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Abstract:  This work focuses on dynamic DAG scheduling under memory constraints.
We target a shared-memory platform equipped with p parallel processors. We aim at
bounding the maximum amount of memory that may be needed by any schedule using p
processors to execute the DAG. We refine the classical model that computes maximum cuts
by introducing two types of memory edges in the DAG, black edges for regular precedence
constraints and red edges for actual memory consumption during execution. A valid edge
cut cannot include more than p red edges. This limitation had never been taken into
account in previous works, and dramatically changes the complexity of the problem, which
was polynomial and becomes NP-hard. We introduce an Integer Linear Program (ILP)
to solve it, together with an efficient heuristic based on rounding the rational solution of
the ILP. In addition, we propose an exact polynomial algorithm for series-parallel graphs.
We provide an extensive set of experiments, both with randomly-generated graphs and
with graphs arising form practical applications, which demonstrate the impact of resource
constraints on peak memory usage..
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Ordonnancement dynamique de graphes de taches
avec contrainte mémoire sur plate-forme & mémoire
partagée

Résumé : Nous étudions 'ordonnancement de graphes de taches sous
contrainte mémoire, et proposons un nouveau modéle qui prend en compte
le caractére limité des ressources. Nous montrons que déterminer la ressource
mémoire maximale nécessaire & tout ordonnancement dynamique devient un
probléme NP-complet,. Nous proposons un programme linéaire en nombres
entiers et une heuristique pour le résoudre. Nous conduisons un ensemble de
simulations sur des graphes aléatoires ou issus d’applications, et démontrons
tout 'impact de la limitation de ressources sur la consommation mémoire
maximale.

Mots-clés : ordonnancement dynamique, graphe de taches, contrainte
mémoire, limitation de ressources



Dynamic DAG scheduling under memory constraints 3

1 Introduction

In the last decade, task systems have become ubiquitous to deploy scientific
applications on large-scale parallel platforms. In such systems, the applica-
tion is represented by a Directed Acyclic Graph (DAG) of tasks, where the
nodes represent the tasks (a computational kernel composed of a sequential
set of operations to be applied to the input data), and the edges represent the
dependencies between the tasks. The set of dependencies defines a partial
order of execution. The problem is to map the tasks onto a set of p com-
puting processors. In this paper, we target shared-memory platforms, where
available processors consist of dozens of cores that share a main memory. A
traditional objective is to determine a scheduling that minimizes the total
execution time, or makespan. The makespan minimization problem has re-
ceived considerable attention in the scheduling literature. On the theoretical
side, many complexity results establish NP-hardness and inapproximability
results. On the more practical side, several list heuristics have been de-
veloped to achieve close-to-optimal makespans. These heuristics typically
alm at minimizing the critical path of the schedule, and use estimations of
task priorities such as bottom levels [Il 2]. However, all these heuristics are
designed statically, meaning that they assign tasks to processors in a pre-
determined ordering, before the beginning of the parallel execution. It turns
out such static strategies are unlikely to reach their expected performance,
and this for many reasons: (i) task duration estimates are known to be inac-
curate and may be affected by unexpected preemptions by the system; (ii)
data transfer costs on the platform are hard to correctly model and signif-
icantly vary from one execution to another, because they strongly depend
upon link contention; and (iii) the resulting small estimation errors are likely
to accumulate and to cause large delays. Altogether, static heuristics end
up making wrong decisions!

This explains why most runtime systems [3], [4} [5], [6], [7, 8] rely on dynamic
scheduling, where task allocations and their execution ordering are decided
at runtime, based on the system state and unexpected events. These runtime
systems dynamically maintain the list of tasks that are ready for execution,
and assign them on-the-fly to processors, thereby accurately balancing the
workload. However, not all dynamic schedules are equally good, because
of memory constraints. Intuitively, a dynamic scheduling can be seen as a
parallel traversal of the task graph, with all processors progressing simulta-
neously on different paths. At any time-step in the execution, the amount
of memory needed for the traversal depends upon the input and output data
of the tasks that are active at that step (see Section [3|for a detailed descrip-
tion), and this memory amount should never exceed the maximum memory
made available to the application. Otherwise, the traversal will require the
use of swap mechanisms or out-of-core execution, which will dramatically
(and negatively) impact the achieved makespan [9] [10].
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Dynamic DAG scheduling under memory constraints 4

Consider a task graph whose internal nodes require a large volume of tem-
porary data, such as graphs arising from multifrontal solvers [I1]. Improper
scheduling decisions may lead dynamic schedules to hit a memory wall at
some step while everything was going fine in the previous steps; the dynamic
schedule suddenly reaches a state where any further decision (any choice of
the next task to execute) will exceed the amount of available memory. This
unfortunate scenario arises because dynamic schedules usually consider only
tasks that are ready for execution, and have thus a very limited insight into
the fraction of the task graph that is yet to be discovered and processed. To
avoid such a pitfall, some global information on the task graph is required
to guide the dynamic schedule and enforce safe execution paths.

