaluate Fp(θm) using Eq. 19. This evaluation has O(p) complexity since the coefficients
of the polynomial are known.

8



(Step 5) Maintain the polynomials Fp and F
′

p. Following Eqs. 19 and 20, the function and its
derivative only change when crossing an angle from Θ. At such an angle, updating the vectors B and C has
complexity O(p). Overall, this step therefore has complexity O(np).

We summarize with the following output-sensitive complexity:

Theorem. 1. Computing the p-mean has O(n log n+ np+ nSD(p− 1) + kRF(p− 1) + kp) complexity, with
k the number of local minima of Fp.

Remark 4. Note that a naive (i.e. without the maintenance of the coefficients of Fp) calculation of Fp at
local minima has quadratic combinatorial complexity in the case of a linear number of local minima.

3.4 Generic implementation
In the following, we present an implementation of our algorithm based on predicates, i.e. functions deciding
branching points.

Pseudo-code, predicates and constructions Our algorithm (Algo. 1) takes as input a list of angular
values (in degrees or radians) and the value of p. Following Rmk 1, an optional file containing the weights
may be passed. If p > 5, we take for granted an algorithm computing the root of F

′

p on an interval. As
a default, we resort to a bisection method which divides the interval into two, checks which side contains
the unique root of F

′

p, and iterates until the width of the interval is less than some user specified value τ
(Algo. 3). The interval returned is called the root isolation interval. Our algorithm was implemented in
generic C++ in the Structural Bioinformatics Library [CD17], as a template class whose main parameter is
a geometric kernel providing the required predicates and constructions. We now discuss these–see Sec. 3.5
for their robust implementation.

Predicates. The algorithm involves two predicates:

• Sign(F
′

p(θ)). Predicate used to determine the sign of the F
′

p(θ) with θ ∈ [0, 2π) (Algo. 3).

• Interval_too_wide(θl, θr). Predicate used to determine whether the root isolation interval has width
less than τ (Algo. 3). It is true if θr − θl > τ , and false otherwise.

Constructions.

• Updating constants. Updating the coefficients in B and C is necessary at each αi ∈ Θ: for Fp(θ)
(resp. F

′

p(θ)), we subtract the contribution of fi(θ) (resp. f
′

i (θ)) before αi, and add that of fi(θ) (resp.
f
′

i (θ)) after αi.

• Find_root. Computing the root of F
′

p on an interval (αj , αj+1) is handled in two ways. If p ≤ 5,
radical based formulae can be implemented. If p > 5 a root finding algorithm must be implemented.
Our implementation resorts to a bisection method for p > 3(Algo. 3).

Remark 5. A kernel based on floating point number types, the double type in our case, is easily assembled,
see SBL::GT::Inexact_predicates_kernel_for_frechet_mean in Sec. 5. As noticed earlier, it comes with
no guarantee. In particular, the algorithm may terminate with an erroneous result if selected predicates are
falsely evaluated.
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Algorithm 1 p-mean calculation: generic algorithm for p > 1 in the real RAM model
1: Θ: vector[1, 2n] containing all the angles
2: B: vector[1, p+ 1] to store the coefficients of the polynomial Fp(θ) Eq. 19
3: C: vector[1, p] to store the coefficients of the polynomial F

′

p(θ) Eq. 20
4: θ∗ // Angle corresponding to the global minimum of Fp
5: Root_remains = true // flag indicating whether a root must be sought on (αj , αj+1)
6:
7: // Initialization
8: Compute Θ± and form sorted Θ
9: α0: first angle in Θ

10: Store the coefficients of Fp into the vector B for the interval (0, α0)

11: Store the coefficients of F
′

p into vector C for the interval (0, α0)

12: Compute l← F
′

p(θ) for θ → 0+ using Eq. 20 and vector C
13: Update_root(Sign(l))//Updates Root_remains see Algo. 2
14: if Sign(l) is null then
15: Compute Fp(0) using vector B and Eq. 19, and possibly update θ∗.
16:
17: // For each angle: handle interval ending, update coefficients in B and C, handle interval starting
18: for all αi in Θ do
19: if Root_remains then
20: Compute r ← F

′

p(θ) for θ → α−i using Eq. 20 and vector C
21: Update_root(Sign(r))//Updates Root_remains see Algo. 2
22: if Sign(r) is positive then
23: θc ← Find_root(αi−1, αi)
24: Compute Fp(θc) using vector B and Eq. 19, and possibly update θ∗.
25: else if Sign(r) is null then
26: Compute Fp(αi) using vector B and Eq. 19, and possibly update θ∗.
27: Update the coefficients of Fp stored in vector B upon crossing αi
28: Update the coefficients of F

