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Abstract

This article presents a new data-driven spatial decomposition algorithm that allows to split a domain
containing point particles into elementary cells, each cell containing a spatially-uniform distribution of particles.
For that purpose, the algorithm relies on the use of statistical information for the spatial distribution of
particles and then extracts an optimal spatial decomposition. After evaluating the convergence and accuracy
of the algorithm on homogeneous and inhomogeneous cases, this optimal spatial decomposition is applied
to study the case of particle agglomeration. Indeed in CFD context, recent developments on numerical
simulations of particle agglomeration in complex and turbulent flows increasingly resort to Euler-Lagrange
approaches. These methods are coupled with population balance equation (PBE)-like algorithms to compute
agglomeration inside each cell of the Eulerian mesh. One of the key issues with such approaches is related to
the respect of the spatially-uniform condition, i.e. agglomeration should be computed on a set of particles
that are uniformly distributed locally in each cell. Yet, CFD simulations in realistic industrial/environmental
cases often involve non-homogeneous concentrations of particles (due to local injection or accumulation in
specific regions). We show that more accurate and mesh-independent predictions of particle agglomeration
are made possible by the application of this new data-driven spatial decomposition algorithm.

Keywords: Spatial decomposition, Uniformity criteria, Agglomeration, Multiphase flow, Population Balance
Equation, Turbulence, Clustering

1. Introduction

1.1. General context: particle agglomeration

Agglomeration (also called aggregation, flocculation, coalescence or coagulation) refers to the process that
leads to the assembly of particles or molecules dispersed in a fluid. This process is very common in nature
with implications in geo-morphology (role of floc sedimentation in river delta formation [1]), meteorology
(formation of clouds [2] or droplet growth due to turbulent collisions [3, 4]), and astrophysics (growth of dust
aggregates in planet formation [5]). Agglomeration also plays a role in a number of industrial applications,
such as in waste-water treatment facilities (separation of solids through settling of aggregates [6] or flotation
processes [7]), in combustion systems (agglomeration in fluidized beds [8] and growth of soot particles [9])
or in oil/sludge refining (use of polymer conditioning to control agglomeration [10]). Agglomeration also
has implications in medical fields (protein aggregation being linked to some degenerative diseases [11]) as
well as in the food industry (dry milk powders [12]). From this brief overview, it appears that particles can
take various forms (molecules, polymers, solids, droplets, bubbles, etc.) and that agglomeration involves a
wide range of temporal and spatial scales (from molecular scales with proteins up to astrophysical scales
with planetoids). According to the IUPAC [13], agglomeration of solid particles is the process of contact and
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adhesion whereby dispersed solid particles are held together by weak physical interactions ultimately leading
to phase separation by the formation of precipitates of larger than colloidal size – i.e. solid particles with
sizes ranging from a few nanometres up to a few micrometres [14].

Following this definition, we focus here on the prediction of agglomeration of solid colloids in suspension
in complex turbulent flows.

1.2. Existing models for particle agglomeration

Significant efforts have been devoted recently to the simulation of particle-laden flows. This led to the
development of a wide variety of models (interested readers are referred to existing reviews for more details
[15]). In the following, the main approaches are briefly summarised and organised with respect to their level
of description of particle agglomeration (from microscopic to macroscopic approaches):

a. N -particle tracking (or individual particle tracking) with collision detection;
As transpires from its name, this is a microscopic approach with a very fine level of description that
consists in tracking simultaneously a large number of particles carried by a flow and detecting collisions
between particles. For that purpose, the equations of particle motion are solved explicitly considering all
forces and torques acting on/between particles. Such Lagrangian tracking algorithms are often coupled
with fine-scale simulations of the fluid, such as direct numerical simulation (DNS) of turbulent flows
where all the scales of turbulence are fully resolved. Particle collisions are then monitored using specific
detection algorithms based either on an overlap criterion (i.e. the two spherical particles lie on top of each
other [16] at the beginning/end of the time step) or on a geometric criterion valid in the ballistic regime
(i.e. particles follow straight lines during the time step) [17].
Such approaches allow to obtain the number of agglomeration events directly as a result of the simulation.
Besides, they provide detailed information on local properties of agglomeration (e.g. shape of agglomerates,
spatial/temporal correlations between collisions) [18]. However, due to their high computational costs
and to the fine level of description required, their use is currently limited to idealized cases or specific
small-scale applied cases.

b. One-particle tracking with given collision frequencies.
More recently, new methods have emerged based on the coupling between Eulerian simulations of turbulent
flows and one-particle pdf models for the particle phase (interested readers are referred to existing reviews
on the topic, e.g. [19, 20, 21, 22]). The key idea in such simulations is to have a separate treatment of the
transport step and of the collision step over each small time step, leading to time-splitting algorithms.
This means that particles are moved through the domain without interacting with each other in the first
step (transport without collision) while particles interact with each other without changing their positions
in the second step (collision without transport). This separate treatment of the ’transport’ and ’collision’
steps relies on a kind of Bird-like algorithm (interested readers are referred to the first DSMC methods of
the early 60s [23, 24, 25]). Regarding the ’transport step’, the key difference with N -particle tracking
approaches is that one-point pdf methods have a ’coarser’ level of description. The equations of particle
motion are indeed expressed using effective or modelled forces, i.e. particles do not interact with each
other but rather with a mean-field obtained from the whole set of particles by statistical averaging (more
details can be found in [19]). This approach is thus consistent with the turbulence models that are used
for the fluid phase, such as Reynolds-Averaged Navier Stokes models (RANS) which provide information
on mean-field quantities. It should be noted here that, in order to avoid the high computational costs
associated with the tracking of all real particles, the notion of parcel is often used (one ’numerical’ parcel
is a statistical representation of a large number of real particles).
The treatment of the ’collision step’ brings out new difficulties since a consistent model for the description
of particle agglomeration has to be chosen. Indeed, the stochastic nature of particle motion prevents
the direct calculation of particle agglomeration with standard techniques used in N -particle tracking
approaches (e.g. overlap or geometric criteria). Two types of detection models for particle agglomeration
have been used. First, probabilistic collision algorithms are based on the evaluation of the probability of
collision between a pair of particles, depending on a number of parameters (initial and final separation
distance, diffusion coefficient) [26, 27]. Second, mesh-based algorithms consist in treating the collision
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between all pairs of parcels within a given cell [28, 29]. The probability of collision between a pair of
parcels during a time step is then derived from geometric considerations (using the size of both particles
and the relative velocity between them). This algorithm has been later refined to treat collision only
between a subset of candidates, which are randomly selected among the possible particle pairs within
each cell [30]. Similar formulations have been used recently replacing the probability of collisions between
pairs of particles/parcels with the discretised PBE formula [31].

c. Population Balance Equations (PBE):
PBE are macroscopic approaches that describe the evolution in time of mean-field quantities. More
precisely, they are derived from the approach initiated by Smoluchowski [32], which models changes in
the number density of a population of particles due to agglomeration within a control volume VC . As
particles agglomerate, the distribution of sizes changes according to the following integro-partial-differential
equation [33, 34]:

∂n(v, t)
∂t

=
1

2

∫ v

0

α(v−w,w)β(v−w,w)n(v−w, t)n(w, t)dw−
∫ ∞

0

α(v,w)β(v,w)n(v)n(w)dw, (1)

where n(v, t) is the number density of particles of volume v at time t, α is the collision efficiency and
β the collision frequency kernel between particles of volume v and w. The first term on the r.h.s. of
Eq. (1) corresponds to the formation of new aggregates of volume v produced by the collision between
pairs of smaller aggregates (such that the sum of their volumes equals v) while the second term on the
r.h.s. accounts for the loss of particles of volume v due to their agglomeration with other particles. The
factor 1

2 in the first term is required to avoid counting twice each collision.
PBE approaches allow to perform fast evaluations of the kinetics of particle agglomeration at the
macroscopic level. Besides, PBE describes the time evolution of mean-field quantities and, as such,
is compatible with the level of description used in standard CFD (Computational Fluid Dynamics)
simulations, which resort to turbulence models describing mean-field fluid quantities. For these reasons,
PBE formulations are widely used in CFD simulations where the fluid is described using Eulerian or MOM
(method-of-moment) approaches [35, 34]. However, PBE formulations suffer from several limitations that
have been well identified in the literature (interested readers are referred to [34, 36] for more details).

In this paper, we adopt the viewpoint of Lagrangian one-point pdf methods for the tracking of parcels
coupled to an Eulerian simulation of the fluid phase (using RANS turbulence models) and using a mesh-based
PBE-inspired algorithm for the detection and treatment of particle agglomeration. Nevertheless, some of
the conclusions drawn are also applicable to other methods that rely on PBE formulations for particle
agglomeration.

