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解 説

Multi-Objective Control of Robots

Dimitar Dimitrov∗1, Pierre-Brice Wieber∗1, Adrien Escande∗1∗2 ∗1INRIA Grenoble ∗2CNRS/AIST JRL

“Prior to linear programming it was not practical to

explicitly state general goals and so objectives were of-

ten confused with the ground rules for the solution. (...)

Thus the means to attain the objective becomes the ob-

jective in itself, which in turn spawns new ground rules

as to how to go about attaining the means (...). These

means in turn become confused with goals.”

G. B. Dantzig

Even though over 20 years old, the above quote still

reflects well a common practice in the field of robotics.

That is, not establishing a clear separation between: (i)

what one wants to achieve, and (ii) how this must be

done. Using high-level goals for posing real-world prob-

lems in mathematical terms can be advantageous since,

at the level of modeling, one need not consider the par-

ticular technique for approaching their solution. In fact,

being able to abstract the problem formulation can be

viewed as a part of the revolutionary development that

followed the birth of the field of linear programming [1],

because practitioners could be trained to cast situations

(of potentially great complexity) in terms of a set of

general goals and rely on available solvers developed by

specialists in the fields of numerical analysis and opti-

mization. Such separation leads to a reliable solution

process.

In this note we argue that the ability to define typical

robotic problems in terms of lucid goals is beneficial not

only from the point of view of clarity of presentation,

but also for efficiency of computations. Our main point

is that this can be achieved through the explicit use

of multi-objective formulations. By means of several
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examples, we illustrate the advantages of this modeling

approach and suggest that, by leveraging standard tools

from the field of multi-objective optimization, such for-

mulations can be resolved reliably and efficiently.

We summarize some recent developments of (the al-

ready classical in the field of robotics) task prioriti-

zation, among which the fact that hierarchical prob-

lems can be interpreted as a particular type of multi-

objective models.

1. Multi-criteria decision making

Multi-criteria decision making has been popular for

many decades and a variety of optimization techniques

for facilitating it has been developed. The ability to

handle multiple criteria provides more expressive mod-

els, leading to an increase in flexibility and reliabil-

ity of design, control, and estimation schemes. The

key question in many areas is how to define what is

a good/desirable behavior of a given process and often

the answer involves the specification of multiple conflict-

ing objectives. Conflicting objectives occur naturally in

typical robotics problems. For example, consider a ma-

nipulator arm mounted on a free-floating base. Then,

due to the momentum conservation, the objective of

tracking a given end-effector profile would conflict with

the objective of preserving the posture of the base.

Resolving conflicts between objectives usually re-

quires the participation of a human decision-maker who

can express preference relations between alternative so-

lutions. The involvement of a decision-maker can come

at different stages of the solution process. In some appli-

cations, solving a multi-objective optimization problem

is defined as the generation of the pareto-optimal sur-

face, at which point a decision-maker can analyze the

results and choose the most appropriate pareto-optimal

point. This technique, however, might be inadequate

to the needs of other applications e.g., real-time robot
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control. An alternative approach, which we adopt, is

based on including the preference information directly

in the definition of the problem. In this way, during

the modeling phase, one can ensure that only solutions

with desired properties would be generated.

1. 1 Goal programming

In this note we focus on one particular variant of

multi-objective optimization referred to as goal pro-

gramming (GP). This is one of the first formulations

specifically dedicated to handling multiple criteria and

still is one of the most widely used decision making tech-

niques (a recent account can be found in [2]). Let fk(x),

k = 1, . . . , P denotes the k-th (scalar-valued) objective

function. GP models can be classified into two major

categories. In the first category, each objective func-

tion is assigned a non-negative weight according to its

relative importance and the following single-objective

optimization problem is defined

minimizex∈X λkf1(x) + · · ·+ λP fP (x), （1）

where X is a set of constraints on the decision variables.

In general, this technique is referred to as scalariza-

tion of a multi-objective problem. Note that different

pareto-optimal points can be generated by varying the

weights.

The second class of GP models addresses the case

where the decision-maker cannot (meaningfully) assign

finite trade-offs among the goals. That is, when the

minimization of some objectives is infinitely more im-

portant that the minimization of others. In order to

reflect this during the modeling stage, each objective is

assigned a priority level (instead of a weight). This can

be expressed as the following optimization problem

lexminimizex∈X f = (f1(x), . . . , fP (x)) ,（2）

where the vector-valued objective function f is mini-

mized according to a lexicographic order.

An interesting statistics presented in [3] shows that

the lexicographic approach is used in approximately

80% of the reported applications. Hence, lexicographic

optimization is not only an attractive theoretical for-

mulation but a widely used tool in practice.

