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Abstract— The goal of this paper is to present a real-time
controller for an omnidirectional wheeled humanoid robot
which can be strongly disturbed and tilt around its wheels.
It is based on two linear model predictive controllers, managed
by a tilt supervisor, which detects changes of the dynamic
model caused by the tilt of the robot. Experimental results are
proposed on the robot Pepper made by Aldebaran, showing
good performance in term of stability an robustness.

Index Terms— Humanoid Robotics, Mobile Robotics, Om-
nidirectional Wheeled Robot, Tilt Recovery, Push Recovery,
Linear Model Predictive Control, Quadratic Programming,
Aldebaran Pepper Robot

I. INTRODUCTION

Pepper is a humanoid robot standing on a holonomic
mobile base, equipped with three omnidirectional wheels.
It is developed by Aldebaran Robotics for the Japanese
Telecommunication Company Soft Bank, to welcome cus-
tomers in their shops. Its standard posture is to have all
three wheels firmly in contact with the ground, as shown in
Fig. 1. In this case, dynamic balance is ensured if the Center
of Pressure (CoP) lies inside the support triangle outlined by
the three wheels. A Model Predictive Control (MPC) method
has been proposed in [1] to control the motion of Pepper in
such situations. In the absence of disturbance, this control
law manages to continuously maintain the balance of the
robot and keep all three wheels firmly in contact with the
ground, even when realizing sharp turns and other high speed
motions.

Strong disturbances may upset this situation, however, and
the robot can begin to tilt, and fall if appropriate actions are
not undertaken. The problem, when tilting occurs, is that
the three wheels of the robot are not all in contact with
the ground anymore: as a result, the dynamics of the robot
changes significantly and the control law proposed in [1] is
not appropriate anymore. We propose in this paper to tackle
this problem of controlling the humanoid robot Pepper over
these different phases, when the robot is standing firmly
on its three wheels, and when it is tilting with only two
wheels on the ground, with significantly different dynamical
behaviors.

The problem of balancing robots on two wheels, similarly
to inverted pendulums, has already been studied exten-
sively [2], [3], [4], [5], [6]. But in all those cases, the objec-
tive is to maintain long term balance on two wheels, keeping
the Center of Mass (CoM) of the robot in equilibrium above
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Fig. 1. Pepper is a humanoid robot standing on a holonomic mobile base,
equipped with three omnidirectional wheels. It is developed by Aldebaran
Robotics for the Japanese Telecommunication Company Soft Bank, to
welcome customers in their shops.

the two wheels, whereas in our case, the objective is to
recover a firm stance on three wheels as quickly as possible.
This is a very different control objective.

Controlling the tilt of vehicles equipped with three wheels
has already been discussed in [7], [8], [9], [10]. But in these
cases, all three wheels are supposed to always stay firmly in
contact with the ground, and tilting refers in fact to simply
controlling the motion of the CoM above the wheels, in a
way very similar to what was done in [1] for Pepper when
it is not tilting.

In the case of biped humanoid robots, strong disturbances
can be absorbed by adapting the motion of the CoM, or
by realizing adequate steps [11], [12], [13], [14], [15], [16],
[17]. But in both cases, the dynamics of the biped robots is
not particularly changing. Even though the global behavior
of Pepper looks similar, adapting the motion of its CoM
or moving its “foot” (the mobile base) on the ground,
the underlying change of dynamical behavior makes it a
significantly different problem.

In the end, it appears that the problem of tilt recovery for
an omnidirectional wheeled robot such as Pepper has never
really been approached in the robotics literature. Having
to deal with different phases of motion, with significantly
different dynamical behaviors, we propose to develop sep-



Fig. 2. When the robot is standing firmly on its three wheels and not
tilting, the model proposed in [1] considers separately the motion of the
mobile base (with CoM b) and the motion of the upper body (with CoM c)

arate control laws for each phases, with a supervisor to
decide which one should be used, depending on the situation.
One difficulty is that the robot Pepper is not equipped with
force sensors. As a result, decisions must be based only on
wheel velocity, joint motion and informations obtained from
the Inertial Measurement Unit (IMU) composed of three
accelerometers and three gyrometers. A phase estimator is
required therefore to make appropriate decisions.