1.3. Shortcomings of current models

The methods relying on the use of a mesh-based PBE-inspired algorithm for the detection of particle
collisions suffer from several limitations. In particular, several of these shortcomings are related to the use of
PBE formulations (interested readers are referred to [34, 36] for more details), among which:

a. Only binary collisions are considered.

b. There is no statistical correlation between individual particles of volume v and w at their respective
positions, so that the number of collision events can be written as the product β(v−w,w)n(v−w, t)n(w, t).

c. The population of particles is uniformly distributed in each spatial region considered (e.g. cells in a
mesh) so that no external coordinates are involved in the ’collision step’. Note that this assumption is
sometimes referred to as a ’well-mixed condition’ [34] but, since it is widely used in the CFD community
for stochastic models of turbulent diffusion/dispersion with a different meaning, we will refer to it as
spatially-uniform condition within the rest of the paper to avoid confusion.

d. The velocity field acting on particles is constant in each spatial region so that no external coordinates are
involved in the ’collision step’.
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e. Information on the collision efficiency α and on the collision frequency kernel β are required. Approxima-
tions for these two quantities are available in simple cases (e.g. purely Brownian-induced, shear-induced
or gravity-induced agglomeration). However, such approximations are missing in cases representative of
realistic situations (implying a mixing of turbulence, Brownian motion and gravity). This is due to the
intricate coupling between the particle dynamics and physico-chemical interactions, which does not favour
the splitting of the transport step and the collision step (both in PBE formulations and in one-particle
pdf approaches).

The present paper is mainly motivated by refining the accuracy of the computations of particle ag-
glomeration using such approaches by addressing specifically the issue c. related to the spatially-uniform
condition. In practice, this spatially-uniform condition has to be fulfilled locally for each computational cell,
meaning that the particles have to be uniformly distributed in each cell where the method is applied (this
is actually a necessary but not sufficient condition). However, numerical parcels tracked within complex
flows are not necessarily uniformly distributed in the domain: particles can indeed be injected locally in the
system, leading to significant gradients of particle concentration at the system scale which can translate in
non-uniform concentration at the cell scale (see for instance spray dryer injection in [29]). As depicted in
Fig. 1, such non-uniform spatial distributions of particles can induce severe mis-estimations of the number
of agglomeration events generated (see also [37]). It should be noted that this issue is common to other
Euler-Lagrange approaches relying on PBE formulations, as in combustion processes [9], meaning that the
present developments can also be used in other domains/applications. Moreover, a spatial-decomposition
algorithm can prove useful in any Euler-Lagrange approach that relies on two independent meshes (one for
the fluid phase and another one for the particle phase), since it will allow to design a mesh for the particle
phase that respects some criteria allowing for more accurate and mesh-independent results.
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Figure 1: Sketch showing the impact of non-uniform distributions on the number of agglomeration events estimated either in
one single cell or in four smaller ones.

Several attempts have been made to reduce the mesh-dependency of the results [38, 39, 40, 41, 42]. For
instance, Zhang et al. [41] rely on the mesh used for the CFD simulations and reduce the mesh-dependence of
O’Rourke method [28] by computing the agglomeration over a volume comprising the cell and its surrounding
neighbours. The drawback of this approach lies in the use of a CFD-based mesh which has no connections
to the spatial distribution of particles/parcels. Another approach consists in generating a specific mesh for
the computation of particle agglomeration, as is done in [30, 38, 40] (this is called the NTC algorithm, for
No-Time Counter). More precisely, in the original NTC algorithm [30], Schmidt and Rutland generate a
cylindrical mesh with a randomly chosen orientation every time step and then apply their collision algorithm
on this spatial decomposition. The random orientation of the mesh reduces mesh dependency by allowing the
interaction between nearby particles that were in two different cells at one given time step. This has been
later on improved by Hou and Schmidt [39], who introduced an adaptive collision mesh method. It consists in
creating an initial cube that includes all the particles/parcels (the orientation of this cube is again randomly
generated), which is then split equally in 8 half-length cubic-cells. This partitioning is applied iteratively for
each existing cubic cell as long as the number of particles in a cubic cell is larger than a given threshold.
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Despite providing good results (especially due to the random orientation of the initial cube that prevents
static meshes), this method suffers from two limitations: first, the method blindly splits each cubic cell in
eight smaller cubic cells with a criteria on the number of particles only, i.e. without taking into account the
spatial distribution of particles in the cell; second, the end-iteration criterion has to be fixed a priori (note
that, since it corresponds to the maximum number of particles inside a cubic cell, it implies that the results’
accuracy is governed by this threshold). This method has been extended later to the case of parcels [40].

1.4. Objectives of this study

Considering the mesh-dependence issues described above and the existing methods to reduce it, the
aim of this study is to come up with a specific algorithm that generates a mesh accounting for the spatial
repartition of particles while respecting the spatially-uniform condition required for the computation of
particle collision/agglomeration. In particular, the following objectives need to be met:

(i) the algorithm has to detect local variations in the spatial distribution of a given set of particles/parcels
in a volume;

(ii) the algorithm has to generate a spatial decomposition of the volume based on the spatially-uniform
condition;

(iii) the algorithm should be robust regardless of the input data (set of particles in a volume);

(iv) the algorithm has to be compatible with one-point pdf approaches for particle/parcel tracking;

(v) the algorithm should not induce mesh-dependence when applied to study particle agglomeration;

Drawing on these objectives, several remarks can be made. First, objective (iii) implies that the algorithm
should detect non-uniform spatial distributions using information coming from the actual data (i.e. a set of
particles in a volume). As a result, the algorithm should not rely on user-defined parameters (which can be
case-dependent). Second, objective (iv) suggest that the algorithm should rely on statistical information
regarding the spatial distributions of particles/parcels instead of relying on information regarding the exact
distance between these elements (two-point correlations are indeed not included in current one-point pdf
approaches). As a result, we cannot rely here on existing clustering techniques that have been developed
in the context of image analysis and signal processing [43, 44]. Several clustering techniques allow indeed
to process data points to identify regions with non-uniform spatial distributions (e.g. K-means algorithm,
DBCLASD algorithm, DBSCAN algorithm). Clustering is also a common issue in the context of inertial
particles in turbulent flows (see for instance [45]). Yet, most of these techniques are based on the actual
computation of the distance between data points and rely on a user-defined parameter (see Appendix A for
an example of the use of DBSCAN in this context). Besides, these methods focus on the classification of data
points by identifying clusters (defined as a group of points having enough neighbours in close proximity). As
such, they are not adapted to the scope of this study which aims at constructing a spatial decomposition
(objective (ii)).

1.5. Layout of the paper

Within this scope, a new data-driven spatial decomposition (D2SD) method is proposed. The paper is
organised as follows. First, the new D2SD algorithm is presented in Section 2 for general purposes. Then,
numerical results obtained on spatially homogeneous and inhomogeneous cases are detailed in Section 3
together with an analysis of the convergence and accuracy of the algorithm. Finally, in Section 4, the method
is adapted to the case of particle agglomeration and applied to practical cases that show the accuracy of the
method and the independence of the results to the mesh thus generated.

2. D2SD : A new algorithm for spatial decomposition of non-globally uniform particle distri-
butions

This section describes a new method that detects the presence of non-uniform spatial distributions of point
particles and that comes up with an optimal spatial decomposition restoring locally the uniform distribution.
In this section as well as in the next one, we focus on presenting a general spatial decomposition algorithm
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that can be applied to a range of situations (computation of particle agglomeration or any Euler-Lagrange
approach relying on two independent meshes).

2.1. Input of the D2SD

As depicted in Fig. 2, the sole input of the model is a set of positions of point particles inside a volume
(e.g. a snapshot of particle positions at a given iteration time in a CFD simulation). The method then
detects the presence of spatial inhomogeneities in the particle concentration and treats them according to
the aforementioned objectives (see Section 1.4). The complete algorithm is composed of three steps that we
detail in the following:

step 1. apply an a-priori check of the spatially-uniform condition: returns acceptation or rejection.
Our basic proposition in this paper is to use statistical uniformity tests, but step 1 could be extended
to any relevant measure of uniformity;

in case step 1 returns rejection

step 2. apply the D2SD algorithm to detect and separate non-uniform regions;

step 3. apply an a-posteriori statistical uniformity test on the output of the D2SD algorithm to check
if all locally uniform regions have been properly identified. If the uniformity test is rejected, go back to
step 2 until the a-posteriori test is accepted;

2.2. Step 1: statistical uniformity test

The key idea of step 1 is to make a first a-priori statistical test to check whether the input set of particles
is uniformly distributed or not. According to its size, the input sample of particle position may present
irregularities (clusters, voids) even if the sample corresponds to points randomly and independently generated
according to a uniform distribution.