1. 2 Task prioritization: a lexicographic inter-

pretation

Here, we draw parallel between the lexicographic op-

timization problem（2）and task prioritization. Recall

that a common setting in robotics is to be given P

tasks/goals of the form Akx = yk, k = 1, . . . , P with

decreasing levels of priority, that is, solving the i-th

system of linear equations (in a least-squares sense) is

infinitely more important that solving the j-th one for

i < j. Note how this problem can be cast directly in the

form（2）by using fk(x, r) = ∥rk∥22, where X is defined

as the set of pairs (x, r) that satisfy
A1

...

AP

x−


r1
...

rP


︸ ︷︷ ︸

r

=


y1
...

yP

 .

The variable rk can be interpreted as the constraint

violation (or residual) of the k-th system of linear equa-

tions. Observe that, for this choice of the objective func-

tions fk,（1）is simply a weighted least-squares problem,

and as demonstrated (both in theory and in practice)

in [4] it is more expensive to solve compared to the lex-

icographic variant（2）. The above equivalence can be

taken one step further and introduce inequality con-

straints in the formulation by redefining X to be the

set of pairs (x, r) that satisfy bk ≤ Akx − rk ≤ uk,

k = 1, . . . , P . Clearly, the equality-constrained prob-

lem is recovered by using uk = bk.

The fact that task prioritization can be interpreted as

a lexicographic optimization problem was first pointed

out in [5]. Such a recognition is important since classical

approaches (developed in the field of multi-objective op-

timization) can be leveraged. One such approach, which

is based on the solution of a sequence of inequality-

constrained optimization problems, was rediscovered in

the field of robotics only relatively recently in [6].

Beyond efficiently solving a hierarchical problem,

casting it in the form（2）provides the possibility to

consider some of the, already available, analysis related

to good modeling practices and common pitfalls. It is

interesting to observe that many of the issues discussed

in [7] are relevant to robotics applications. In addition,

there are existing numerical tools for handling hierar-

chies with objectives involving ℓ1 and ℓ∞ norms, which

lead to solutions with different properties (that might

be desirable in some situations). The fact that formula-

tion（2）is rather abstract can be very convenient dur-

ing the design phase of control schemes (as we discuss

next).
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2. Controller design

Modeling problems in a hierarchical framework can be

very beneficial. Here we illustrate this on an example

from the field of space robotics.

The equation of motion of a system with flexible base

can be put in the following form [9][
Hm HT

bm

Hbm Hb

]
︸ ︷︷ ︸

H

[
θ̈

ẍb

]
︸ ︷︷ ︸

q̈

+

[
hm

hb

]
︸ ︷︷ ︸

h

=

[
I

0

]
︸︷︷︸
S

τ +

[
0

db

]
, （3）

where θ̈ ∈ Rn and ẍb ∈ R6 denote the generalized ac-

celerations of the manipulator joints and base, respec-

tively. The torques τ ∈ Rn delivered by joint motors

constitute the control input of the system, while the

disturbance db = −Dbẋb −Kb∆xb excites the base dy-

namics, whereDb andKb are positive-definite (symmet-

ric) matrices and ∆xb is the offset of the base from its

equilibrium posture. For the motivation behind such a

model refer to [10].

One of the typical problems that should be addressed

in the context of systems with flexible components is the

occurrence of vibrations. Assuming that such vibrations

have already been excited, we are interested in finding

manipulator motions that would facilitate their suppres-

sion. A controller that achieves this can be designed

by finding a feasible pair (q̈, τ) such that ẍb = −Gbẋ

with Gb being an appropriately chosen positive-definite

(symmetric) matrix. Intuitively, the aim is to produce

base accelerations that damp the base velocity (and thus

the vibrations). In [9] this has been demonstrated to

lead to a damped vibration closed-loop system (with

desired properties). In a hierarchical form, such a con-

troller can be described as

(Hq̈ = Sτ − h) ≻ (ẍb = −Gbẋ) ≻ (θ̈ = 0),（4）

where the decision variables are (q̈, τ). We will adopt

the above notation as a convenient alternative to ex-

plicitly stating a lexicographic least-squares problem in

the form（2）(a similar approach is taken in [8]). Solv-

ing（4）implies finding a pair (q̈, τ) that satisfies the

dynamics of the system, and ẍb damps the base veloc-

ity as much as possible (in a least-squares sense). The

terminal objective is optional and ensures obtaining a

solution such that the Euclidean norm of the joint ac-

celerations is minimized (the use of other terminal ob-

jectives could be envisioned). Note that db is assumed

to be unmodeled dynamics.