′

p stored in vector C upon crossing αi
29: if αi ∈ Θ± then
30: Compute l← F

′

p(θ) for θ → α+
i using Eq. 20 and vector C

31: Update_root(Sign(l))//Updates Root_remains see Algo. 2
32: if Sign(l) is null then
33: Compute Fp(αi) using vector B and Eq. 19, and possibly update θ∗.
34:
35: // Process the interval ending at 2π
36: Compute r ← F

′

p(θ) for θ → 2π− using Eq. 20 and vector C
37: if Root_remains then
38: if Sign(r) is positive then
39: θc ← Find_root(θ2n, 2π)
40: Compute Fp(θc) using vector B and Eq. 19, and possibly update θ∗
41: else if Sign(r) is null then
42: Compute Fp(2π) using vector B and Eq. 19, and possibly update θ∗.
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Algorithm 2 Update_root(Sign): Updates the Root_remains buffer in main algorithm(Algo. 1)
1: Sign ∈{positive,negative,null} Sign of the derivative used to update the presence of roots on (αj , αj+1)
2: Root_remains = true // flag indicating whether a root must be sought on (αj , αj+1)
3: if Sign is negative then
4: Root_remains = true
5: else if Sign is positive then
6: Root_remains = false
7: else if Sign is null then
8: Root_remains = false

Algorithm 3 Find_root(αi−1, αi): generic algorithm for p > 5

1: αi−1, αi: the left and right endpoints of the initial interval
2: τ : Threshold to stop binary search if interval is small enough
3: c: Center of interval g
4: θl = αi−1, θr = αi // Interval being bisected
5: while Interval_too_wide(θl, θr) do
6: Compute c = θl + (θr − θl)/2
7: Compute S = Sign(F

′

p(c))
8: if S is positive then
9: θr = c

10: else if S is negative then
11: θl = c
12: else if S is null then
13: θr = c
14: θl = c
15: Compute θc = θl + (θr − θl)/2

11



3.5 Robust implementation based on exact predicates
Number types for lazy evaluations. Following the Exact Geometric Computation exact predicates are
gathered in a kernel. We circumvent rounding errors using interval number types which are certified to
contain the exact value of interest. That is, an expression x is represented by the interval [x, x] 3 x. The
bounds of these intervals may have a fixed precision, which corresponds to the CGAL::Interval_nt number
type [cga]. Or the bounds may be multiprecision, e.g. Gmpfr from Mpfr; [FHL+07], which corresponds to
the CGAL::Gmpfi type [cga]. We now explain how these types are used to code exact predicates.

The Sign predicate. We distinguish the algebraic and transcendental cases, performing multiprecision
calculations only if needed (Fig. 3).

•Transcendental case: multiprecision interval arithmetic. When Fp is transcendental and αi rational,
F
′

p(αi) is positive or negative (lemma 5). Another case where F
′

p(αi) 6= 0 is when αi ∈ Θ±. In our
implementation this situation is faced in two cases. First, in the main algorithm (Algo. 1), Sign(l) or
Sign(r): l and r are transcendental if αi ∈ Θ±. Second, in the root finding algorithm(Algo. 3), Sign(F

′

p(c)):
c is transcendental if αi−1 or αi ∈ Θ±. In both cases, we proceed in a lazy way: first, we try to conclude
using CGAL::Interval_nt; if this interval contains zero, we switch to CGAL::Gmpfi (Fig. 3), refine the
interval bounds, and conclude. Refining the interval consists of iteratively doubling the number of bits used
to describe all numbers–including π, until a conclusion can be reached.

•Algebraic case: zero separation bounds. When Fp has a rational expression and αi is rational,
Sign(F

′

p(αi)) may be zero. Fig. 4 presents a simple case with three angles. In this case, an input angle
may also corresponds to a local minimum of Fp. To decide whether F

′

p(αi) = 0, we resort to zero separation
bounds and multiprecision interval arithmetic.

Let us consider F
′

p(αi) as an arithmetic expression E, using a number of authorized operations(±,×, /
in our case). A separation bound is a function sep such that the value ξ of expression E is lower bounded
by sep(E) in the following manner:

If ξ 6= 0 then sep(E) ≤ |ξ| (21)

Considering ξ̃ an approximation of ξ and ∆ an upper bounded error |ξ̃ − ξ|.