In the literature, a vast list of uniformity tests have been proposed in the one-dimensional case (interested
readers are referred to D’Agostino and Stephens [46, Chapters 6 and 8], and the references therein). Many of
these tests also analyse the spacing of the sample, such as the Greenwood statistic, which under the null
hypothesis is expected to have an exponential distribution. The case of uniform distribution test on domains
with unspecified boundaries has also been studied. Nevertheless, when it comes to the multidimensional
case, normality tests have attracted more attention, and uniformity tests are less established. Following the
usual framework within the classical literature of goodness of fit, we consider a sample of n particles inside
a regular box of size 1 in d-dimensions and we assume that the sample X = {X1, X2, . . . , Xn} in [0, 1]d is
independent and identically distributed (i.i.d). In addition, we set the null hypothesis:

H0: X = {X1, . . . , Xn} are i.i.d according to the uniform distribution U([0, 1]d). (2)

In this context, i.i.d. uniformity distribution is tested with the series of five following tests:

S1-a-b-c The symmetric, the centred and the star discrepancy tests;

S1-d The Henze-Zirkler normality test for the – also i.i.d – sample
{

Φ−1(X1),Φ−1(X2), . . . ,Φ−1(Xn)
}

,
based on an inverse transform sampling intuition, with Φ being the cumulative distribution function of
a standard normal random variable;

S1-e The Pearson statistic to test the independence of the position of the particles.
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Input data:

Step 1:
(uniformity check
on initial sample)

● Henze-Zirkler
● Pearson correlation
● Symmetric discrepancy
● Centered discrepancy
● Star discrepancy

Step 2:
Data-driven spatial decomposition (D2SD)

● Distance-to-
Boundary Score
(DBS)

x

✓

●  Freedman-
Diaconis rule

Step 3:
(uniformity check

on synthetic sample)

● Henze-Zirkler
● Pearson correlation
● Symmetric discrepancy
● Centered discrepancy
● Star discrepancy

x

✓

Output data:

● Optimal spatial decomposition
● Set of particles per cell

● Set of particles in space

Step 2a:
Compute bin size

● Creation of cells
● Number concentration 
per cell

Step 2b:
Compute Empirical cdf

Step 2c:
Compute Score

● Value of threshold λ
● Identify concentration 
levels (8 total)
● Regroup cells with 
the same concentration
level

Step 2d:
Regrouping cells

●  Introduce ghost 
particles in low & 
high concentration
regions

Step 2e:
Synthetic sample

● Compute DBS score 
of synthetic sample
● Find local minimum
of DBS (optimal spatial
decomposition)

Step 2f:
Score & convergence

Loop on threshold value λ (between Q60 and Q80) 

Figure 2: Sketch summarising the three steps of the algorithm

Discrepancy tests. In quasi-Monte Carlo methods for numerical computation of multiple integrals, a discrep-
ancy criterion is used for measuring if a given set of points is uniformly scattered. In Liang et al [47], new
statistics are proposed to test the uniformity of a random sample, of size n and dimension d ≥ 2, in the unit
hyper-cube. These statistics are based on the following discrepancy measure D of a set of points X. Given a

positive constant κ and µ, a function in the space {f : f ′ ∈ L∞[0, 1] and
∫ 1

0
f(x)dx = 0},

D(X)2 =Md − 2

n

n∑
k=1

d∏
m=1

(
M + κ2µ(Xk

m)
)

+
1

n2

n∑
k,l=1

d∏
m=1

q
M + κ2

(
µ(Xk

m) + µ(X l
m) + 1

2B2(JXk
m −X l

mK) +B1(Xk
m)B1(X l

m)
)y
,

(3)

where JxK stands for the decimal part of x (i.e. JxK = x− bxc), the functions B1 and B2 are the first and
second order Bernoulli polynomials, respectively and

M = 1 + κ2
∫ 1

0
(µ′(x))

2
dx. (4)

The choice of parameters κ and µ in (3) determines the type of discrepancy we are interested in testing.
Following [47, pp. 4-5], three tests are considered here:
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– The symmetric discrepancy, with κ = 2 and µ(x) = − 1
2B2(x).

– The centred discrepancy, with κ = 1 and µ(x) = − 1
2B2(Jx− 1

2K).

– The star discrepancy, with κ = 1 and µ(x) = 1
6 −

x2

2 . Note that the star discrepancy test is in fact
related to the Kolmogorov-Smirnov statistic.

The discrepancy measure D can be rewritten as

D(X)2 = Md − 2U1 +
n− 1

n
U2 +

1

n2

n∑
k=1

g2(Xk), (5)

with U1 = 1
n

∑n
k=1 g1(Xk) and U2 = 2

n(n−1)

∑n
k<l h(Xk, X l), for some bounded functions g1, h and g2

depending on κ, M and µ (see proof of Theorem 2.1 in [47]). As is proven in [47, Theorem 2.3], under the
null hypothesis H0 in (2), we have the following convergence in distribution toward the normal law:

√
n

(
U1 −Md

U2 −Md

)
−→N2(0, ξΣ), as n −→∞,

where ξ = (M2 + κ4
∫ 1

0
µ2(x)dx)d −M2d, and Σ =

(
1 2
2 4

)
.

(6)

From this convergence, the following statistic is proposed (see [47, Corollary 2.5]):

An :=
√
n
U1 −Md + 2(U2 −Md)

5
√
ξ

, (7)

which, under H0, converges in distribution to a standard 1D-normal random variable, of cumulative
distribution function x 7→ Φ(x). Then, by evaluating An, we can reject the null hypothesis H0 if its
value is too large with respect to the quantiles associated with a standard normal random variable. More
precisely, we introduce a confidence level ε such that if p-value = 1−Φ(|An|) ≤ ε, then the discrepancy test
rejects the uniformity of the sample X.

Normality test. Parallel to discrepancy measures, we use a second uniformity test based on the inverse
transform sampling method. When generating random numbers from any probability distribution with
cumulative distribution function F , one can consider the transformation F−1(U [0, 1]). By virtue of this
inverse transform sampling method, under the null hypothesis H0, the sample of size n

Y =
{

(Φ−1(X1
j ), j = 1, . . . , d), . . . , (Φ−1(Xn

j ), j = 1, . . . , d)
}

valued in Rd

comes from a normal distribution. Thus, we rewrite the null hypothesis into:

H̃0: Y (of size n) are i.i.d according to a normal distribution on Rd. (8)

The advantage in testing the hypothesis H̃0 is that we have at our disposal a greater number of possible
statistics. In this paper, we have opted for the implementation of the Henze-Zirkler test (see e.g. [48]) based
on a L2-weighted distance between the empirical characteristic function of the sample and the characteristic
function of a normal random variable. Rigorously, the Henze-Zirkler test is given by:

HZβ̃ := n
(

4 δ{Sn is singular} +Dn,β̃ δ{Sn is non-singular}

)
, (9)

where Sn is the sample covariance of Y , β̃ = 1√
2

(
n(2d+1)

4

)1/(d+4)

, and

Dn,β̃ =
1

n2

n∑
m,k=1

exp

{
− β̃

2‖Y m − Y k‖2

2

}
+ (1 + 2β̃2)−d/2 − 2(1 + β̃2)−d/2

n

n∑
m=1

exp

{
− β̃

2‖Y m‖2

2(1 + β̃2)

}
,
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for Y i := S
−1/2
n

(
Φ−1(Xi)− Φ−1(X)

)
in Rd, with (i = 1, 2, . . . , n) and Z denotes the empirical mean of the

random sample {Zi; i = 1, 2, . . . , n}.
Under the null hypothesis, the statistic HZβ̃ has approximately a log-normal distribution. Thus, we

evaluate p-value = 1− Φ(log HZβ̃) and compare against the level of confidence ε. When p-value < ε, the
Henze-Zirkler test rejects normality.

Acceptance/rejection decision. The accuracy of these tests is assessed using 1000 uniform samples generated
randomly of size n = 5, 10, 50, 100, 500, 1000 and dimension d = 2, 3. The results of these tests are shown
in Fig. 3 for two different confidence levels: ε = 0.05 and ε = 0.01. As expected, it can be seen that the
proportion of samples for which the uniformity test has been rejected remains very low. Yet, despite a good
accuracy of these tests, it should be noted that the accuracy decreases as the size of the sample becomes too
small. The statistics described above were also tested with non-uniform samples with similar rejection levels
(figures not shown here).

(a) Proportion of false negative in 2D, ε = 0.05 (b) Proportion of false negative in 3D, ε = 0.05

(c) Proportion of false negative in 2D, ε = 0.01 (d) Proportion of false negative in 3D, ε = 0.01

Figure 3: Proportion of uniformity tests rejected for 1000 uniform samples generated randomly with size n =
5, 10, 50, 100, 500, 1000 in 2D (left) and 3D (right) cases, using statistic An in (7), based on discrepancy measures, and
Henze-Zirkler test HZ

β̃
in (9).

Considering the results obtained in these numerical experiments, we proceed to apply a majority voting
criterion when implementing the statistics An (for the three discrepancies discussed above) and the Henze-
Zirkler statistic log HZβ̃ , verifying the independence assumption by using the well-known Pearson correlation

coefficient (see e.g. [49]). In this context, we reject the null hypothesis H0 if two (or more) tests reject the
uniformity of the sample.

2.3. Step 2: spatial decomposition (D2SD)

In the case where the uniformity test is rejected in step 1, we proceed to split the space according
to a partitioning so that each sub-domain contains a given level of particle concentration. This spatial
decomposition should distinguish between areas of high concentration (where there is clustering) and areas of
low concentration (almost free of particles). As a result, the concentration in each sub-domain is expected to
fulfill locally the spatially-uniform condition. For that purpose, the D2SD algorithm consists in the following
six steps (see also Fig. 2):

S2-a Computation of the bin size
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S2-b Computation of the empirical pdf

S2-c Computation of the score of the initial sample

S2-d Detection and merging of bins according to concentration level.

S2-e Creation of a synthetic sample (with ghost particles)

S2-f Computation of the score of the synthetic sample and convergence criterion

Steps S2-d & S2-e & S2-f are repeated until an optimal regrouping of ’bin-cells’ is obtained. In the following,
more details about each step are provided.