It is worth pointing out that one can reformulate（4）
in a variety of ways and still achieve the vibration sup-

pression task ẍb = −Gbẋ. Probably the simplest refor-

mulation would be to eliminate τ from the decision vari-

ables and modify the first objective as Hbmθ̈ +Hbẍb =

−hb. Once a solution q̈⋆ is obtained, one can com-

pute the corresponding torques by substituting q̈⋆ in

the upper part of（3）. This procedure leads to the

same result as（4）. Another possibility would be to

eliminate q̈ by expressing θ̈ as a function of τ and using

ẍd = −Gbẋ. After substituting the resultant expression

into the lower part of（3）one can solve for the joint

torques. If the Moore-Penrose pseudo-inverse is used

for obtaining τ⋆, this method would be equivalent to

the hierarchy（4）but with a terminal objective τ = 0.

Out of various alternatives, the authors of [9] choose to

make yet another elimination which leads to the same

result as（4）.
Performing different variable eliminations puts em-

phasis on how to solve rather than what to solve.

In many cases this can obscure the controller design.

For example, in [9] it is not emphasized that the ac-

tual vibration suppression task is ẍb = −Gbẋ. This

is a very common practice in robotics. The urge to

eliminate variables has led to a variety of formulations

of equivalent control schemes – a similar observation

can be found in [11]. Contrary to common beliefs, how-

ever, reducing the number of variables (by using var-

ious elimination techniques) does not necessarily lead

to faster computations [12]. In fact, if not properly de-

signed, such problem reformulations may lead to a much

slower or even unreliable solution process.

Keeping things at a slightly more abstract level (e.g.,

formulation（4）) emphasizes the actual tasks and not

a particular approach for their resolution. In this way,

for example practitioners can easily understand the mo-

tivation behind a given approach instead of being lost

in derivations that are often not directly related to it.

Hence, they would be able to actively contribute during

the model development, given their hands-on experi-

ence. The above argument is very close to the origi-

nal rationale behind the operational-space formulation,

which aims at “The description, analysis, and control of

manipulator systems with respect to the dynamic char-

acteristics of their end-effectors” [13]. The main differ-

ence is that we do not insist on obtaining a formulation
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in minimal number of coordinates. With reference to

hierarchy（4）, note that the motion profile of the refer-

ence point on the base body, appearing in the second

task, strictly inherits (by virtue of being with lower pri-

ority) the dynamical characteristics imposed by the sys-

tem at the first hierarchical level. Thus, one can think

of a lower-level task, that might involve only “kinematic

quantities”, related to a given end-effector as an implicit

operational space formulation.

Choosing to reduce the number of levels of a given

hierarchy to the point that only a minimal number of

coordinates is left might, in some cases, be important

for the purposes of analysis. What we argue above

is that implementing literally such “analytical” formu-

las should be avoided since often it results in ineffi-

cient computations (Section 3 includes some further re-

marks). Moreover, the benefits of avoiding preliminary

problem condensing becomes especially evident when

inequality constraints are considered. Our general con-

clusion here is that one should not be “afraid” to for-

mulate problems with large number of variables since

it is not the size but the structure of a problem that

counts – and a hierarchy leads to such structure which,

if exploited properly, can result in very fast and reliable

computations (see [4] [5]).

3. Analytical expressions

Here we include some remarks about the direct use of

analytical expressions in numerical computations. We

motivate the discussion with an example. Assuming

zero initial momentum and no external forces acting on

the system (e.g., db = 0), the lower part of（3）can be

integrated to obtain the momentum conservation equa-

tion [
Hbm Hb

]
︸ ︷︷ ︸

Hc

q̇ = 0 （5）

Furthermore, let the relation between q̇ and the velocity

ṗ of some end-effector be defined as[
Jm Jb

]
︸ ︷︷ ︸

J

q̇ = ṗ. （6）

The hierarchy（5）≻（6）(with decision variable q̇) is

popular in the field of space robotics. If ẋb is elimi-

nated from it, one recognizes the Schur complement of

Hb

JG = Jm − JbH
−1
b Hbm = J

[
I

−H−1
b Hbm

]
︸ ︷︷ ︸

Nc

,（7）

which has been labeled as the “generalized Jacobian”

matrix [14]. Note that the columns of Nc form a basis

for the null-space of Hc.

Matrices of the type JN occur naturally after the

elimination of equality constraints. The machinery of

such elimination, however, permits choosing matrices N

of various properties and sizes, e.g., N could be chosen

to be a projection matrix, in which case JN is some-

times referred to as a “restricted Jacobian” [15]. De-

pending on the specific application, various names can

be encountered. For example several elimination steps

on the hierarchy (ω = 0) ≻（5）≻（6）lead to the so

called “fixed-attitude restricted Jacobian” [16]. In [17],

JN has been called a “task-consistent posture Jaco-

bian” etc.