In summary, dynamic scheduling is needed for performance, but one
should ensure that any dynamic schedule that can be produced by the run-
time system will never exceed the total amount of memory available to the
application. There are few existing studies that take dynamic memory foot-
print into account when scheduling task graphs, as detailed below in Sec-
tion In our previous work [12] [I3], we have proposed an approach to
ensure that any dynamic schedule never exceeds the available memory. In
a nutshell, the idea is to introduce fictitious dependencies in the task graph
to cope with memory constraints: these additional edges restrict the set
of valid schedules and, in particular, forbid the concurrent execution of too
many memory-intensive tasks. Formally, the additional edges are introduced
to decrease the value of the maximal directed cut of the task graph, where
the cut represents the total memory currently used after executing some
tasks (those on one side of the cut) and before executing the rest of the
tasks (those on the other side of the cut). There is a price to pay: each
additional edge adds a fictitious dependence constraint, thereby limiting the
degree of parallelism in the execution. We provide a detailed overview of
this approach in Section

However, this previous work [12] [I3] does not account for resource lim-
itation: there are only p processors, hence no more than p tasks can be
processed concurrently. In terms of memory usage, ignoring resource limita-
tion translates into considering too many potential cuts, thereby requiring
too many fictitious edges, which unduly constraints the dynamic schedules.
In this paper, we refine the standard model for memory-aware scheduling and
introduce the first mechanism to take resource limitation into account. Our
new model involves two types of memory edges in the DAG, black edges for
regular precedence constraints, and red edges for actual memory consump-
tion during execution. Then a valid edge cut cannot include more than p red
edges. This limitation dramatically changes the complexity of the problem,
which was polynomial with a single edge type and becomes NP-hard with
two edge types. We provide an optimal solution for series-parallel graphs
and an efficient heuristic for arbitrary graphs. The main contributions of
this paper are the following:
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Dynamic DAG scheduling under memory constraints 5

e We introduce a new model with colored edges to account for resource
constraints when computing peak memory;

e We show that the optimization problem becomes NP-complete, but we
introduce an Integer Linear Program (ILP) to solve it, together with
an efficient heuristic based on rounding the rational solution of the
ILP. We also propose an exact polynomial algorithm for series-parallel
graphs (SPGs);

e We provide an extensive set of experiments, both with randomly-
generated graphs and with graphs arising form practical applications,
that demonstrate the impact of resource constraints on peak memory
usage.

The rest of the paper is organized as follows. We first briefly review the
existing work on memory-aware task graph scheduling in Section [2} We pro-
vide background on memory-aware scheduling in Section [3] Then, Section []
is the core of the paper: we introduce the new model, assess its complexity,
provide an optimal algorithm for Series Parallel Graphs, and discuss exten-
sions. Section [5] is devoted to simulations both with randomly-generated
graphs and with graphs arising form practical applications; we compare the
solution compute by an ILP solver together with the solution found by an
efficient polynomial-time heuristic. Finally, we conclude and give hints for
future work in Section [6

2 Related work

Memory and storage have always been limiting parameters for large com-
putations, as outlined by the pioneering work of Sethi and Ullman [14] on
register allocation for task trees, modeled as a pebble game. The problem of
determining whether a directed acyclic graph can be pebbled with a given
number of pebbles (i.e., executed with a given number of registers) has been
shown NP-complete by Sethi [I5] if no vertex is pebbled more than once (the
general problem allowing recomputation, that is, re-pebbling a vertex which
have been pebbled before, has been proven PSPACE complete [16]).

This model was later translated to the problem of scheduling a task graph
under memory or storage constraints for scientific workflows whose tasks
require large 1/O data. Such workflows arise in many scientific fields, such
as image processing, genomics, and geophysical simulations. In several cases,
the underlying task graph is a tree, with all dependences oriented towards the
root, which notably simplifies the problem: this is the case for sparse direct
solvers [17] but also in quantum chemistry computations [I8]. For such trees,
memory-aware parallel schedulers have been proposed in [19], and the impact
of processor mapping on memory consumption has been studied in [10].

The problem of general task graphs handling large data has been identi-
fied by Ramakrishnan et al. [9] who introduced clean-up jobs to reduce the
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memory footprint and propose some simple heuristics. Their work was con-
tinued by Bharathi et al. [20] who developed genetic algorithms to schedule
such workflows. More recently, runtime schedulers have also been confronted
to the problem: in the StarPU task-based runtime system, attempts have
been made to reduce memory consumption by throttling the task submission
rate [21].

As explained in the introduction, we have previously proposed a way to
restrict the potentially large memory needed for the traversal of a task graphs
by adding fictitious edges [12), [13]. Our method consists in first computing
the worst achievable memory of any parallel traversal, using either a linear
program or a min-flow algorithm. Then if the previous computation detects
a potential situation when the memory exceeds what is available on the
platform, we add a fictitious edge in order to make this situation impossible
to reach in the new graph. This study is inspired by the work of Sbirlea
et al. [22]. In that study, the authors focus on a different model, in which
all data have the same size (as for register allocation). They target smaller-
grain tasks in the Concurrent Collections (CnC) programming model [23],
a stream/dataflow programming language. Their objective is, just as ours,
to schedule a DAG of tasks using a limited memory. To this purpose, they
associate a color to each memory slot and then build a coloring of the data,
in which two data items with the same color cannot coexist. If the number
of colors is not sufficient, additional dependence edges are introduced to
prevent too many data items to coexist. These additional edges respect a pre-
computed sequential schedule to ensure acyclicity. An extension to support
data of different sizes is proposed, which conceptually allocates several colors
to a single data, but is only suitable for a few distinct sizes.

While our previous study [12] 13] is a first step towards the design of
efficient memory-bounded dynamic schedulers, it suffers from major short-
comings that prevents its use in actual runtime schedulers:

e First, the running time of the algorithm is too high: computing the
worst possible memory, while done in polynomial time, is expensive
(O(n?) for a dense graph with n vertices), and it has to be called after
each edge insertion, so potentially O(n?) times.

e Second, the algorithm assumes an unlimited number of processors, and
thus the simultaneous execution of infinitely many tasks. Thus, it
dramatically overestimates the amount of memory that may actually
be needed by a parallel processing of the DAG.

In the present work, we alleviate both problems, through a new model to
finely take the number of processors into account, and a new algorithm with
much reduced complexity for a special case of task graphs (series-parallel
graphs).

Finally, a recent paper studies the problem of computing the maximum
memory of a multithreaded computation [24]. Their model is more complex
and dedicated to Cilk programs, with the objective to derive low-complexity
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algorithms for this problem (typically linear-time algorithms).