Step 2-a: Bin size. The bases of the proposed algorithm are established in the analysis of the probability
density function (pdf) associated with the sample. The pdf provides information about how the particles are
scattered and how the local concentration is within the domain. Besides, the use of the sample pdf instead of
exact distances between particles is in line with objectives (iii) and (iv) described in Section 1.4. A suitable
approximation of the pdf is needed, and the most natural way to construct this approximation is to consider
histograms. In this context, the choice of an approximately optimal bin size is required.

Among the contemplated techniques to select the width of the bins of an histogram, the Freedman-Diaconis
rule [50] has the best performance in our case. This rule is characterized by minimizing the difference between
the area under the empirical pdf and the analytic pdf using the statistical properties of the observations.
Following the Freedman and Diaconis rule [50], we define the bin size for the jth-coordinate as follows:

hj(X) = 2
iqr(Xj)

3
√
n

, (10)

where iqr(·) is the interquartile range (the distance between the 75th and 25th percentiles) of a random
sample, which corresponds to a measure of statistical dispersion.

Step 2-b: Empirical pdf. Following the choice of a proper bin size in Step 2-a, the empirical pdf is computed.
This results in a d-dimensional tensor, where each entry corresponds to the number density in each ’bin-cell’
formed using this binning procedure (i.e. the number of observations in the bin normalized by n times the
volume of the bin).

Step 2-c: Score of the initial sample. We introduce a mathematical measure to quantify how far the data is
from a uniform sample. This measure will be called hereafter score function and is used as a convergence
criteria for the iterative processes in Steps 2-d, 2-e and 2-f. In the one-dimensional case, an intuitive choice
for the score function is the to use the L1-distance between two cumulative distribution functions. As a first
possible extension in the multi-dimensional case, we consider the sum of the projected distance on each of
the d directions: denoting Xj the vector of the jth-coordinate of the d-dimensional random sample X, we
define the projected score:

dL1(X,U([0, 1]d)) :=

d∑
j=1

∫ 1

0

|F̄n,Xj (x)− FU([0,1])(x)|dx, (11)

where FU([0,1]) is the uniform cumulative distribution function (cdf), and F̄n,Xj
is the empirical cdf associated

with Xj :

F̄n,Xj
(x) =

1

n

n∑
k=1

1{Xk
j <x}, for 1 ≤ j ≤ d.

However, the accuracy of the projected score degrades quickly when the number of dimensions d increases,
due to the loss of information about how the coordinates are related to each other.

As an alternative, we propose to quantify the uniformity of the observations considering the distance to
the boundary of the domain and its application to testing multivariate uniformity (see Berrendero, Cuevas
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and Vásquez-Grande [51]). In [51], the authors proposed a new test of uniformity based on the relative depth.
For an initial random sample {X1, . . . , Xn} within a domain D of radius R = max{d(x, ∂D);x ∈ D}, the
relative depth is defined as the one-dimensional sample Z = {Z1, . . . , Zn} in R,

Zi =
d(Xi, ∂D)

R
,

with d(Xi, ∂D) denoting the Eulerian distance between the point Xi in D and the boundary of the domain
∂D. Following the notation in [51], we define the distance-to-boundary score as:

db(X,U) :=

∫ 1

0

|Gn,Z(z)−H∂D,U (z)|dz, (12)

where Gn,Z stands for the empirical cdf of the relative depth and H∂D,U is the cdf of the relative depth
associated with a uniform sample. In the case of a cube D = Π1≤i≤d[ai, bi], it takes the following form (see
[51, Theorem 1]):

H∂D,U (z) = 1−
d∏
i=1

(1− 2R

bi − ai
z), for 0 ≤ z ≤ 1,

where R = min1≤i≤d
{
bi−ai

2

}
.

To analyse the behaviour of the scores defined in (11) and (12), 1000 samples of size n = 10, 20, . . . , 1000
of uniform distributed points in the cube [0, 1]2,3 have been generated, in order to compute the mean and
variance of the resulting scores in terms of n. Figure 4 shows the results of this numerical experiment: the
decrease of the mean score values in terms of n is a typical O(1/

√
n) decay, although the accuracy of the

score is tied with the dimension of the observations. Nevertheless, the standard deviation of the projected
score is unsurprisingly higher and limits the use of this measure to large values of n. In the implementation
of the scores, we use a trapezoid method to approximate the integrals in (11) and (12).

In line with the previous comparison, in the coming numerical analysis, we define the score on the dataset
to be the db score. This choice is well adapted to the geometry of the considered domain (a 2D-3D cube),
but can be adapted with a combination of several other distances according to the use-cases.

Step 2-d: Regrouping ’bin-cells’. To obtain an optimal mesh decomposition, the next step consists in putting
together ’bin-cells’ identified as having the same level of particle concentration. This step is performed to
reduce the statistical noise encountered when dealing with cells having a small amount of particles. To that
extent, we have to introduce different levels of the particle presence density and classify the cells with respect
to these levels. This issue rises the following difficulty: even for a simple classification of cells according to
three levels (i.e. low-, ambient- and high-concentrations), what are the thresholds to separate each level? A
threshold can hardly be defined a priori since it depends on the actual distribution of the pdf-values. For
that reason, we have opted for the percentile indicator as a measure of dispersion.

To identify high-concentration regions, we introduce a parameter λ, referred hereafter as the threshold,
that aims at separating ambient uniform areas from high-concentration areas. Following objective (iii),
we avoid the use of arbitrary parameters as inputs by making use of the information on the observations
itself. We introduce the 1D-distribution of the pdf-values, called reduced-pdf. Then, starting from an initial
threshold λ fixed at the 60th percentile λ = Q60, an iterative procedure computes the optimal value of λ
that respects the criterion defined in the coming Step 2-f. Given the threshold λ, we further split the high
concentration regions in five different sub-categories according to the distribution of the truncated-pdf values
on [λ,max pdf]. The five pdf levels are defined with the four renormalised percentiles Q̃20, Q̃40, Q̃60, Q̃80

(when they are distinguishable) related to the truncated-pdf values on the interval [λ,max pdf].
For the low concentration areas, we have defined three main levels: empty bins mark void areas; bins with

pdf values below the 20th percentile Q20 mark the low concentration areas; bins with pdf values between Q20

and λ mark mean (ambient) concentration. The choice of the 20th percentile Q20 as the low concentration
threshold has been made to simplify the algorithm. However, as an improvement of the algorithm, we
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(a) Mean value of the distance to boundary score (blue)
and projected score (red) in 2D

(b) Mean value of the distance to boundary score (blue)
and projected score (red) in 3D

(c) Variance of the distance to boundary score (blue)
and projected score (red) in 2D

(d) Variance of the distance to boundary score (blue)
and projected score (red) in 3D

Figure 4: Mean and variance of the projected score (in red) in Equation (11) and distance to boundary score (in blue) in
Equation (12) for 1000 uniform samples of size n = 10, 20, . . . , 1000. Dimension d = 2 (left figures) and d = 3 (right figures).

suggest implementing a search for a lower threshold similar to the one proposed for the search for an upper
threshold λ.

Using these pre-defined pdf levels for high and low concentration regions (here up to eight levels), the
algorithm marks each bin in the domain according to its particle concentration (computed from the empirical
pdf). In this way, we distinguish regions by labelling their concentration, which represents a great advantage
over most of the algorithms in the existing literature. In practice, these labels are represented by a set of
eight binary d-dimensional arrays of size ⊗1≤i≤dNb bins(i), where Nb bins(i) denotes the number of bins
in the ith-dimension. Then, using the edges of the pdf bins and the binary arrays, we construct a regular
domain decomposition.

Step 2-e: synthetic sample (ghost particles). Coming up with a domain decomposition at the end of Step 2-d,
the next step is to assess whether this decomposition is the optimal one. For that purpose, we rely on the
score evaluated in Step 2-c as a convergence criterion.
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To re-evaluate the score of the domain decomposition obtained after Step 2-d, the particles within
’bin-cells’ identified as low- or high-particle concentration regions have to be replaced by ghost particles.
This is to ensure that the uniformity tests (see Step 3) performed at the end of the D2SD algorithm provide
accurate information on how far the remaining particles are from a uniform set. The aim of the ghost
particles is to provide synthetic observations Xλ. This Xλ is generated as follows: we remove point-data
from those cells with detected anomalies and fill those cells with ghost points. These ghosts are uniformly
distributed in each concerned bin. Their number inside a cell is determined using the cell volume matching
the ambient concentration evaluated globally.

Step 2-f: score and λ∗-stopping criterion. The idea behind the choice of the optimal threshold λ∗ (and thus
optimal domain decomposition) is to vary the value of λ within the set threshold range, and then apply
the following principle: the further the score is from an ideal score, the worse the mesh will be. With this
approach, the selection of the optimal decomposition starts with the computation of an ideal score

Sideal = 〈db(U ,U)〉,

where U is a random sample of size n uniformly distributed, and 〈·〉 stands for the expectation under the
law of the sample.