It is worth pointing out that, in the robotics liter-

ature, the motivation behind choosing a specific N is

often missing or incomplete. Furthermore, this choice

is rarely made bearing in mind actual numerical compu-

tations. While in certain cases this might be of smaller

importance, e.g., when analyzing the singularities of

JG [18], in others, neglecting to consider the computa-

tional burden might lead to discarding the use of per-

fectly viable approaches (due to high computational de-

mand). For example, often in the definition of N ap-

pears a generalized inverse of a given matrix. As a re-

sult, many practitioners and researchers assume that

forming such generalized inverse explicitly is a natural

step towards the solution of the problem, while this is

simply a step towards the implementation of the specific

formulation (refer to Dantzig’s quote). Further issues

related to the choice of N , its implications and related

numerical analysis are addressed in [4].

4. Numerical example

Here we present an example including some typical

tasks for the system（3）. A planar manipulator with

four revolute joints mounted on a flexible base is con-

sidered. Each of the five links is 1 meter long with

mass 1 [kg] and an identity inertia matrix. The ini-

tial offset of the base from its equilibrium posture (the

origin) is ∆xb = (0.01, 0.01, 0, 0, 0, 0) and vibrates ac-

cording to Kb = 1000E, Db = 0.1E, where E =

日本ロボット学会誌 32 巻 6 号 —25— 2014 年 7 月
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Fig. 1 Joint angles. Dashed lines represent the profiles
when constraints
on joint angles have not been imposed.

Fig. 2 Joint torques (bounded between [−2, 2]).

diag(1, 1, 0, 0, 0, 0).

The controller is defined in terms of the following hi-

erarchy (with decision variables (q̈, τ))

(τ b ≤ τ ≤ τu) ≻ (Hq̈ = Sτ − h) ≻ (θ̇b ≤ θ̇ ≤ θ̇u) ≻

(θb ≤ θ ≤ θu) ≻ (Jeq̈ + J̇eq̇ = −DeJeq̇) ≻

(ω̇z = −Dωwz −Kωaz) ≻ (v̇x,y = −Dvvx,y) ≻ (θ̈ = 0),

where ẍb = (v̇, ẇ), az is the angle (around the z-axis)

of the base and Kω = 40, Dω = 10, Dv = 30, De = 10,

Dm = 5 are gains. Je denotes the Jacobian matrix

of the “end-effector”. Following the approach in [9], the

torque τ⋆ (obtained after resolving the above hierarchy)

is modified to τ⋆ −Dmθ̇ before applying it to the sys-

tem (such joint damping can be achieved in alternative

ways).

The first, third and fourth hierarchical levels define

Fig. 3 Joint angular velocities (“bounded” between
[−0.2, 0.2]).

Fig. 4 Base position (x and y axis).

tasks involving inequality constraints (however, the only

“hard-constraints” are the simple bounds on τ , while

the others can be violated depending on the conflicts in

the hierarchy). The dynamics of the system is imposed

at the second level (and, by design, it does not con-

flict with the torque limitations). The fifth and seventh

task damp the motion of the end-effector and base (lin-

ear motion), respectively. The sixth task is dedicated

to preserving zero base orientation, while the terminal

objective states that obtaining a solution with minimal

Euclidean norm of θ̈ is preferred. The bounds for θ̇ and

θ are formed in a standard way [8] with the only differ-

ence that the feed-forward joint damping −Dmθ̇ has to

be accounted for (the same applies for the bounds on

τ).

The results are depicted in Figures 1 to 6. Dur-

ing the first three seconds of the simulation the system
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Fig. 5 Base orientation (z axis).

Fig. 6 End-effector position (x and y axis).

is uncontrolled. After control is applied, the base vi-

brations starts to attenuate with a fixed rate (the joint

torques are saturated). Just before the 6-th second, the

upper bound 0.7 for the third joint angle is reached.

The effects of the unmodeled dynamics (db) can be seen

in Fig. 3 where small violations of joint velocity bounds

(not due to conflicts with higher priority tasks) occur.

The simulations were performed on an Intel Core 2

Duo CPU (2.26GHz, P8400) using g++ 4.6.3 with -O3

optimization, the mean computation time is 61µs (i.e.,

microseconds), while the maximum one is 216µs.

The arrangement of the hierarchy could be modified

to obtain alternative prioritizations. For example, one

might be interested in assigning higher priority to the

base vibration task (in which case, there would be no

need to re-derive expressions). If the tasks involving in-

equality constraints are removed, the vibrations of the

base are suppressed faster, however, this comes at the

expense of much higher joint angular rates. The com-

putation time in this case (i.e., 5 objectives involving

only equality constraints) is 9 [µs].

5. Conclusion

In this note we emphasized that the separation of the

definition of a problem from considerations related to its

solution is important because: (i) it improves the clar-

ity of presentation, and (ii) efficiency of computations.

Our main point is that such separation can be achieved

through the explicit use of multi-objective formulations.
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