No assumptions are made on the disturbances, their am-
plitude, duration or bandwidth, and our solution has been
observed to be quite robust to various forms of disturbances.
In case the disturbances are too strong and balance cannot
be recovered, a fall manager strategy has been implemented
in order to protect the robot, by minimizing the impact of
the body with the ground, but this is outside of the scope of
this paper.

II. DYNAMICAL MODEL WITH THREE WHEELS ON THE
GROUND

When the robot is standing firmly on its three wheels and
not tilting, the model proposed in [1] considers separately
the motion of the mobile base (with CoM b) and the motion
of the upper body (with CoM c), as shown in Fig. II. With
the help of Newton and Euler equations (more details can
be found in [1]), the dynamics of this system can take the
following form:

Ly +Le=(p—b) x my(b+g)

i (D
+ (p—c) x me(é+g).

with g the gravity acceleration, m; and m. the total mass
of the mobile base and upper body, Ly and L, their angular
momenta, and p the CoP of the contact forces on the ground.

The CoM of the mobile base normaly has a constant
height b* = [ above the ground. Vertical motion of the
CoM of the upper body can usually be neglected, so it is
usually considered to have a constant height as well: ¢* = h.
Finally, the angular momenta can also be generally neglected:
Ly + L. = 0. With these assumptions, the dynamics (1) of
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Fig. 3. When the robot tilts, the CoP p lies on the tilting axis. In order
to simplify notations, we consider that tilting occurs around two wheels in
the direction of the z axis, with an angle ¢ > 0.

the robot can be expressed as a linear relationship between
the position of the CoP p on the ground and the horizontal
motion of the two CoM b and c:

B mpb®¥ + m.c*Y mbl?ﬁ“’ + mché®Yy @
T mp+me (mp +me)g
Further details and discussion of this model can be found

in [1].
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III. DYNAMICAL MODEL WITH TWO WHEELS ON THE
GROUND

When the robot tilts, the CoP lies on the tilting axis. In
order to simplify the following notations, let us consider that
tilting occurs around two wheels in the direction of the x
axis. Due to the mechanical structure of the robot, we do not
consider the possibility that it tilts around a single wheel. Let
¥ > 0 be the tilt angle. Introducing b and ¢, the positions
of the two CoM if tilting didn’t occur, a simple rotation of
angle v around the tilting axis (where the CoP p lies) gives:

b =p® + (b* — ;lz””) cos(y) + Isin(v)),
b* = lcos(y) — (b® — p*) sin(v)).

Linearizing around ¥ = 0, and neglecting the change of

3)

height (b® — p® )1y with respect to I, we obtain that
BT = bT + 1y,
4
{bz =1. @

The same can be done for the CoM of the upper body c.

In this case, the linear relationship (2) can be rewritten
along the x axis as follows:

. my(B* + 1) + me(e® + hy)
p =
my + Mme
~ mpl (b7 + 1) + moh(E7 + ha)
(mp +me)g

Since the CoP lies on the tilting axis, which is at a constant
distance d to the center of the mobile base, we have

p* = b +d. (6)
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We can reorganize then the previous equation to obtain a
linear relationship between variations of the tilt angle and
motion of the two CoM:

2 B2\ -
(mbl + mch)d} - <mbg + mcg) P =

- l= h.
(mp + me)d — me(S® — %) + mp—=b" + m.—c". (7)
g g

IV. MODEL PREDICTIVE CONTROL OF THE TILTING
MOTION

A. Sampled dynamics and prediction

In order to design the controller of the robot when it
is tilting on two wheels, we propose to follow the same
design principles as previously used in [1] when the robot is
standing firmly on its three wheels, and not tilting. In order
to generate smooth motions of the robot, we consider that
the CoM of the mobile base and the CoM of the upper body
follow a third order dynamics, with a sampling period 7T

i 1Tz %3
G= || =10 1 T &+ | % ®
e 0 0 1 T

the same for ?)i. We will consider the motion of these two

CoM over a horizon of N future samples. Introducing C* =
A et SEREES. o™

[cgf cfv] , the same for C*, C?, C’w, B*, B*, B®,

B , we can iterate the third order dynamics (8) to obtain

C*=U.C" + 8.5, ©
C*=U: " + Se.¢3, (10)
C"=U: " + Sz 8. (11)