If |ξ̃|+ ∆ < sep(E) then ξ = 0. (22)

Practically, we proceed in a lazy way, in two steps (Fig. 3). First, using CGAL::Interval_nt with double
precision, we check whether we can conclude on F

′

p(αi) 6= 0. If not–the interval contains zero, we use
CORE::ExprT[KLPY99] to determine the zero separation bound and decide if F

′

p(αi) = 0. If not, we finally
determine the sign.

Predicate Interval_too_wide(θl, θr). Returns true when θr − θl > τ , false if θr − θl ≤ τ . Similarly to
the sign predicate, we distinguish the transcendental and algebraic cases to check whether θl − θr − τ = 0.
Supposing τ and Θ0 are rational θl−θr−τ is transcendental if the initial αi−1 or αi ∈ Θ±. If transcendental
the interval is refined in the same way as the transcendental case of the Sign predicate. Otherwise the
expression is algebraic and the precision is raised until an exact computation can be performed.

4 Experiments

4.1 Overview
Our experiments target three properties, namely: (i) robustness to ascertain how often numerical refinement
is triggered, (ii), comparison of the Fréchet mean against the classical circular mean, and (iii) computational
complexity.
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Algebraic Transcendental

F ′
p(θ) involves π

Initial evaluation
using

CGAL::Interval nt

Initial evaluation
using

CGAL::Interval nt

[l, l] does not
contain 0:

sign known

[l, l] does not
contain 0:

sign known

CORE::ExprT and
(Mahler) bounds are

used to decide if
F ′
p = 0 and determine

its sign.

CGAL::Gmpfi is used
and [l, l] is refined un-
til it does not con-
tain 0

F ′
p(θ) does not involve π

casecase

Figure 3: Number types used in the Sign predicate. Note that CGAL::Interval_nt is used in the
algebraic and transcendental cases, while the remaining number types are only used if required.

n = 3, p = 2 n = 3, p = 2

Figure 4: An interval where Fp has an algebraic expression and F
′

p(θ) = 0. Illustration of Fp, F
′

p, F
′′

p

for p = 2 and three angles Θ0 = {θ1 = 1, θ2 = 2, θ3 = 3}. Color conventions as in Fig. 1. In this case,
F ′2(θ2) = 0, which must be numerically ascertained to ensure the correctness of the algorithm.

13



Figure 5: Fraction of program runs for which at least one predicate execution triggers refine-
ment, as a function of n and p. The number of repeats for each value of n is 1000.

Practically, two sets of angles are used. First, randomly generated angles. Second, so-called dihedral
angles in proteins. In brief, recall that the covalent structure of a protein is the graph whose nodes are the
atoms and whose edges correspond to covalent bonds. Four any consecutive atoms define a dihedral angle –
the angle between the planes defined by the first three and the last three atoms respectively. These angles
are known to be dependent, and correlations between them are key to reduce the dimensionality of the
conformation space of proteins [MT93, JS01, TWS+10]. Using the Protein Data Bank, we retained 27093
PDB files with a resolution of 3 angstroms or better. For all polypeptide chains in these files, we computed
all dihedral angles of all standard (20) amino-acids. This results in 240 classes of dihedral angles, containing
from 50,227 to 439,793 observations.

4.2 Robustness
Using our robust interval-based implementation, we count the fraction of cases for which at least one predicate
triggers refinement during an execution. We use sets of n ∈ [10, 1000] angles generated uniformly at random
in [0, 2π), and perform 1000 repeats for each value of n (Fig. 5). For large values of p, whenever n > 1000,
all executions require interval refinement. Even for p = 2 and n = 105, refinement is triggered in 1.3% of
the cases. (We note in passing that increasing n yields an increase of the number of roots, which are defined
on smaller intervals (SI Fig. 8)). In all the cases where refinement was triggered, doubling the precision was
sufficient to solve the predicate.