Then, we compute the score using the synthetic sample Xλ and compare this value to the ideal score,
which represents a target score that the final distribution of particles Xλ∗

final is expected to approximate. By
means of the ideal score, the optimal threshold λ∗ is defined as:

λ∗ = argminλ
|Sideal − 〈S(λ)〉ghosts|

Sideal
, for λ in threshold range,

where S(λ) = db(X
λ,U)

(13)

The bracket 〈S(λ)〉ghosts means that we average the score over several samples of the synthetic observations.
Numerically speaking, this means that Step 2-d, Step 2-e and Step 2-f are applied iteratively, one by one,

starting from λ = Q60 till λ = Q80 until the optimal threshold λ∗ is found.

2.4. Step 3: uniformity test

Once an optimal spatial decomposition is identified by the D2SD algorithm, a uniformity test is imple-
mented on Xλ∗

final to verify the optimality of the constructed domain. The same uniformity tests as those
described in Step 1 are applied here. If uniformity tests are rejected, it means that some clusters or voids
were missed in the process. In that case, the D2SD algorithm is applied once more until we get a uniform
Xλ∗

final sample. Nonetheless, convergence is expected to be attained fast due to the re-adjustment of the
model parameters to the observations.

For simplicity, when the D2SD algorithm needs to be applied iteratively to attain uniformity, the bin
size is kept constant and equal to the one obtained for the first iteration of the algorithm: this means that
Step 2-a is applied only once and that the subsequent iterations of the D2SD algorithm start at Step 2-b (see
also Fig. 2). Then, at each iteration, we update the location of the bins that have been used in previous
iterations in order to avoid their repetition. A more accurate way to use the update of the information during
subsequent iterations is to recompute the size of the bins. However, by doing this, the bin size might change
at each iteration and one should then pay attention to the fact that the bins of each iteration may overlap
with each other.

3. Numerical analysis of D2SD in 2D cases: convergence and accuracy

In this section, we present a series of numerical experiments to assess the accuracy and performance
of the proposed algorithm to detect non-uniform distributions of particles. The application to the case of
particle agglomeration is done later in Section 4. The idea here is to apply the D2SD algorithm to a number
of cases that are representative of both uniform and non-uniform particle distributions (e.g. void regions,
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clusters). These cases are generated by varying the level of the non-uniformity as well as the number of
particles in the domain considered, allowing to assess the convergence and accuracy of the D2SD algorithm.

For visualization reasons, the experiments presented below are focused on two-dimensional cases. Never-
theless, the algorithm has been tested in similar three-dimensional cases, where very similar results were
obtained (not shown here). These tests were performed using an implementation of the D2SD algorithm
within Matlab R2016b.

3.1. Illustration of the steps of the algorithm

We first illustrate how the algorithm is working on a specific case. For that purpose, a highly non-uniform
2D case is given as input data. Figure 5 illustrates how the various steps of the algorithm introduced in
Section 2 work. It can be seen that the initial sample results in a rejected uniformity test in Step 1 (all
three discrepancy tests are rejected), thus triggering the start of the D2SD algorithm. To enrich the coming
convergence analysis, we quantify the Step 1 result with the help of the initial distance-to-boundary score
applied to the input dataset: S0 = db(X,U).

In the present case, we obtain an initial distance-to-boundary score of 0.1584546, from which we compute
an initial error |Sideal − S0|/Sideal. After computing the bin size (Step 2-a), the spatial decomposition is
applied iteratively for several values of λ until the optimal decomposition is found for λ∗ = 0.99624 (see
Step 2-f showing the evolution of the score with the threshold). The new data set generated with ghost
particles inside low/high concentration regions (Step 2-e) is then accepted by the uniformity test in Step 3
(the five tests are accepted). The optimal spatial decomposition together with the colouring of particles with
respect to this decomposition is shown in the output data.

3.2. Accuracy of the method

Having detailed how the algorithm works on a practical 2D case, we now focus on assessing the accuracy
of the method regarding the computation of λ∗ on four different samples: uniform samples, slightly non-
uniform samples, highly non-uniform samples and symmetric samples. These samples have been chosen to be
representative of a vast range of possible uniform and non-uniform data.

• Uniform case

As we mentioned in Section 2, step 1 tests the uniformity of the data. Some tests can result in false
negatives, that is, the test can reject the uniformity of a sample that comes from a uniform distribution.
These false negatives will trigger the D2SD algorithm even though the set of particles is close to a
uniform one. In order to assess the accuracy of the method in the case of a uniform random sample, we
force here the D2SD algorithm to be applied to the set of data regardless of the result of the uniformity
test, and then observe the behaviour of the algorithm in the uniform case.

The results are displayed in Figure 6. As seen in the top left panel, we start from a uniform random
sample {X1, . . . , Xn} of size n = 10000, in the box [0, 1]2. In this case, the uniformity was accepted
with an initial distance-to-boundary score S0 = 0.0015931 (see Step 1 in the top center panel). The
empirical reduced-cdf visible in the top right panel is typical of a uniform case and displays the
threshold used for the spatial decomposition. The optimal domain decomposition is generated with the
optimal threshold λ∗ = 1.15 and the corresponding new particle data Xλ

∗

final (with ghost particles) can
be seen in the bottom right panel. The modified sample being accepted as uniform, the optimal spatial
decomposition is shown in the bottom left panel: it consists in 21× 21 bins, with 0 empty bins and
17% under-concentrated bins (based on the percentile Q20). Table 1 summarises the resulting score for
each threshold in the set threshold range (see Step 2-c).

This example shows that, if the uniformity-test is rejected for a uniform distribution, this algorithm is
able to detect slight variations in the spatial repartition of uniformly distributed particles and isolate
these regions to be treated accordingly.
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Input data:

Step 1:
(uniformity check
on initial sample)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centered discrepancy
 Star discrepancy

Step 2:
Data-driven spatial decomposition

x

Step 3:
(uniformity check)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centered discrepancy
 Star discrepancy

✓

Output data:

Set of particles orderred by clustering

✓

x
x
x

✓

✓
✓
✓
✓
✓

Set of particles

Optimal spatial decomposition

●  Freedman-Diaconis rule

Step 2a:
Compute bin size

● Number concentration per cell

Step 2b:
Compute Empirical cdf

● Distance-to-Boundary 
Score (DBS)

Step 2c:
Compute Score

● Identify concentration levels (8 total)
● Regroup cells w.r.t. concentration level

Step 2d:
Regrouping cells

● Empirical cdf

●  Ghost particles in low & high 
concentration regions

Step 2e:
Synthetic sample

● DBS score of synthetic sample
● Find local minimum of DBS

Step 2f:
Score & convergence

Figure 5: Analysis of the various steps of the algorithm on the case of a highly non-uniform 2D sample
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Input data:

Step 1:
(uniformity check)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centered discrepancy
 Star discrepancy

Step 2:
Data-driven spatial decomposition

Step 3:
(uniformity check)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centered discrepancy
 Star discrepancy

✓

✓

x

✓

✓
✓
✓
✓
✓

Set of particles

Empirical cdf and corresponding thresholds

Sample after injection of ghost particles

Optimal spatial decomposition

Output data:

✓
✓

✓

Force
rejected

Figure 6: Uniform case. Processing elements and post-processing results for a uniform random sample X of size n = 10000.
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Threshold λ Fraction 〈S(λ)〉ghosts/Sideal Fraction of highly-concentrated cells (in %)

1.06 0.40 31.75
1.10 0.37 27.89
1.15 0.46 20.18
1.19 0.43 18.14

Table 1: Uniform case. Distance-to-boundary scores and number of detected clusters for threshold range =
{1.06, 1.10, 1.15, 1.19}, with an initial score S0 = 0.0015931 and ideal score Sideal = 0.0027556 (giving an initial fraction
of 0.58).

• Slightly non-uniform case

The second numerical experiment treats the case where the random sample {X1, . . . , Xn} has a slightly
non-uniform distribution. More precisely, 85% of the particles correspond to a uniform random sample
and the remaining 15% corresponds to two Gaussian clusters with variance 0.05Id2×2 and 0.08Id2×2,
respectively.

The results are displayed in Figure 7. As seen in the top left panel, we start from a nearly uniform
random sample {X1, . . . , Xn} of size n = 2000 in the box [0, 1]2, composed of a uniform sample and
two additional Gaussian distributions. In this case, the uniformity test was rejected (see Step 1 in the
top center panel) with an initial distance-to-boundary score S0 = 0.0390917. The empirical reduced-cdf
visible in the top right panel reveals the presence of clustering (steeper slope). The optimal domain
decomposition is generated with the optimal threshold λ∗ = 1.27 and the corresponding new particle
data Xλ

∗

final (with ghost particles) can be seen in the bottom right panel. The modified sample being
accepted as uniform, the optimal spatial decomposition is shown in the bottom left panel: it consists
in 14× 14 bins, with 0 empty bins and 13% under-concentrated bins (based on the percentile Q20).
Table 2 summarises the resulting score for each threshold in the set threshold range.

This case shows that the D2SD algorithm is able to identify two regions with slightly higher concentra-
tions (corresponding to the two Gaussian clusters introduced). Moreover the distance-to-boundary
score is reduced by one order of magnitude when applying the D2SD algorithm, confirming that the
optimal spatial decomposition respects the spatially-uniform condition much better than the initial
spatial distribution.