3 Background

In Section 3.1} we introduce the SIMPLEDATAFLOWMODEL [12, [13] to study
memory usage for general DAGs. This model is a natural extension of
the original pebble game [I4], and of the model introduced by Liu for tree
graphs [I7]. Then in Section we discuss how to emulate more realistic
models, and outline the limitations of the current approach.

3.1 The SIMPLEDATAFLOWMODEL

The target application is described by a workflow of tasks whose precedence
constraints form a DAG G = (V, E). Each node i € V represents a task and
each edge e € E represents a precedence constraint, expressed in the form
of output and input data. The processing time necessary to complete a task
1 € V is denoted by w;. The memory usage of the computation is modeled
only by the size of the data produced by the tasks and represented by the
edges. Specifically, for each edge e = (4, j), we denote by m. or m; ; the size
of the data produced by task 7 for task j. We assume that G contains a
single source node s and a single sink node ¢; otherwise, one can add such
nodes along with appropriate edges of zero weight. An example of such a
graph is illustrated in Figure .

6
2 : 4
20 25

10 @ 15

) 20 40 3
O 5
Figure 1: Example of a workflow, (red) edge labels represent the size m; j of

associated data, while (blue) node labels represent their computation weight
w;.

Memory consumption rules are remarkably simple in the SIMPLEDATAFLOW-
MODEL. In the model, at the beginning of the execution of a task i, all input
data of ¢ are immediately deleted from the memory, while all its output data
are allocated to the memory. We introduce the following definitions for the
total input and output size of a node i € V:

ilG)eE jl@.j)EE
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Now, the total amount of memory Mys.q needed to store all necessary data
is transformed as follows when task 7 is executed:

Mysed  Mysea — Inputs (i) + Outputs (1) .

The SIMPLEDATAFLOWMODEL may seem unrealistic, because when we start
executing a task, its inputs are immediately deleted and we only allocate
memory for its outputs. In many scientific applications, it is required to
store both the inputs and the outputs throughout the execution of the task,
and maybe to allocate space for some temporary data internal to the task.
Fortunately, many complex memory behaviors, including the latter one with
input, output and temporary data co-existing in memory, can be emulated in
the SIMPLEDATAFLOWMODEL, via some elementary transformations of the
input DAG. Together with its simplicity, this versatility explains the appeal
of the the SIMPLEDATAFLOWMODEL and its usage in the literature |17, 12,
13].

We detail elementary transformations to account for more complex mem-
ory consumption rules in Section [3.2] Beforehand, we explain how to esti-
mate peak memory usage in the SIMPLEDATAFLOWMODEL. A schedule or
parallel execution of a DAG with p processors is defined by:

e An allocation p of the tasks onto the processors (task ¢ is computed

on processor ((7));

e The starting times o of the tasks (task i starts at time o(7)).

As usual, a valid schedule ensures that data dependences are satisfied (o(j) >
o (i) + w; whenever (7,7) € E) and that processors compute a single task at
each time step (if (i) = p(y), then o(j) > o(i) + w; or o(i) > o(j) + wj).
When considering parallel executions, we assume that all processors use the
same shared memory, whose size is limited. We say that the data associated
to the edge (i,7) is active at a given time-step if the execution of i has
started but not that of j. This means that the (output) data of i is present
in memory.

We now compare parallel and sequential schedules. A sequential schedule
S of a DAG G is defined by a total order o of its tasks. Clearly, the memory
used by a sequential schedule at a given time-step is the sum of the sizes
of the active data. The peak memory of such a schedule is the maximum
memory used during its execution, which is given by:

Mpeax(0) = max Z Outputs (§) — Inputs (§) (1)
" jsto()<ol)

where the set {j s.t. 0(j) < o(i)} represents the set of tasks started before
task ¢, including itself. KEquation demonstrates the simplicity of the
SIMPLEDATAFLOWMODEL, where input data are replaced by output data
as the execution progresses.

RR n°® 9323



Dynamic DAG scheduling under memory constraints 9

Furthermore, Equation allows us to state a prominent feature of the
SIMPLEDATAFLOWMODEL: there is no difference between sequential sched-
ules and parallel executions as far as memory is concerned! More precisely,
for each parallel execution (u, o), there exists a sequential schedule with
equal peak memory: simply consider a sequential schedule that starts tasks
in the same order as the parallel execution (see the detailed proof in [13]). A
key consequence is that we can bound the maximum memory of any parallel
execution: it is equivalent to computing the peak memory of a sequential
schedule. Then, to compute the peak memory of a sequential schedule, we
define a topological cut (S,T") of a DAG G as a partition of G in two sets of
nodes S and T such that s € S, t € T, and no edge is directed from a node
of T' to a node of S. An edge (i, j) belongs to the cut if i € S and j € T'. The
weight of a topological cut is the sum of the weights of the edges belonging to
the cut. For instance, in the graph of Figure |1} the cut ({s,a, b}, {c,d,t}) is
a topological cut of weight 11. Note that this cut would not be a topological
cut if the edge (d,a) was present in the graph. In the SIMPLEDATAFLOW-
MODEL, the memory used at a given time is equal to the sum of the sizes of
the active output data, which depends solely on the set of nodes that have
been executed or initiated. Therefore, the maximal peak memory of a DAG
is equal to the maximum weight of a topological cut. It turns out that there
exists an algorithm to compute a maximal topological cut with polynomial
complexity O (|V||E|log (|V|?/|E|))[13]. As stated in the introduction, if
the maximal topological cut exceeds the total memory available, we have
proposed in our previous work to add fictitious edges that will go backwards
(from T to S) and will decrease the weight of the cut. Unfortunately, the
approach is very costly [12, [13]: we may need to insert O(|V|?) edges, each
at a cost O(|V]3) if the DAG is dense (with |E| = ©(|V[?)).