4.3 Fréchet mean
Fréchet mean versus circular mean. A classical way to define the circular mean of a set of angles is
the resultant or circular mean, defined as follows [MJ09]:

θ = atan2(
∑
i

sin θi/n,
∑
i

cos θi/n). (23)

The circular mean does not minimize Fp, but minimizes instead [JS01, Section 1.3]:

θ = arg min
∑

i=1,...,n

d(θi, θ), with d(α, β) = 1− cos(α− β). (24)
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Simulated data Torsion angles from protein structural data

Figure 6: Variance of angles with respect to the Fréchet mean θ∗ and the circular average
θ. (Left) Comparison using a simulated set with n = 30 angles at random in [0, 2π), with 1000 repeats.
(Right) Comparison for the 243 classes dihedral angles in protein structures–see text. (Both panels) In
red y = x and y = 5/4x.

Given a set of angles, we compare the variance of these angles with respect to the Fréchet mean θ∗ and the
circular mean θ, respectively. Two datasets were used for such experiments: first, randomly generated sets
of n = 30 angles uniformly at random in [0, 2π), with 1000 repeats; second, the aforementioned dihedral
angles in protein structures.

For both types of data, the variance obtained for θ is significantly larger than that obtained for θ∗,
typically up to 25% (Fig. 6). This shows the interest of using θ∗ in data analysis in general, and to center
angles prior to principal components analysis in particular.

Remark 6. While running this experiment, we also counted the type of intervals providing local minima (SI
Fig. 11) and the global minimum (SI Fig. 12). Following Rmk. 2, there are indeed 9 possible interval types
for (αj , αj+1). The most probable outcome using these values is θ∗ ∈ (θi, θi+1), which owes to the fact that
regions of the circle with high sample point density are likely to minimize Fp.

4.4 Computation time and complexity
The complexity of the algorithm (Theorem. 1) has three main components: the sorting step, the updates of
vectors B and C, and the numerics. We wish in particular to determine whether the n log n term dominates.

For p ∈ {2, 5, 10, 15}, we use sets of n ∈ [103, 105] angles generated uniformly at random in [0, 2π), and
perform 5 repeats for each value of n. For p = 2, the number of angles is pushed up to n = 107, with the same
number of repeats. In any case, a linear complexity is practically observed (SI Fig. 9, SI Fig. 10), showing
that for the values of n used, the constants associated with the linear time update of the data structures
and the numerics take over the n log n term of the sorting step.

5 Software

5.1 Availability
The source code is available in the package Frechet mean for S1 of the Structural Bioinformatics Library
(SBL), a library proposing state-of-the art methods in computational structural biology ([CD17] and https:
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//sbl.inria.fr/). As noticed above, the main motivation in developing this package is to perform an
enhanced statistical study of angular values in molecular structures.

Upon cloning the git with git clone git://sbl.inria.fr/git/sbl.git, the package is Core/Frechet_mean_S1.
Entries to the user manual and the reference manual are https://sbl.inria.fr/doc/Frechet_mean_
S1-user-manual.html and https://sbl.inria.fr/doc/group__Frechet__mean__S1-package.html.

The package actually provides two types of software components.

For end-users. We provide two executables, respectively corresponding to the robust and non-robust
implementations. Each takes as input a file of angles, the value of p and as an option a corresponding file
of weights. A sorted list of pairs (angular value of local minimum, function value) by increasing value of
Fp, is then generated. The Jupyter notebook Frechet_mean_S1.ipynb, which uses SAGE (https://www.
sagemath.org/) to visualize Fp and F

′

p, is also provided.

For developers. The C++ code of our algorithm is provided in the class SBL::GT::Frechet_mean_S1,
which is templated by the kernel. Two kernels are provided:

• Non-robust kernel: SBL::GT::Inexact_predicates_kernel_for_frechet_mean. A plain floating
point(double) number type is used.

• Robust kernel: SBL::GT::Lazy_exact_predicates_kernel _for_frechet_mean. See Sec. 3.5.

The constructor of this class is templated by an iterator type corresponding to the angular values container.
It also requires the value of p, and the value of τ used in the root finding (Algo. 3). The values computed
are stored as data members accessible through the corresponding methods.

5.2 Reproducibility of results
To reproduce the results presented in this paper, see Sec. 7.4.

6 Outlook
The Fréchet mean and its generalization the p-mean are of central importance as zero dimensional statistical
summaries of data which do not live in Euclidean spaces. For the particular case of S1, this paper develops
the first robust algorithm computing the p-mean of a finite point set. Our algorithm is effective for large
number of angular values and large values of p as well, yet, robustness requires predicates and constructions
using interval multiprecision arithmetic. For the particular case of the Fréchet mean (p = 2), we show
that the circular mean should not be used for a substitute to the circular center of mass, as it results in a
significantly larger variance.