Threshold λ Fraction 〈S(λ)〉ghosts/Sideal Fraction of highly-concentrated cells (in %)

1.08 0.49 25.00
1.18 0.65 18.88
1.27 0.90 15.31

Table 2: Slightly non-uniform case. Distance-to-boundary scores and number of detected clusters for threshold range =
{1.08, 1.18, 1.27}, with an initial score S0 = 0.0390917 and ideal score Sideal = 0.0054152 (giving an initial fraction of 7.22).

• Highly non-uniform case

The third case corresponds to the highly non-uniform case seen in Figure 5.

The results are displayed in Figure 8. As seen in the top left panel, we start from a highly non-uniform
random sample {X1, . . . , Xn} ⊂ R2 of size n = 5000, composed of a uniform sample (38% of the
particles) and a large cluster (containing 62% of the particles). In this case, the uniformity test was
rejected with an initial distance-to-boundary score S0 = 0.1584546 (see Step 1 in the top center panel).
The empirical reduced-cdf visible in the top right panel reveals the presence of severe clustering (very
steep slope) and a high proportion of void regions. The optimal domain decomposition is generated with
the optimal threshold λ∗ = 1.00 and the corresponding new particle data Xλ

∗

final (with ghost particles)
can be seen in the bottom right panel. The modified sample being accepted as uniform, the optimal
spatial decomposition is shown in the bottom left panel: it consists in 30× 30 bins, with 96 empty bins
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Input data:

Step 1:
(uniformity check)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centered discrepancy
 Star discrepancy

Step 2:
Data-driven spatial decomposition

x

Step 3:
(uniformity check)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centered discrepancy
 Star discrepancy

✓

✓

x
x

✓

✓
✓
✓
✓
✓

Set of particles

Empirical cdf and corresponding thresholds

Sample after injection of ghost particles

Optimal spatial decomposition

Output data:

x

Figure 7: Slightly non-uniform case. Processing elements and post-processing results for a slightly non-uniform random
sample X of size n = 2000 where the 15% of the sample is non-uniform.
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and 55 under-concentrated bins (based on the percentile Q20). Table 3 summarises the resulting score
for each threshold in the set threshold range.

This case shows that the D2SD algorithm is able to identify large clustering region with very high
concentrations (corresponding to the cluster introduced). Moreover, the distance-to-boundary score is
reduced by nearly two orders of magnitude when applying the D2SD algorithm, confirming that the
optimal spatial decomposition respects the spatially-uniform condition much better than the initial
spatial distribution.

Threshold λ Fraction 〈S(λ)〉ghosts/Sideal Fraction of highly-concentrated cells (in %)

0.80 3.23 147
1.00 2.81 108

Table 3: Highly non-uniform case. Distance-to-boundary scores and number of detected clusters for threshold range =
{0.80, 1.0}, with an initial score S0 = 0.1584546 and ideal score Sideal = 0.0023693 (giving an initial fraction of 66.88).

Input data:

Step 1:
(uniformity check)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centered discrepancy
 Star discrepancy

Step 2:
Data-driven spatial decomposition

x

Step 3:
(uniformity check)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centered discrepancy
 Star discrepancy

✓

x
x
x

✓
✓
✓
✓
✓

Set of particles

Empirical cdf and corresponding thresholds

Sample after injection of ghost particles

Optimal spatial decomposition

Output data:

x
x

Figure 8: Highly non-uniform case. Processing elements and post-processing results for a highly non-uniform random sample
X of size n = 5000 where the 62% of the sample is non-uniform.

• Symmetric case The fourth case corresponds to a symmetric case with void regions. The aim of this
case is to highlight the advantages of using the joint probability density function when detecting
symmetric patterns.
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The results are displayed in Figure 9. As seen in the top left panel, we start from a highly non-uniform
random sample {X1, . . . , Xn} of size n = 5000, composed of a uniform sample in the boundary of the
box [0, 1]2, forming a frame. In this case, the uniformity test was rejected with an initial distance-to-
boundary score S0 = 0.0780929 (see Step 1 in the top center panel). The empirical reduced-cdf visible in
the top right panel reveals the presence of a high proportion of void regions (more than 25%) and some
clustering. The optimal domain decomposition is generated with the optimal threshold λ∗ = 1.53 and
the corresponding new particle data Xλ

∗

final (with ghost particles) can be seen in the middle right panel. It
appears that the D2SD algorithm is able to detect the void region but that the current binning left some
void regions untouched. Yet, the uniformity test applied on the modified set of data is rejected, which
triggers another loop in the D2SD algorithm (see middle center panel). During the second iteration of
the D2SD algorithm, the empirical reduced-cdf visible in the middle left panel reveals the presence of
some void regions and a few clustering regions (high slopes). The optimal domain decomposition is
generated with the optimal threshold λ∗ = 1.26 and the corresponding new particle data Xλ

∗

final (with
ghost particles) can be seen in the bottom left panel. After this second iteration, the D2SD algorithm
clearly generated a more uniform set of data. The modified data being accepted as uniform, the optimal
spatial decomposition is shown in the bottom right panel: it consists in 12× 12 bins, with 1 empty bins
(in the center) and 6 under-concentrated bins (based on the percentile Q20). Table 4 summarises the
resulting score for each threshold in the set threshold range = {1.53, 1.56, 1.58, 1.61, 1.64, 1.67, 1.70},
for the first iteration, and threshold range = {1.26, 1.28, 1.31, 1.34, 1.39} for the second iteration.

This case shows that the D2SD algorithm is able to identify the low-concentration region introduced in
the center of the domain. Moreover, the distance-to-boundary score is reduced by nearly one order
of magnitude when applying the D2SD algorithm, confirming that the optimal spatial decomposition
respects the spatially-uniform condition much better than the initial spatial distribution.

First Iteration
Threshold λ Fraction 〈S(λ)〉ghosts/Sideal Fraction of highly-concentrated cells (in %)

1.53 6.32 23.61
1.56 6.43 22.22
1.58 6.65 19.44
1.61 6.74 15.97
1.64 6.74 16.67
1.67 6.80 14.58
1.70 6.98 13.19

Second Iteration
Threshold λ Fraction 〈S(λ)〉ghosts/Sideal Fraction of highly-concentrated cells (in %)

1.26 1.13 15.97
1.28 1.49 12.50
1.31 1.72 9.03
1.34 2.21 4.17
1.39 2.40 2.08

Table 4: Symmetric non-uniform case. Distance-to-boundary scores and number of detected clusters for threshold range =
{1.53, 1.56, 1.58, 1.61, 1.64, 1.67, 1.70} in the first iteration and threshold range = {1.26, 1.28, 1.31, 1.34, 1.39}, with an initial
score S0 = 0.0780929 and ideal score Sideal = 0.0037523 (giving an initial ratio of 20.81).

3.3. Precision and convergence of the method

We detail here the convergence of the method with respect to the number of particles. To assess this
convergence, we consider the four types of samples (uniform, slightly non-uniform, highly non-uniform and
symmetric non-uniform) with different particle sizes (n = {500, 1000, 1500, 2000, . . . , 5000}) and we analyse
the result accuracy with respect to the number of particles n. In order to obtain an accurate mean score
(and diminish the randomness of this measure), we consider a Monte Carlo approximation of 〈S(λ)〉ghosts,
using M = 1000 i.i.d ghost samples (see Appendix B for more details).
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Input data:

Step 1:
(uniformity check)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centred discrepancy
 Star discrepancy

Step 2:
Data-driven spatial decomposition

x

x
x
x

✓

Set of particles

Empirical cdf and corresponding thresholds

Sample after injection of ghost particles

Optimal spatial decomposition

Output data:

Step 2:
Data-driven spatial decomposition

Empirical cdf and corresponding thresholds

Sample after injection of ghost particles

Step 3:
(uniformity check)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centered discrepancy
 Star discrepancy

✓

✓
✓
✓
✓
✓

Step 3:
(uniformity check)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centered discrepancy
 Star discrepancy

x

x
x
x

✓

x

x

Figure 9: Symmetric non-uniform case. Processing elements and post-processing results for a symmetric non-uniform
random sample X of size n = 5000 with frame shape.
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The results are compiled in Table 5, which provides information on n, the initial score of the sample S0,
the optimal threshold λ∗ with its corresponding score 〈S(λ∗)〉ghosts, the total number of bins and the number
of high-concentrated regions (referred to as clusters), under-concentrated regions and void regions associated
with the optimal mesh. The numerical experiments shown in this section were programmed in Matlab and
tested on a laptop (Intel Core i7, 2.50GHz). In Table 5, we illustrate the evolution of the computational
time for a sample of size n by re-scaling with the CPU time of the initial sample CPU(n0). Several main
conclusions can be drawn:

• First, it is sufficient to apply the current algorithm one time to accomplish the required accuracy (i.e.
the uniformity check in Step 3 is accepted) except in the last case. The rejection of the uniformity
check in the case of a symmetric non-uniform sample is due to the proportion of void regions present
in the domain. For this reason, in Table 5, we include a column with the number of iterations of the
method necessary to accept the uniformity of Xλ

∗

final in the symmetric non-uniform case.