More details can be found in [1].
We propose to do the same with the tilt angle ¢ and
consider N future samples in ¥, ¥, W, U, with

\I/=U¢-\i/.+5¢1$0, (12)
U =U; ¥ + S, v, (13)
U =U; ¥ + S . (14)

The linear relationship (7) can then be considered for all N
samples at once:

2 h2\ -
(mpl + mh)T — <mb + mc> v =

g g
i
g
and expressed as a function of ¥ with the help of (12)-(14):

(mp +me)d — me(C* — BY) —&—mbééx +me—C* (15)
12 h?
((mbl +mch)Uy — (mbg + mcg> Uili) =
I . B .
(mp + me)d — m (C* — B*) + mbgBQE + mCEC’“"

12 h2 R
— <(mbl +meh)Sy — (mbg + mcg) »91;) Po.  (16)

The matrix on the left-hand side is lower triangular, with
a constant

T3 12 h?
(mpl + meh)— — <mb + mc> T (17)
6 g g
on the diagonal. It is invertible if this constant is different
from zero, that is, for T' > 0, if

12 h2
Mbg t e’y (18)

T
76 mpl + meh

In the case of Pepper, this corresponds to 7" # 542 ms.

In this case, equation (16) can be solved, to give the third
derivative of the tilting angle ¥ as a function of the horizontal
position and acceleration of the two CoM, B”, B“", ce, ce.
Replacing  in (12)-(14) and using (9)-(11), we can finally
obtain the tilting angle, speed and acceleration as a function
of ther third-derivative of the motion of the two CoM, BI
and . In synthetic form,

v = waém + Uwc.(jm + S¢bl;g + chég + Sﬂ,t&o, (19)

U= Uy B + U, " + Sp,b8 + 84,88+ Sytho,  (20)

U = Uy B + Uy " + Sybt + S8 + Syho. (21
B. Control objectives and constraints

Now, our control problem is to find which motion of the
mobile base and upper-body CoM b and ¢ will help reducing
the tilting angle v to zero. In order to reduce impacts on the
ground and the risk to bounce back, it is important to reduce
also the tilting velocity ¥ to zero. Our control objective
therefore is to minimize the norm of the tilting angle

1
01 = 5102, @)
and the norm of its velocity
1 .
Os = S [1¥]%, (23)

It is interesting to introduce also a small regularization term,
minimizing
1wz iy 1 s,
O3 =SB I+ s llC | (24)
2 2
for numerical reasons, but also to ensure the stability of the
control law in all situations.
Constraints on the motion of the robot are the following.
First of all, there is a maximum speed and acceleration of
the mobile base:

max?
_p

max < B < by

max"*

bt < B < bE
{bm_ <b 0s)

The relative motion between the mobile base and the upper
body CoM is constrained by the joint limits in the upper

body:
_kT

max

<C*-B*<EkJ

max?’

(26)

x
max-*

considering a maximal distance k
angle is (naturally) always positive:

Finally, the tilting

¥ > 0. 27



With the help of equations (9)-(11) and (19)-(21), all
these control objectives and constraints can be expressed as
functions of the third-derivative of the motion of the two
CoM, [B” C;x]t, and aggregated in a simple Quadratic
Program (QP) with linear constraints, which can be solved
efficiently.

V. SUPERVISING THE DIFFERENT PHASES OF THE
MOTION

A. Different phases and their controllers

We have seen that the motion of the robot can go through
different phases, depending on whether it is firmly standing
on its three wheels, or tilting around two of its wheels. When
standing on three wheels (the “no tilt” state in Fig. V), the
MPC scheme proposed in [1] is used, and when tilting around
two wheels (the “tilt” state in Fig. V), the MPC scheme
described in the previous Section is used. A problem is, the
transition from the tilting phase, back to a non-tilting phase,
can be easily disturbed because of impacts and imprecise
detection of the contact state, since the robot is not equipped
with force sensors.

As a result, it is important to introduce a third, transition
phase (the “landing” state in Fig. V), when the wheel that
was in the air during the tilting phase, is approaching the
ground. In this case, the same MPC scheme as when standing
on three wheels is used, simply waiting for gravity to finish
pulling the wheel in the air back to the ground. But with
only two wheels on the ground, the mobile base can not be
completely controlled. As a result, the trajectory tracking is
temporarily disengaged, and the motion of the mobile base
on the ground is constrained instead to be parallel to the
tilting direction.