3.2 Emulation of more realistic models

As explained above, the SIMPLEDATAFLOWMODEL does not account for
the fact that inputs and outputs of a given task often reside in memory
simultaneously. However, this is a common behavior for scientific appli-
cations, and some studies [25] further account for some temporary data
m;“™ that has to be in memory when processing task i (in addition to task
inputs and outputs). The memory needed for processing task i becomes
Inputs (i) + mzt “"P 4 Qutputs (i). Such a behavior can be emulated in the
SIMPLEDATAFLOWMODEL, as illustrated on Figure 2] Each task i is split
into two nodes i1 and iy. We transform all edges (7, ) in edges (i2,J), and
edges (k,) in edges (k,i1). We also add an edge (i1,72) with an associated
data of size Inputs (i)-+m,"™ + Outputs (i). Task i1 represents the allocation
of the data needed for the computation, as well as the computation itself,
and its weight is thus w;, = w;. Task 72 stands for the deallocation of the
input and temporary data and has weight w;, = 0.

RR n°® 9323
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wi; = 10, m;emp =1 10 0

2 3 2 6 3
—)(:)—> —)()—)(:)—>
Figure 2: Transformation of a task as in [25] (left) to the SIMPLEDATAFLOW-
MODEL (right).

After this transformation, the graph includes two types of edges. The
edges that were originally present in the graph and stand for regular depen-
dencies between tasks are called the black edges. The edges that have been
added to represent computations are called the red edges. Both edge types
have different roles. In particular, there cannot be more than p red edges
in a cut representing an actual state of a parallel computation of the graph
with p processors. We now understand another limitation of the SIMPLE-
DATAFLOWMODEL: while it can emulate parallel executions with realistic
memory rules, computing the maximum cut of the transformed graph will
only provide a loose upper bound of the maximum memory needed by any
dynamic schedule. In other words, we can still compute the maximum cut
of the transformed graph, but it will overestimate the amount of memory
that may actually be needed during a parallel execution of the DAG. One
major contribution of this paper is to introduce a new framework which dis-
tinguishes between black and red edges to account for resource constraints.

4 Resource constraints

We formally state the optimization problem in Section [£.1] and assess its
complexity in Section for general graphs. We also formulate the problem
as the solution of an Integer Linear Program (ILP) in Section and we
introduce an efficient heuristic. Finally, we give an efficient algorithm to
solve the problem series-parallel graphs, or SPGs, in Section [4.4]

4.1 Optimization problem

As outlined in Section when we transform an edge-weighted DAG G to
the SIMPLEDATAFLOWMODEL, the resulting graph contains two different
types of edges: those that correspond to edges of G, and those that corre-
spond to computations (vertices of G). In terms of graph properties, this
can be modeled as a 2-coloring of the edges. In what follows, computation
edges are referred to as red edges, and communication edges as black edges.
Recall that the memory weight of computation edges is the sum of the mem-
ory used by the input, the output and temporary data of the computation.
Therefore, the weight of red edges will likely be larger than that of black
edges, which only carry the weight of input or output data.

RR n°® 9323
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The max-cut of the graph may well go through an arbitrary number of red
edges. However, if the program is scheduled on a platform with p processors,
hence at most p computations can be executed in parallel. Therefore, the
max-cut is an overestimation of maximum memory usage of the program,
and the difference may be quite large especially because red edges have larger
weights. Figure |3]illustrates this scenario.

Figure 3: Example of DAG for which the maxcut is an overestimation of
the maximum memory used. The weight of the maxcut (in blue) is 14. For
p = 1, the max cut with at most 1 computation edge (red edges, green cut)
has weight 10.

The natural question that arises is how to compute the maximum topo-
logical cut of a DAG cutting at most p computation edges. We state this
question formally:

Problem 1. p-MaAXTorCuT Optimization

Input: a« DAG G = (V, E), a weight function m : E — N, a coloring of
the edges ¢ : E — {red,black}, a number of procesors p € N*.

Output: A topological cut C = (S,T) of G, with mazimum weight M*(C') =
Yec(sxT)nE ™€), crossing at most p red edges, i.e. Y .c(gxrnE Le(e)=red <
.

and the corresponding decision problem:

Problem 2. p-MaxTorCuT

Input: a DAG G = (V,E), a weight function m : E — N, a coloring of
the edges ¢ : E — {red,black}, a number of processors p € N*, a memory
bound W € N.

Question: Is there a topological cut C = (S,T) in G, with weight at least
W, crossing at most p red edges?

RR n°® 9323
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In what follows, we will use the term “p-cut” to refer to a topological
cut crossing at most p red edges, and “p-maxcut” for a topological cut with
maximum weight among those crossing at most p red edges.

4.2 Complexity

As discussed in Section computing the maximum-weight topological cut
(without colored edges) of a graph can be done in polynomial time. We
show that adding the constraint on colors of edges makes the problem very
combinatorial:

Theorem 1. p-MAXToprPCUT is NP-Complete

Proof. The p-MAXToOPCUT problem is in NP: the set S of the cut (5,7
is a polynomial certificate. One can check in polynomial time that the cut is
topological, has weight at least W and includes at most p red edges. For the
completeness, we use a reduction from the MAX-K-SUBSETINTERSECTION
(MSI) problem, which is NP-Complete [26]. The MSI problem is the follow-

ing:

Definition 1. Given a set X, C = {Si};cqy, y @ set of | subsets of X, two
integers k < 1 and q, find a subset I C [1,...,n] such that |I| = k and
1 Si
icl

their intersection is greater or equal to q.