• Second, the D2SD algorithm converges relatively quickly towards a case close to the ideal one as the
number of particles is increased. This convergence of the score with respect to the number of data
points is shown in Fig. 10 for the uniform, slightly non-uniform and highly non-uniform cases. The
reason for omitting the symmetric case in Fig. 10 is that the proportion of ghost particles introduced
in Xλ

∗

final corresponds to more than 50% of the initial data. As a result, although we can observe a
decreasing trend in the score for the Symmetric case, the randomness has a strong impact in the
visualization. This effect is expected to be less and less important as the size of the data increases.

• Third, due to the randomness of both the data and the algorithm the analysis of the computational
complexity requires further studies. Indeed, the scaled CPU times provided in Table 5 exhibit the
dependency of the computational complexity of the algorithm with respect to the sample distribution.
Nevertheless, after optimizing properly the implementation, we expect the computational complexity
to be of the order of n.

Uniform case
n N. bins λ∗ S0×103 〈S(λ∗)〉ghosts×103 Fraction Fraction of under Fraction of Scaled

of clusters concentrated cells void regions time

(in %) (in %) (in %)
CPU(n)
CPU(n0)

500 7× 8 1.27 15.00 8.88 17.86 12.5 0.00 1.00
1000 9× 9 1.35 6.50 6.31 19.75 14.81 0.00 1.06
1500 11× 11 1.04 7.34 4.12 27.27 15.70 0.00 1.48
2000 12× 12 1.22 5.50 3.06 17.36 13.88 0.00 1.89
2500 13× 13 1.21 4.07 2.88 18.34 13.61 0.00 2.67
3000 14× 14 1.24 3.20 2.71 15.31 15.31 0.00 5.80
3500 15× 15 1.20 4.15 3.02 17.33 14.67 0.00 6.40
4000 15× 16 1.26 5.26 2.42 23.33 16.67 0.00 11.56
4500 16× 16 1.25 3.28 2.11 20.70 16.80 0.00 10.52
5000 17× 17 1.21 3.16 2.38 18.69 15.92 0.00 9.09

Slightly non-uniform case
n N. bins λ∗ S0×102 〈S(λ∗)〉ghosts×103 Fraction Fraction of under Fraction of Scaled

of clusters concentrated cells void regions time

(in %) (in %) (in %)
CPU(n)
CPU(n0)

500 8× 9 1.15 3.50 10.40 18.06 12.50 1.39 1.00
1000 11× 11 1.21 3.80 4.97 16.35 14.05 0.00 1.09
1500 12× 13 1.04 4.14 3.15 25.00 16.03 0.00 1.47
2000 14× 14 1.27 3.99 4.02 15.31 12.76 0.00 1.67
2500 15× 15 1.17 4.15 2.96 18.22 13.33 0.00 1.91
3000 16× 16 1.11 4.39 2.51 25.00 16.02 0.00 6.35
3500 16× 18 1.23 4.50 3.12 16.67 14.58 0.00 8.42
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4000 17× 18 1.22 3.89 2.23 15.03 15.36 0.00 9.55
4500 18× 19 1.21 4.33 2.17 15.50 15.50 0.00 12.80
5000 18× 20 1.00 4.29 2.40 24.17 14.72 0.00 13.33

Highly non-uniform case
n N. bins λ∗ S0×10 〈S(λ∗)〉ghosts×103 Fraction Fraction of under Fraction of CPU

of clusters concentrated cells void regions time

(in %) (in %) (in %) (in s)

500 12× 14 1.34 1.30 9.55 12.50 0.00 17.26 1.00
1000 16× 18 1.15 1.33 7.23 11.46 0.00 14.58 1.20
1500 19× 20 1.01 1.27 5.92 12.11 1.84 13.16 1.27
2000 21× 22 1.15 1.32 4.88 12.99 4.98 11.25 1.70
2500 22× 24 0.63 1.33 4.29 20.45 6.06 9.28 2.39
3000 25× 25 1.04 1.27 3.26 12.32 10.24 8.00 2.78
3500 26× 27 0.60 1.29 3.99 20.23 8.26 8.55 3.65
4000 27× 28 0.75 1.36 2.88 14.68 7.28 8.33 4.00
4500 28× 29 0.54 1.31 2.52 22.41 9.73 8.00 4.35
5000 28× 30 0.84 1.33 2.53 13.81 12.26 6.55 4.27

Symmetric non-uniform case
n N. bins λ∗ S0×102 〈S(λ∗)〉ghosts×103 N. of iterations

500 5× 5 1.80 7.79 7.23 1
1000 7× 7 {1.52, 1.28} 7.72 {42.00, 8.87} 2
1500 8× 8 {1.49, 1.15} 7.95 {21.60, 6.45} 2
2000 9× 9 1.53 7.71 7.95 1
2500 9× 9 1.62 7.70 9.15 1
3000 10× 10 1.76 7.95 2.55 1
3500 11× 11 {1.55, 1.42} 7.94 {40.30, 6.65} 2
4000 11× 11 {1.60, 1.41, 1.19} 7.84 {39.00, 8.99, 3.87} 3
4500 12× 12 {1.60, 1.26} 7.96 {27.10, 3.90} 2
5000 12× 12 {1.52, 1.25} 7.80 {2.37, 4.7} 2

Table 5: Uniform case, Slightly non-uniform, Highly non-uniform and symmetric non-uniform case. Optimal
thresholds, scores and grids versus the number of particles in n = {100, 500, 1000, 1500, 2000, . . . , 5000}.

Figure 10: Convergence of the optimal score 〈S(λ∗)〉ghosts. Cases: uniform, slightly non-uniform and highly non-uniform.
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4. Application to particle agglomeration

In this section, we apply the D2SD algorithm to the case of particle agglomeration. This requires
adapting the D2SD algorithm so that it can be coupled with CFD simulations of particle agglomeration
in realistic 3D cases. In particular, different versions of the D2SD algorithm are introduced in Section 4.1
depending on the level of accuracy and computational costs desired. The accuracy of these methods is then
addressed by comparing the numerical results obtained with these agglomeration-adapted D2SD algorithms to
theoretical estimations in simple cases (see Section 4.2). Finally, the agglomeration-adapted D2SD algorithms
are applied to a realistic 3D case, where data on particle positions are coming from a CFD simulation of a
turbulent flow in a half-pipe (see Section 4.3).

4.1. Adaptation of D2SD algorithm for particle agglomeration

Since the D2SD algorithm presented in Section 2 provides a spatial decomposition in which the spatially-
uniform condition is respected in each cell, it can be easily coupled with typical one-particle tracking
approaches where collisions are computed in cells with a given collision frequency β and collision efficiency
α. More precisely, since agglomeration models in one-particle tracking approaches are based on a Bird-like
algorithm (i.e. transport is treated first without collision and collisions are then evaluated without transport),
the D2SD algorithm is to be applied, after computing the motion of particles, at each time step for which
the distribution of the particles has varied sufficiently according to the previous time step. The algorithm
will thus come up with an optimal spatial decomposition based on the current positions of particles that are
present in the simulation. Then, assuming that the collision efficiency α is equal to unity (i.e. all collisions
lead to agglomeration), the number of agglomeration events computed using the D2SD-generated mesh is
given by:

Aestimated =
∑

Cell C ∈ Mesh

β
n2
C

VC
∆t, (14)

where nC is the number of particles in cell C, VC is the volume of the cell and ∆t is the time step.
In the rest of the paper, several adaptations of the D2SD model for particle agglomeration are proposed.

The suggested variations have been designed in order to provide a range of possible algorithms depending on
the accuracy desired in CFD simulations and on the computational costs. The following adaptations are
analysed:

1. Full D2SD (Step 1–Step 3): this corresponds to the whole algorithm presented in Section 2 including
both uniformity checks.

2. Step 1 + Step 2: this corresponds to the D2SD algorithm coupled with the initial uniformity check.
3. Fast D2SD (Step 2 only): this corresponds to the D2SD algorithm only (no uniformity check).

It should be noted that these algorithms were programmed in Matlab R2016b and tested on an ordinary
laptop (Intel Core i7, 2.50GHz). As such, the CPU times that are provided in the following are not intended
to represent absolute computational times. It should rather be used as reference times to be compared
together in order to measure the ratio between accuracy and computational resources involved. Moreover,
the computation time of the D2SD algorithm and its derivatives depends directly on the data (which are
considered always as random) and especially on the length of the threshold vector λ: as a result, computational
times will display variations with each spatial distribution.

4.2. Accuracy and convergence of agglomeration-adapted D2SD to compute agglomeration events

Bearing in mind that, when dealing with numerical approximations of agglomeration processes, we can
easily lose the notion of real number of agglomeration events and that agglomerations will always depend on
the collision rate (which is not part of the scope of this article), we have designed two simple two-dimensional
experiments to evaluate the accuracy of the agglomeration-adapted D2SD algorithm for the computation
of particle agglomeration. In the first experiment, we treat the case of uniformly distributed particles. In
the second experiment, the agglomeration-adapted D2SD algorithms are applied to a population of point
particles with a certain spatial preference. In both cases, numerical results are compared to theoretical
values/estimations.
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4.2.1. Agglomeration in a uniform case

The first numerical experiment consists of particles that are uniformly distributed in space. For that
purpose, we consider a family of n point particles, for n in N = {10p, p = 1, 2, 3, 4, 5}∪{5×10p, p = 1, 2, 3, 4}.
These particles are uniformly distributed in the square domain [0, 1]× [0, 1]. The collision frequency β and
the time step are assumed to be constant, such that β∆t = 10−6. In that case, the number of agglomeration
events obtained theoretically is given by:

Aevents(n) = n2β∆t.