We foresee two types of types of developments.
For the particular case of S1, our algorithm is of interest in the context of generalization of principal

components analysis (PCA) on the flat torus – an especially important case to deal with molecular data.
We also believe that it will prove of interest to improve stochastic algorithms finding p-means for general
distributions on S1, as these may benefit from estimated delivered by our method on random point sets.

In a more general setting, our strategy may be used both to study the intrinsic difficulty of computing
p-means (in terms of lower bounds), and to design effective algorithms. Indeed, as evidenced by the S1

case, the combinatorial structure defined by the cut-loci of the points determines all key properties. A first
case would be that of p-means on the unit sphere, for which there exist efficient algorithms to maintain
arrangements of circles.

Acknowledgments. Chee Yap and Sylvain Pion are acknowledged for discussions on irrational number
theory and number types, respectively.
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7.3 Intervals determining local and global minima

19



n = 4, p = 1 n = 4, p = 1

n = 4, p = 3 n = 4, p = 3

n = 4, p = 5 n = 4, p = 5

Figure 7: p-means, illustrations for p = 1, p = 3, p = 5 (Top, middle, bottom) rows. For each row:
(Left panel) red bullets: points; black bullets: antipodal points; green bullet: mean from resultant i.e.
circular mean; blue bullet: p-mean (Right panel) blue: function Fp – Eq. 3; green: derivative F

′

p; orange:
second derivative F

′′

p . red bullets: data points; black bullets: antipodal points; blue bullets: local minima of
Fp; large blue bullet: p-mean θ∗; green bullet: circular mean θ .
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Figure 8: Fréchet mean: number of roots of F
′

p as a function of n for p = 2. Done on point sets
generated using uniform distributions in [0, 2π)

Figure 9: Fréchet mean: computation time depending as a function of n for p = 2. The red line
segments joins 0, 0 to the average time of the largest point sets.
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Figure 10: Fréchet mean: computation time depending as a function of n and p.
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Figure 11: Type of intervals (αj , αj+1) yielding local minima. See Rmk. 2 for the definition of interval
types. Statistics for n = 30 angles, over 106 repeats.
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Figure 12: Type of intervals (αj , αj+1) yielding global minima. See Rmk. 2 for the definition of
interval types. Statistics for n = 30 angles, over 106 repeats.
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7.4 Reproducing the results
Getting the SBL and the package. In the following, we assume that the git of the SBL has been cloned:

git clone git://sbl.inria.fr/git/sbl.git

On a linux-like environment, we assume the following environment variables:

• $SBL_DIR: the directory containing the sources of the SBL, obtained with git clone as indicated
above.

• $SBL_DIR_INSTALL: the directory into which the executables (binaries) are installed. This directory
is expected to be in one’s PATH.

Programs. cpp code for the executables are provided in the directory Core/Frechet_mean_S1/src/Frechet_mean_S1/.
To compile and install these executables, proceed as follows:

• To compile the executables:

cd $SBL_DIR/Core/Frechet_mean_S1/src/Frechet_mean_S1/
mkdir build
cd build
cmake .. -DSBL_APPLICATIONS=ON -DCMAKE_INSTALL_PREFIX=$SBL_DIR_INSTALL
make
make install

Reproducing the results presented in the paper – running tests. The code to run the tests pre-
sented in this paper are provided in the directory $SBL_DIR/Core/Core/Frechet_mean_S1/examples/. The
program Frechet_mean_S1-test.cpp provides options to reproduce all tests presented in the paper:

• –v: tests on the variance

• –i: tests interval type for local minima and the global minimum

• –r: statistics on refinements for numerics

• –c: combinatorial complexity of the algorithm.

// Compiling the test code
cd $SBL_DIR/Core/Frechet_mean_S1/examples/Frechet_mean_S1/
mkdir build
cd build
cmake ..
make

// Running the tests
Frechet_mean_S1-test.exe -o ../demos/data -v -i -r -c

// Producing the figures once the tests have been run:
cd $SBL_DIR/Core/Frechet_mean_S1/examples/Frechet_mean_S1

python3 Frechet_mean_S1-test.py -d ../demos/data

Jupyter notebook. Finally, one can also execute the notebook Frechet_mean_S1.ipynb, which uses
internally SAGE (https://www.sagemath.org/) to perform the visualization

cd $SBL_DIR/Core/Frechet_mean_S1/demos
sage -n jupyter
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