B. An impact estimator

In order to decide when and how to transition between
these different phases, we need to be able to estimate whether
the active tilt recovery controller of the previous Section is
required, or whether the current tilt angle and velocity will
naturally transition back to the robot having three wheels on
the ground, so that the smoother “landing” controller has to
be preferred.

If the tilt angle of the mobile base is only affected by
gravity, it would have an acceleration

= 9 os —1 i
P = lcos(w—&—tan <d>>

Considering that this acceleration is approximately constant,
the evolution of the tilt angle from an initial angle ¢y and
velocity ¥y would be

() = o + ot — %cos (zpo + tan~! (;)) 2. (29)

(28)

Now, if

A =2 + 279 cos (wo +tan~! <é)> o <0, (30)

orif 1o > Z—tan~' (L) and o > 0, then the tilt angle will
not go back to zero naturally, and the controller presented

in the previous Section must be activated to recover balance.
If the tilt angle naturally goes back to zero, it will with a
velocity at touchdown

dui= VA

If this velocity is beyond a safety limit, the controller pre-
sented in the previous Section must once again be activated,
in order to reduce the impact velocity.

€2y

C. Transitions

The standard posture for the robot is to stand firmly on its
three wheels. When a tilt angle and velocity is detected by the
IMU, two different transitions can happen. Either the impact
estimator considers that the robot should simply switch to the
“landing” controller, and the tilt angle will naturally vanish
with limited impact, or the robot must switch to the active
tilt recovery controller.

When tilting around two wheels, the active tilt recovery
controller is activated, until the impact estimator considers
that the robot should safely switch to the “landing” controller,
and the tilt angle will naturally vanish, with limited impact.

When the “landing” controller is active, the robot simply
waits to stabilize with a firm stance on all three wheels before
switching back to the standard controller presented in [1].

VI. IMPLEMENTATION

The controller and the supervisor presented in the previous
sections have been implemented on Pepper and validated
experimentally in various situations. In this robot, the wheels
of the mobile base are controlled in velocity, while the joints
of the upper body are controlled in position.

But the controller is designed in the previous section
around a third order dynamics, in order to generate smooth
motion. The speed of the mobile base is therefore extracted
and directly used as a control input for the wheels, while
the speed of the CoM of the upper body is transmitted to a
standard Inverse Kinematics algorithm and transformed into
reference joint positions.

The current state of the robot (¢, ?)U, zﬁo) is observed
in the following way. The angular velocity 1/}0 of the base is
directly measured with gyrometers, and differentiated numer-
ically to obtain acceleration. The tilt angle is obtained with
the observer described in [18]. A standard Direct Kinematics
algorithm is used then to obtain the whole state of the mobile
base and upper body, with the help of joint position sensors
and wheel velocity sensors.

VII. EXPERIMENTS

In this section, we are going to present the most simple
situation, when the robot is standing still and suddenly
pushed from behind with varying strength.

The recovery behavior from a small push can be seen
in Fig. VL. In this case, the supervisor does not decide to
activate the controller presented in this paper, and prefers
instead to recover passively from the disturbance, with the
help of gravity. We can observe here how the estimated
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Fig. 5. Experiment 1: Small push recovery experiment. The robot stay in
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Fig. 6. Medium push recovery experiment. (a) The robot enter in tilt state.
(b) The robot enter in landing state. (c) The robot returns in non tilt state

impact velocity is varying, depending on how the disturbance
is evolving.

