H. Barucq, J. Diaz, R. Meyer, and H. Pham, Analytic solutions and transmission eigenvalues in isotropic poroelasticity for bounded domain, scattering of obstacles and fluid-solid interaction problems in 2D, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02408315

. Biot, General theory of three-dimensional consolidation, Journal of Applied Physics, vol.12, 1941.
URL : https://hal.archives-ouvertes.fr/hal-01368635

, General solutions of the equations of elasticity and consolidation for a porous material, Journal of Applied Mechanics, 1956.

E. Blanc, Time-domain numerical modeling of poroelastic waves: the Biot-JKD model with fractional derivatives, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00954506

M. Bonnasse-gahot, High order discontinuous Galerkin methods for time-harmonic elastodynamics, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01292824

M. Bonnasse-gahot, H. Calandra, J. Diaz, and S. Lanteri, Hybridizable discontinuous Galerkin method for the 2-D frequency-domain elastic wave equations, Geophysical Journal International, vol.213, pp.637-659, 2018.

C. Bordes, L. Jouniaux, S. Garambois, M. Dietrich, J. Pozzi et al., Evidence of the theoretically predicted seismo-magnetic conversion, Geophysical Journal International, vol.174, pp.489-504, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00303316

J. Carcione, J. Santos, and S. Picotti, Anisotropic poroelasticity and wave-induced fluid flow: harmonic finite-element simulations, Geophysical Journal International, vol.186, pp.1245-1254, 2011.

B. Cockburn, B. Dong, J. Guzmán, M. Restelli, and R. Sacco, A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems, SIAM Journal on Scientific Computing, vol.31, pp.3827-3846, 2009.

G. Dazel, Discontinuous Galerkin methods for poroelastic materials, 2013.

J. De-la-puente, M. Dumbser, M. Käser, and H. Igel, Discontinuous Galerkin methods for wave propagation in poroelastic media, vol.73, pp.77-97, 2008.

M. Dumbser, D. S. Balsara, E. F. Toro, and C. Munz, A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, Journal of Computational Physics, vol.227, pp.8209-8253, 2008.

B. Dupuy, L. De-barros, S. Garambois, and J. Virieux, Wave propagation in heterogeneous porous media formulated in the frequency-space domain using a discontinuous galerkin method, Geophysics, pp.13-28, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00680273

A. Ezziani, Modélisation mathématique et numérique de la propagation d'ondes dans les milieux viscoélastiques et poroélastiques, 2005.

G. Fu, A high-order HDG method for the Biots consolidation model, Computers & Mathematics with Applications, vol.77, pp.237-252, 2019.

S. Garambois, Etudes expérimentales et théoriques des conversions d'ondes sismo-électriques dans les milieux poreux superficiels, 1999.

S. Garambois and M. Dietrich, Seismoelectic wave conversions in porous media: Field measurements and transfer function analysis, 2001.

S. Garambois and M. Dietrich, Full waveform numerical simulations of seismoelectromagnetic wave conversions in fluid-saturated stratified porous media, Journal of geophysical research, 2002.

R. P. Gilbert and M. Shoushani, The Biot model for anisotropic poro-elastic media: The viscoelastic fluid case, Journal of Computational Acoustics, vol.25, p.1750012, 2017.

P. Haartsen, Electroseismic waves from point sources in layered media, Journal of American Geophysical Union, 1997.

A. Hungria, Using HDG+ to Compute Solutions of the 3D Linear Elastic and Poroelastic Wave Equations, 2019.

S. Imperiale and P. Joly, Mathematical and numerical modelling of piezoelectric sensors, ESAIM: Mathematical Modelling and Numerical Analysis, vol.46, pp.875-909, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00869631

R. M. Kirby, S. J. Sherwin, and B. Cockburn, To CG or to HDG: a comparative study, Journal of Scientific Computing, vol.51, pp.183-212, 2012.

G. I. Lemoine, M. Y. Ou, and R. J. Leveque, High-resolution finite volume modeling of wave propagation in orthotropic poroelastic media, SIAM Journal on Scientific Computing, vol.35, pp.176-206, 2013.

L. Li, S. Lanteri, and R. Perrussel, Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2D time-harmonic Maxwell's equations, COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 2013.

X. Li, D. Yao, and R. W. Lewis, A discontinuous Galerkin finite element method for dynamic and wave propagation problems in non-linear solids and saturated porous media, International journal for numerical methods in engineering, 2002.

C. Morency and J. Tromp, Spectral-element simulations of wave propagation in porous media, Geophysical Journal International, vol.175, pp.301-345, 2008.

S. Pride, Governing equations for the coupled electromagnetics and acoustics of porous media, Physical Review B, vol.50, p.15678, 1994.

S. R. Pride, Relationships between seismic and hydrological properties, Hydrogeophysics, pp.253-290, 2005.

. Inria,

J. Puente, M. Dumbser, M. Kser, and H. Igel, Discontinuous Galerkin methods for wave propagation in poroelastic media, 2008.

M. Schanz, Wave propagation in viscoelastic and poroelastic continua: a boundary element approach, vol.2, 2012.

Q. Serra, M. Ichchou, and J. Deü, Wave properties in poroelastic media using a wave finite element method, Journal of Sound and Vibration, vol.335, pp.125-146, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01699519

K. Shukla, J. S. Hesthaven, J. M. Carcione, R. Ye, J. De-la-puente et al., A nodal discontinuous Galerkin finite element method for the poroelastic wave equation, Computational Geosciences, vol.23, pp.595-615, 2019.

S. Soon, B. Cockburn, and H. K. Stolarski, A hybridizable discontinuous Galerkin method for linear elasticity, International journal for numerical methods in engineering, vol.80, pp.1058-1092, 2009.

N. D. Ward, T. Lähivaara, and S. Eveson, A discontinuous Galerkin method for poroelastic wave propagation: The two-dimensional case, Journal of Computational Physics, pp.690-727, 2017.

S. Warden, S. Garambois, L. Jouniaux, D. Brito, P. Sailhac et al., Seismoelectric wave propagation numerical modelling in partially saturated materials, Geophysical Journal International, vol.194, pp.1498-1513, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00853044

F. Wenzlau and T. M. Müller, Finite-difference modeling of wave propagation and diffusion in poroelastic media, Geophysics, vol.74, pp.55-66, 2009.