> q. In other words, find k subsets S; such that the cardinality of

Consider an instance Z7 of MSI: a set X, C a collection of [ subsets of
X, two integers k and ¢q. Let n = |X|. We build the following instance of
p-MaxToprCuT: G = (V, E), where

V={styU{wli=1,.... 0y U{v;li =1,...,n}
E={(s,u)li=1,..., 03 U{(vj,t)]i =1,...,n}
U {(ui,vj)lz; ¢ Si}

where the edges from s to the u; are red and have weight n + 1, the other
are black. The edges from the v; to ¢t have weight 1, and the edges from
the u; to the v; have weight 0. Finally, let p = k and W = (n+ 1)p + ¢.
See figure . If a node v; has no predecessor (respectively a node u; has no
successor), we can add a black edge (s,v;) (respectively (u;,t)) with weight
0. This allows us to consider the case with only one source and target, but
does not change the rest of the proof, hence we will omit these edges in the
rest of the proof.

Now, assume that Z; has a solution, i.e. there are p subsets (S;);e; of X
whose intersection has cardinality at least ¢. Then consider the cut (S,T)
where

S = {s}U{wli ¢ I} U{v; | no predecessor of v; is in S}

RR n°® 9323



Dynamic DAG scheduling under memory constraints 13

Figure 4: DAG for the reduction: (u;,v;) € B & x; ¢ 5;

and T'=V \ S: it goes through the edges (s, u;) for i € I and through the
edges (vj,t) for x; € (] S;. It is a topological cut, has exactly p red edges
el

and by construction toEG, all the v; corresponding to the x; that are in the
intersection of the S; are not linked to the corresponding u;. Therefore, we
can put at least ¢ of them in S, and the cut crosses at least g edges (vj,t) of
weight 1. Hence, the cut has weight at least p- (n+ 1) 4+ ¢ - 1 (the first term
counts the weight of the red edges, the second term counts the weight of the
(vj,t) edges), and therefore it is a solution to Zs.

Conversely, assume that Zo has a solution, i.e. there exists a topological
cut (S,T) with at most p red edges and weight greater than (n+ 1)p+¢. It
goes through exactly p red edges, otherwise if it goes through less that p red
edges, it can have weight at most (p — 1)(n + 1) + n - 1 as the other edges
carrying weight are the edges of weight 1, and there are only n of them. As
the weight is greater that (n + 1)p + ¢, we get that the cut crosses at least
q edges (vj,t) of weight 1.

Let I = {iJu; € T}, the set of the indices of the subsets corresponding
to the (s,u;) edges crossed by the cut. As remarked above, |I| = p = k,
therefore we have selected exactly k subsets. To show that I is a solution to
NS
el

Let Y = {zj|v; € S} be the set of elements z; such that the edge (vj,t)
is crossed by the cut. As mentioned above, the cut crosses at least ¢ such
edges, therefore |Y| > ¢. For all y € Y, as the cut is topological, we have
that they are not linked to any if the C;,i € I. Therefore, by construction

of G, Vi,y € C;. Hence, y € [ C;, and we get Y C () C;, and therefore
el el

71, we need to show that >q.

N Ci

el

> q, therefore Z; has a solution.

Last, we show that this reduction is polynomial. The size of Z; is n +
[ +1log(q). We do not need to count log(k) as k < [. The created instance
Zy has |V| = n+ 1+ 2 nodes and |E| < n + 1 + nl edges, and weight
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W = np + q, therefore log(W) = O (log(n) + log(p) + log(q)). Therefore
75 has size polynomial in the size of Z;. Therefore, P-MaXxToprPCuT is NP-
complete. ]

4.3 Integer Linear Program and Heuristic

The following Integer Linear Program (ILP) can be used to compute the
p-maxcut:

max Z mmdi’j (2)

(i,j)eE

V(i,j) € E, dij=pi—Dp; (3)

V(i,j) €E, dij =0 (4)

ps=1 (5)

pt =0 (6)

Z isredi,jdm S p (7)
(i,4)€E

Vi, p; € {0,1} (8)

The p variables are used to assign vertices to either S (p; = 1) or T' (p; = 0).
We consider that isred; ; = 1 if ¢(i,j) = red and isred; ; = 0 otherwise.
This ILP is adapted from the one from [I3] which computes the maximum
topological cut of G. A single constraint has been added: Equation ([7)) limits
the number of red edges from S to T to at most p.

In the case of the maximum topological cut without resource constraints,
there is a simple way to solve this ILP by solving it over the rational numbers
and rounding to integers. Unfortunately, due to the additional constraint
(Equation @), the rounding procedure does not give a valid optimal value
in the case of P-MAXToOPCUT. However, this gives the intuition for a heuris-
tic. Starting from a fractional solution of the above linear program and a
threshold value w € [0, 1], we can derive an integer solution as follows: we
take the p;s returned by the rational solution, and set p; to 0 in the integer
solution if and only if we had p; < w in the rational solution (and we let
p1 = 1 otherwise). This describes a topological cut, which might use more
than p red edges. We propose to apply this rounding procedure to all possi-
ble values of w. In practice, we only have to consider all p; rational values for
i=1,...,]V]as well as w = 1. Among these |V|+ 1 values of w, we return
the topological cut with at most p red edges with maximum weight (if any).
Note that this procedure may fail if no rounding produces a cut with less
that p red edges. However, considering all the |V'| 4 1 rounding values makes
this very unlikely. In particular, it never happened in all the simulations
reported in Section [5} the heuristic always found a solution; furthermore,
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that solution was close to the optimal value in most cases (see Section || for
details).

4.4 Series-Parallel Graphs

Series-Parallel Graphs, or SPGs, are widely used in the literature because
they nicely model fork-join types of computations such as BSP (Bulk Syn-
chronous Model) [27], 28]. SPGs are defined inductively as follows:

Definition 2. A series-parallel graph (SPG) is either:

e the “Edge” graph E(m,r) = ({s,t},{(s,t)}): two nodes, the source
and the target, linked by an edge. m is the weight of that edge, r €
{true, false} is true if and only if c(s,t) = red,

e the series composition of two SPGs G1 = (Vi, E1) and Gy = (Va, E»)
(with respective sources and targets (s1,t1) and (s2,t2):

Series(G1,G2) = (V1 U Va, E1 U Es})

with source s = s1, target t = to, with t1 = so in the resulting graph,
e the parallel composition of two SPGs G1 = (V1, E1) and Go = (Va, Es):

PaT(Gl,Gg) = (Vl Uy, By U EQ)

with source s = s1 = S92 and target t = t1 = to.
Series and parallel composition are illustrated on Figure [5

Theorem 2. The P-MAXTOPCUT problem can be solved in time O(|E|p?)
for a SPG graph with |E| edges on a platform with p processors.