The recovery behavior from a medium push can be seen
in Fig. VI. At time ¢ = 0.21 s, the impact velocity estimator
triggers a transition to the controller presented in this paper,
and the velocity of the mobile base starts increasing to
compensate for the disturbance. This controller is deactivated
at time ¢ = 1.1 s, when the estimated impact velocity goes
below a threshold at 1.8 rad.s™!, and the supervisor enters
the “landing” state, using only gravity to safely fall back
on all three wheels. The “landing” state is exited at time
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Tilt angle (rd)
— Base velocity (m/s)

Estimated impact velocity (rd/s)
x x Supervisor state

T YL
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ts]
Fig. 7. Strong push recovery experiment. (d) The robot enter in tilt state
Da(edls) | ta(s) || L) [ b(ss) | dm(d) | dicrdss)
Weak pushes
0.30 0.2 0 0 0.06 0.38
0.44 0.4 0.06 0.20 0.16 0.25
0.45 0.2 0 0 0.12 0.42
Medium pushes
0.59 0.2 0.27 0.51 0.20 0.48
0.60 0.4 0.45 0.56 0.24 0.55
0.80 0.2 0.32 0.77 0.21 0.80
Strong pushes
0.58 0.5 0.85 1.4 0.28 0.81
0.61 0.7 1.2 1.5 0.32 0.83
0.78 0.5 1.0 1.8 0.29 0.80

Fig. 8.  Table quantifying the push recovery performance for different
disturbances. 14 is the angular velocity at the end of the disturbance, t4
is the disturbance duration, I, is the traveled length, by, is the maximum
base velocity, ¥y, is the maximum tilt angle and 1); is the angular velocity
at the impact instant.

t = 1.42 s, when the robot has fully recovered a firm stance
on all three wheels, at which point the supervisor can safely
transition back to the standard controller presented in [1].
The recovery behavior from a strong push can be seen in
Fig. VI, where the robot is gradually pushed during 0.6 s. As
a result, the controller presented in this paper is activated at
time £ = 0.5 s, and the mobile base begins accelerating at its
maximum capacity. But this is insufficient to recover balance
and the robot eventually falls, triggering the fall manager at
time ¢ = 1.6 s in order to minimize the impact of the body



on the ground. We can observe that in this case, failure is
mostly due to the physical limits of the robot.

Finally, in Fig. 8, we compare some results about the
performance of the control law. The performance is measured
in terms of traveled length by the robot, maximum velocity
of the mobile base, maximum tilt angle and impact angular
velocity. The disturbance is quantified by its duration and the
angular tilt velocity at the end of the disturbance. The table
is organized in three push categories, with some variations
between the duration of the disturbance and the angular
velocity transmitted to the robot.

Concerning the weak pushes, we can note that the robot
barely moves because the disturbance does not need a strong
effort to recover. Except the second case, the robot is not
moving due to the estimated impact velocity limit which is
not reached.

About the medium and strong pushes, we can note firstly
that the robot needs to move in all cases in order to recover
from the disturbance. Also, we can note that the impact
angular velocity is bounded at a value equal to the estimated
impact velocity limit (in these experiments 0.8rd/s). This
result validates the impact estimator. Finally, we can note
that the travelled length is more related to the disturbance
duration, whereas the mobile base maximum velocity is
more related to the initial angular velocity. This makes sense
because in the case of long pushes, the tilt angle grows more,
and the robot needs more distance to recover its balance. At
the opposite, when the disturbance is strong but short in time,
more acceleration and velocity are needed to avoid the fall.

VIII. CONCLUSION

We have presented a new MPC scheme for the robot
Pepper, which improves on the controller previously intro-
duced in [1], by introducing a capacity to recover from
tilting, when the robot is pushed strongly. It has been
validated experimentally in various situations, but there are
still situations where the physical limits of the robot do not
allow to avoid falling. In such cases, the proposed approach
could be improved by using arm motion, to generate an
additional angular momentum.

We have currently not taken into account potential rota-
tions around the vertical axis, during both the perturbation
and recovery process. In such situations, the behavior of
the robot can be much more complex to control since its
mobile base is not holonomic anymore, with only two wheels
in contact with the ground. This can happen especially in
case of a perturbation while the robot is already moving.
Preliminary experimental results show a strong degradation
of the performance of our controller in such situations.

if the robot detects that obstacles in its surrounding don’t
allow the recovery process to take place, it currently switches
immediately to a safe fall management behavior. This could
also be improved.

Here, we have considered only motion of the robot on a
planar, horizontal ground. On a ground with constant incli-
nation, the situation is very similar, and the only necessary
modification for the proposed controller to work seamlessly

is to shift the position of the CoP on the ground according to
the inclination of the ground. Situations where the inclination
is not constant are more problematic though and require
further refinements.
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