Proof. A SPG is a binary tree of its constructors, called its decomposition
tree (see Figure @: leaves of the tree are the edges of the SPG, internal
nodes are the series and parallel constructors. Note that every internal node
has exactly two children, thus the tree is a full binary tree. Furthermore,
given a series-parallel graph, its decomposition tree can be built in linear
time [29, 30).

Furthermore, if G is the series composition of G; and G4, then a topolog-
ical cut of GG is either a topological cut of G or of G2: the topological con-
straints forbid a cut that goes through both. Similarly, if G = Par(Gy, G2),
then any cut of G that goes through G goes through G4 as well. Therefore,
a topological cut of G with p red edges will cross k red edges in G1 and p — k
red edges in Ga, for some k,0 < k < p. Finally, if G is a red edge (s,t), it
has no topological cut with zero red edges, and one nonempty topological
cut: ({s},{t}). If G is a black edge, then its maxcut is ({s}, {t}).

Let M (G, k) denote the weight of the k-maxcut of a SPG G. The previous
remarks lead to the following formulas:
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GQ
@{@ of @~@
— @<@<@~@

Par(G1,Gs) :

Figure 5: Example of series and parallel composition of SPGs

Graph G

©OOE

Figure 6: Example of SP Graph (left) and its decomposition tree (right).
S = Series constructor, P = Parallel, £ = Edge.
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M(Edge(m,r), k) = m,Vk > 1,Vr € {True, False} 9)

M (Edge(m,True),0) = —oc0 (10)
M(Edge(m, False),0) =m (11)
M(Serie(G1,G2), k) = max {M(G1,k), M (G2, k)} (12)
M(Par(Gy,G), k) = max {M(G1,j) + M(Ga,k—j)}  (13)

Using these formulas, one can compute M (G, k) using the values of
M(Gh1,i),i = 1...p and M(G2,j),j = 1...p in time O(p) for each k =
1...p, hence in total time O(p?). Using dynamic programming and storing
the values of M (G’,i),i = 1...p for all G’ in the decomposition tree of G,
one can compute the p-maxcut of G in time O(p?- N), where N is the num-
ber of nodes in the decomposition tree of G. To conclude on the complexity,
we need to show that N = O(|E|). It is well-known that for any [ > 1, a full
binary tree (i.e. each node is either of leaf or has two children) with [ leaves
has exactly 2] — 1 nodeﬂ. Using the fact that the leaves of the decomposi-
tion tree of G are exactly the edges of G, we obtain that N = 2|E| — 1, and
therefore the algorithm runs in time O(|E|p?). O

5 Simulation results

In this section, we perform simulations to assess the impact of resource con-
straints on the memory peak for dynamic schedulers. We also study whether
the rounding heuristic described in Section [£.3] succeeds to compute a p-
maxcut close to the optimal one.

5.1 Datasets

We used both synthetic task graphs and graphs from classical HPC applica-
tions. Specifically, we report experiments for five datasets. The first dataset
is generated using the DAGGEN software [31]. We use the same parameters
that were used to produce a dataset widely used in the scheduling litera-
ture [32, [33] [I3]. These graphs count between 10 and 100 tasks.

Five parameters influence the generation of these DAGs. The number
of nodes belongs to {10,25,50,100}. The width, which controls how many
tasks may run in parallel, belongs to {0.2,0.5,0.8}. The regularity, which
controls the distribution of the tasks between the levels, belongs to {0.2,0.8}.
The density, which controls how many edges connect two consecutive levels,
belongs to {0.2,0.8}. The jump, which controls how many levels an edge
may span, belongs to {1,2,4}. Combining all these parameters, we get a
dataset of 144 DAGs.

1See https://en.wikipedia.org/wiki/Binary_tree.
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The next three datasets represent actual workflow applications and have
been generated with the Pegasus Workflow Generator [34]. We consider three
different applications, named LIGO, MONTAGE, and GENOME, each contain-
ing 20 graphs of 50 nodes and 20 graphs of 100 nodes. We assumed that the
memory needed during the execution of a node is negligible compared to the
size of the input and output data, which must be kept in memory during
this process.

The last dataset consists in the task graphs of the QR _ MUMPs [35] appli-
cation, when applied on matrices from the University of Florida Sparse Ma-
trix Collection [36]. These matrices were ordered using either the colamd [37]
or scotch|38| ordering. The 24 resulting task graphs are indeed trees of tasks
whose size vary from 39 to 5900 nodes.

For all these graphs, we computed both the maximum topological cut
(maxcut), the maximum topological cut with at most p red edges (p-maxcut)
using the ILP Gurobi solver[39], and the solution returned by the heuristic.
The C++ code used for the simulation is publicly available online at https:
//github.com/GBathie/PMaxcut.

5.2 Results

The first set of simulations studies the impact of the number of processors
(the value of p) when computing the p-maxcut, comparing it with to the
maximum topological cut without any bound on resources (p = oo). We plot
in Figure [7| the ratios maxcut/p-maxcut obtained in all cases, using Tukey
boxplots. The box presents the median, the first and third quartiles. The
whiskers extend to up to 1.5 times the box height (interquartile range). While
the results largely depend on the target, we observe globally that taking
p into account when computing the maximum topological cut dramatically
reduces its value in most cases. Note that in for better readability, we remove
outliers from the plots, as they only concern special cases where the gain of
using the p-maxcut instead of the maxcut was even higher. For the Pegasus
datasets, the value of the cut is reduced at least by a factor 1.6 (LIGO with
p = 10) and at most by a factor 17 (LIGO with p = 1). For QR-Mumps, the
value of the cut is reduced at least by 5% (p = 10) and at most by a factor
1.38 (p = 1). For the DAGGEN datasets, this ratio goes from 1.10 tup o
5.5. In most cases, the ratio p-maxcut/maxcut decreases when the number
of processors grows from 1 to 10, except for the MONTAGE graphs which
exhibit a very large degree of parallelism.

Figure [§] presents the results of the heuristic for the MONTAGE and
LIGO datasets, normalized to the optimal p-maxcut computed with the ILP.
We use the same boxplots, except that outliers are drawn and appear sepa-
rately as empty circles. We observe that the heuristic is able to find a cut
with a weight very close to optimal only for small values of p. For all the
other datasets, the heuristic finds a p-maxcut which is at most 2% smaller
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Figure 8: Result of the heuristic for the MONTAGE and LIGO datasets

than the optimal one in 99% of the cases.

6 Conclusion and Future Work

In this paper, we have revisited dynamic DAG scheduling under memory
constraints. We have introduced a new model that takes resource limitation
into account when computing peak memory needs. By coloring those edges
that represent temporary memory requirements during task execution, we
bound the memory actually needed during an execution with p processors as
a function of p, while previous work assumed unlimited resources. The ad-
ditional constraints due to resource limitation turn an otherwise polynomial
problem into a NP-hard problem. We have introduced an Integer Linear
Program (ILP) to solve it, together with an heuristic based on rounding the
rational solution of the ILP. Furthermore, we provide an exact polynomial
algorithm for the particular case of serial-parallel graphs. With an exper-
imental study conducted over randomly-generated graphs and task graphs
from actual applications, we show that our refined approach can significantly
reduce the weight of the maximum topological cut.

Future work includes several promising directions. The first direction
is to compare the ILP and the heuristic on task graphs of very large size,
because we expect the ILP to fail providing a solution beyond a certain
number of nodes. The second direction is to design efficient strategies to
reduce peak memory in the refined model with colored edges, thereby ex-
tending previous approaches to the new model. The third direction is to
study the behavior of a restricted class of dynamic schedulers which try and
select low memory-consuming tasks. For instance, instead of progressing to
execute any ready task, these restricted schedulers would only select ready-
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tasks whose memory requirements keeps total memory consumption below a
given threshold. The algorithmic complexity of such approaches will however
probably remain very high. In particular, it is not clear how to fix the global
threshold so that the restricted schedulers have a good chance to execute
the whole task graph without exceeding the memory constraint. Finally, the
fourth direction would be to develop scheduling strategies that rely upon
a coarse representation of the task graph instead of the complete graph,
thereby allowing to deal with very large graphs while (hopefully) keeping a
tight estimation of the total memory requirement. This would allow for an
effective implementation of scientific application at scale within a task-based
runtime system.
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Appendix: Scheduling at runtime

In this section, we briefly discuss extensions of this work that go beyond
bounding the maximum memory peak of a dynamic schedule by computing
the p-maxcut of the colored DAG.

In practice, a dynamic scheduler that schedules tasks on the fly could be
programmed to avoid scheduling tasks which would make the memory used
by the parallel execution larger than the memory of the machine. Therefore,
even if the P-MAXToOPCUT is larger than the memory of the machine, the
runtime might still be able to find a scheduling of the graph that does not
exceed the available memory. In this context, we would like to know whether
the runtime will always be able to keep the memory of the computation under
some threshold M, using the new rule of avoiding any task whose execution
would exceed the memory currently available.. A sufficient condition that,
for any stage of the computation that uses memory not greater than M, we
can schedule another task such that the memory usage stays below M. If
the opposite happens, then there exists a scheduling that reaches a situation
where any choice leads the computation to use an amount of memory larger
than M. We state the problem formally as follows:

Definition 3. Successor of a topological cut
Let G be a DAG, C = (S,T) a topological cut of G. A topological cut
C'= (5.1 of G is a successor of C if S C S" and |S"\ S| =1, i.e. S is

equal to S with an additional vertez.

Problem 3. TOPOLOGICALTRAVERSABILITY

Input: a DAG G = (V, E), an integer M € N

Question: Does every topological cut C of G of weight w(C) < M have a
successor C' of weight at most M ?

The TOPOLOGICALTRAVERSABILITY belongs to Co— N P, hence we con-
sidered its negation:

Problem 4. BLOCKINGTOPOLOGICALCUT

Input: a DAG G = (V, E), an integer M € N

Question: Does there exist a topological cut C of G of weight M(C) < M
such that every successor C' has weight larger than M ?

Unfortunately, this latter problem is combinatorial:
Theorem 3. BLOCKINGTOPOLOGICALCUT is NP-Complete.

Proof. We first prove that the problem isin N P. The certificate is simply the
list of all the vertices in one set of the cut C. One can check in time O(|E])
that the cut is topological and that its value is lower than M. Furthermore,
the cut has at most |V'|—1 successors, as a successor has one vertex more than
C'. Hence, computing the values of all the successors can be done in O(|E| -
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|V'|), which is polynomial in the size of G. Therefore, BLOCKINGTopPCuUT
e NP.

To prove the hardness of BLOCKINGToPCUT, we use a reduction from
the N P-complete problem 2-PARTITION [40]: Given a family of n > 2 posi-
tive integers (a;)i=1,.. n, Vi, a; > 0, is there a subset I C {1,...,n} such that
Zz‘el a; = % ? Let Z; be an instance of 2-PARTITION. Consider the DAG
G = (V, E), where

V={1,...,n}U{s,a,b,t}

and
E ={(s,i),(i,t),i=1,...,n} U{(s,a),(a,b), (b, t)}
Let S =>"", a;, and set the weight of the edges as follows:
w(s,i) =0,Vi € {1,...,n}
w(i,t) =a;, Vi€ {l,...,n}

S+1

Figure 9: DAG for the reduction

The instance of BLOCKINGToOPCUT is G with bound M = S.

First, if 7; has a solution I C {1,...,n} such that ) . ;a; = %, then we
define K = ITU {s}, and C = (K,V \ K). It is a topological cut: it contains
vertices from 1,...,n and s, and the only edges entering these vertices are
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from s. We then have

U)) + Z w(s,v)

v¢ K

t)> + > w(s,v)

vE K

:< az>+0+w(s a)
iel
S
T2
=S

Successors of C' either contain one additional vertex from {1,...,n} or a.
Adding j from {1,...,n} increases the value of the cut by a; > 0, it would
then be strictly larger than S and therefore, strictly larger than M. Adding
a increases the weight by 1, and the cut could have weight S +1 > M.
Hence, C' is a solution to Z,, the instance of BLOCKINGToOPCUT.

Conversely, if Zy has a solution, it is a cut C = (K,T = V \ K) with
M(C) < M, such that any successor C’ has weight M(C') > M. We
can then remark that the edge (a,b) cannot be in the cut (i.e. we cannot
have o € K and b ¢ K). Otherwise, such a cut C' would have a successor
K U{b} with value M(C)—45 —1 < M(C) < M, which would contradict the
hypothesis that every successor must have value strictly greater than M.

Similarly, the edge (b,t) cannot be in the cut. Otherwise, either the cut
contains all the vertices i € {1,...,n}, or it doesn’t have all of them. If it
has all of them, then the cut is (V'\ {t}), and it has a successor with value
0 < M, the cut (V,0), which contradicts the hypothesis. On the other hand,
if K contains only a set I C {1,...,n} of the a;, then let j € {1,...,n}\ I.
The value of the cut is ), ; a;. The cut then has a successor where we add
the vertex j, with value Y, ;a;+a; < Y7, a; =S = M. This means that
the cut K U{j} (successor of K) has value lower than M, which contradicts
the hypothesis.

Hence, if Z5 has a solution, K contains s but not a. It also contains some
vertices i of {1,...,n}: let I = {1,...,n} N K. By hypothesis, we know
that M(K) < M = S, and M(K) = Y ;c;a; + 5. Hence, ;. ;a; + 5 <

S & Yera < % K has a successor K’ = K U {a}. By hypothesis,
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M(K")> M =8, and M(K') = Y,; a; + § + 1. Therefore, we have

S
Zai+§+1>5
el

S

il

S .
& Z a; > 5 as the values are integers
el

Combining the last inequality with inequality above, we get that >, ;a; =
%. Hence, if 71 has a solution: I.

Finally, we need to check that this reduction is indeed polynomial. The
size of the graph G = (V, E) created is polynomial in n: |V| = n+ 4 and
|E| =2n+3. M =S5 =3"!", a; has size polynomial in those of the a;. The
construction of the graph can be done in time polynomial in |E| and |[V].
This concludes the proof.

O

Because of this NP-hardness result, solving efficiently the BLOCKING-
ToPOLOGICALCUT problem seems out of reach. The optimization prob-
lem associated with the BLOCKINGTOPOLOGICALCUT and TOPOLOGICAL-
TRAVERSABILITY problems would be to find the highest & < M such that
there is no topological cut of weight lower than or equal to k, and such that
all of its successors have weight greater than k. By using such a k to re-
strict the runtime (i.e., the rule is that it cannot schedule tasks that would
make memory use to exceed k), it would be guaranteed that the computation
would never use more than M memory — independently of the max cut of the
task graph. Unfortunately, it turns out that an approximate value that is
within a constant factor of the optimal value still might not be an acceptable
solution. Figure [10shows a task graph whose max cut is M = 2v (the graph
can be traversed with maximum memory 2v), where v is also a solution (the
graph can be traversed with maximum memory v), but where %v is not a so-
lution (the graph cannot be traversed with maximum memory%v ). In other
words, the set of solutions is not connected! This little example illustrates
the difficulty of the optimization problem.

Other simulation results

See Table [1] Figure [T1] and
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PO 0\@ \O @\
! 30’@ ) @/

Figure 10: Example of DAG for which the set of admissible solutions is not
connected: both v and 2v are solutions, but not %v.

©

Table 1: Summary of the simulation results

Dataset p average of average of cases with heuristic
p-MaxTopCut/MaxTopCut | p-MaxTopCut/Heuristic | # p-MaxTopCut
1 14.654 1.000 0/40
Genome 3 5.407 1.000 0/40
5 3.318 1.000 0/40
10 1.690 1.000 0/40
1 16.926 1.306 4/40
LIGO 3 10.001 1.836 13/40
5 7.685 2.329 17/40
10 6.691 4.001 29/40
1 4.186 1.001 40/40
MONTAGE | 3 4.186 1.011 40/40
5 4.186 1.038 40/40
10 4.161 1.148 39/40
1 1.385 1.000 0/29
QR-Mumps | 3 1.091 1.006 3/29
5 1.052 1.000 0/29
10 1.049 1.003 2/29
1 4.611 1.000 0/144
DAGGEN-1 | 3 2.004 1.031 8/144
5 1.405 1.001 4/144
10 1.095 1.001 3/144
1 5.529 1.210 1/144
DAGGEN-2 | 3 1.993 1.023 6/144
5 1.430 1.005 3/144
10 1.106 1.001 2/144
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Figure 11: Complete results (with outliers) for p-MaxTopCut/MaxTopCut.
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Figure 12: Complete results of the heuristic (with outliers).
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