Figure 11 displays both the illustration of the methods used to compute particle agglomeration and the
evolution of the error made on the estimation of particle agglomeration using these methods. More precisely,
we compare the results obtained with the spatial decomposition algorithms to those obtained considering a
regular mesh with 2×2 or 20×20 as well as with a triangulated mesh with 20×20 elements. The comparison
with such arbitrarily chosen mesh allows to highlight the interest of the D2SD approach which allows to
compute a spatial decomposition based on the statistical information on the data points. The error plotted
in Figure 11b corresponds to the absolute error for n in N . It is computed with the formula

|Aevents(n)−A(k, n)|
Aevents

, for k = 0, 1, . . . , 5,

where A(k, n) is the numerical estimation of the number of agglomeration events, which is approximated by

A(k, n) =
∑

Cell C∈Mesh(k)

min

{
β
n2
C

VC
∆t,

nC
2

}
,

for each mesh k = 0, 1, . . . , 5 where k = 0, 1, 2 corresponds to the Step 2, Steps 1-2 and Steps 1-2-3 of the
D2SD algorithm, respectively.

Several conclusions can be drawn from this comparison:

1. As expected in the uniform case, the results obtained with either D2SD decomposition or arbitrary
meshes all converge to the theoretical value as the number of point particles is increased.

2. The arbitrary 20 × 20 or triangulated meshes induce a relatively high error even for samples up to
103 particles. This can be attributed to the bias induced by the fact that small cells contain a small
number of particles and, as a result, the number of agglomeration events is more prone to fluctuations
(this is all the more pronounced as the total number of particles n is low).

3. The arbitrary 2× 2 mesh seems to provide the best convergence with respect to the number of particles
n, which in this case is natural since it is the mesh that least divides the domain.

4. The most accurate results are obtained using the full D2SD algorithm. As visible in the inset of
Figure 11, this accuracy comes at the price of a computational cost proportional to the number of
particles in the domain.

4.2.2. Agglomeration in a non-uniform case

The second numerical experiment consists in a system of n point particles, with n in N . As illustrated in
Figure 12, n1 = 17n

20 of the particles are uniformly distributed in the subdomain [ 1
4 , 1]× [ 2

3 , 1] while the rest
of the n2 = 3n

20 particles are uniformly distributed in the remaining subdomain [0, 1]× [0, 1] \ [ 1
4 , 1]× [ 2

3 , 1].
We further assume that the collision efficiency α = 1 and we fix the collision rate and time step such that
β∆t = 10−6. To evaluate the accuracy of the results, the expected number of agglomeration events has to be
estimated theoretically. To that extent, we approximate the total number of agglomeration events as the sum
of the agglomeration events in the two uniform areas. This is only an estimation since theoretical calculations
are not possible in the non-uniform case (it basically neglects the events occurring at the boundaries of the
sub-domains). Thus, the approximation of the number of agglomeration events is:

Aevents(n) ≈ min

{
4n2

2

3
∆tβ,

n2

2

}
+ min

{
4n2

1∆tβ,
n1

2

}
.
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(a) Spatial decomposition using D2SD (Step 2 only) versus arbitrary regular meshes of sizes 2× 2, 20× 20 and a triangulated mesh with
20× 20 elements.

(b) Absolute error for number of agglomeration events and CPU time.

Figure 11: First experiment for convergence of the D2SD algorithm (in log-log scale): Uniform case. Results correspond to an
average of 20 samples for each population size n× 10−3 = 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100.

As in the uniform case, we compare the results obtained with the spatial decomposition algorithms to
those obtained considering a regular mesh with 2× 2 or 20× 20 as well as with a triangulated mesh with
20× 20 elements (see also Figure 13a). The comparison with such arbitrarily chosen mesh allows to highlight
the interest of the D2SD approach which allows to compute a spatial decomposition based on the statistical
information on the data points. The error plotted in Figure 13b corresponds to the absolute error for n in N .

Several conclusions can be drawn from this comparison:

1. As expected, the results obtained with the arbitrary 2 × 2 mesh do not converge to the theoretical
estimation. This is due to the fact that the mesh used is not adapted to the spatial distribution of
particles.

2. The arbitrary 20 × 20 or triangulated meshes induce a relatively high error when the number of
particles is low (typically below n = 103). As for the uniform case, this can be attributed to the bias
induced by the fact that small cells contain a small number of particles and, as a result, the number
of agglomeration events is more prone to fluctuations. Moreover, the error reaches a plateau value
independent of the number of particles n when n becomes large enough (which depends on the number
of cells). This plateau is due to the fact that, even if the mesh is somewhat adapted to the non-uniform
case, the arbitrary splitting is independent of the actual repartition of the n sample points.

3. Among the agglomeration-adapted D2SD algorithms, the full D2SD as well as the (Step 1 and Step 2)
algorithms provide the most accurate results. Moreover, all results converge to the theoretical estimation
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Figure 12: Sketch of the second experiment of convergence.

(a) Spatial decomposition using D2SD versus arbitrary regular meshes of sizes 2× 2, 20× 20 and a triangulated mesh with 20× 20 elements.

(b) Absolute error for number of agglomeration events and CPU time.

Figure 13: Second experiment for convergence of the D2SD algorithm (in log-log scale): Non-uniform case. Results correspond
to an average of 20 samples for each population size n× 10−3 = 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100.

as the total number of particles increases.

At this point, it is worth mentioning that the performance of the algorithm proposed in this paper
has more impact in more complex situations. However, to measure its accuracy, it is necessary to make a
qualitative analysis of the agglomeration mechanisms, which will be discussed in a future article.
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4.3. Application of agglomeration-adapted D2SD to a 3D sample from a CFD simulation

In the following, we apply the current method to a particle position dataset {X1
t , . . . , X

n
t } which has

been generated from a CFD simulation obtained with Code Saturne (an open-source CFD code) on the
NEF cluster available at INRIA. More precisely, we focus on the case of a point-source dispersion of
particles inside a turbulent flow (see also Fig. 14). Particle dispersion in a half-pipe is representative of
industrial/environmental cases where particles are injected locally in space and are then dispersed by the
underlying flow (e.g. point-source dispersion in atmospheric flows or droplet injection in spray nozzles).
Figure 14 displays the position of particles in the half-pipe together with the particle volume fraction obtained
at various cross-sections: it can be seen that particles are initially dispersed within the center of the pipe
and particles then diffuse in the whole pipe section as they are transported further downstream. Results
have been obtained with an Euler-Lagrange simulation (plots after 20 s of simulation with a time step of
0.01 s and 10 µm particles injected in a turbulent flow at Re = 104). The half pipe had a radius of 0.1 m
and a length of 1 m. Particles are injected at each iteration of the simulation inside a small area close to the
pipe centre at the inlet boundary and with various concentrations, leading to different total number of the
particle sample within the domain (n ∈ {955, 1920, 3820, 9580}). We then apply the agglomeration-adapted
D2SD algorithm directly on data coming from the CFD simulation, i.e. on a snapshot of particle positions at
a given time step. This is used to illustrate the interest of such an approach on a realistic CFD case.

Dealing with non cubic geometry. Since the domain does not correspond to a cubic domain, in order to
implement the discrepancy statistics, we need to transform the dataset X, for which we propose two methods:
(1) form a complete cube through the injection of ghost particles or (2) transform the positions X with a
change of coordinates. In both cases, we normalize the observations in order to have a sub-domain of the
unit cube.

Figure 14: Point-source injection and dispersion of particles in a half-pipe obtained with a CFD simulation in Code Saturne
(the pipe inlet is in the background face and the pipe outlet is in the front).

The idea of injecting ghost particles is to uniformly fill the void region generated when embedding the
pipe in a box (the concentration of ghost particles in this region is the same as the sample X). This way, an

extended sample X̃ is obtained with real and ghost particles inside a box where the D2SD algorithm can be

applied. Since the ghost particles have the same concentration as X, the rejection of the uniformity of X̃
will immediately imply the rejection of the uniformity of X. The main drawback of this approach is that
the algorithm is forced to process more data, thus increasing the computational cost and memory needed.
Also, since we construct a grid composed of cubes, we will be – in a certain way – approximating cylindrical
sections through cubic sections.

Inspired by this volume approximation, we propose a second method: a transformation based on cylindrical
coordinates. For this second method, we will use the transformation from Cartesian to cylindrical coordinate
(x, y, z) 7→ (ρ, θ, z) given by {

ρ = x2 + y2

tan θ = y
x

(15)
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If the point (X,Y, Z) is uniformly distributed in the half-pipe, we know that the joint density of (X,Y, Z)
is given by fquadr(x, y, z) = 1/Cylinder volume = 200/π. Then, through the change of coordinates defined
in (15), the joint density of the random point (X,Y, Z) = (P,Θ, Z) is given by

fcylind(ρ, θ, z) =
1

2
fcarte(

√
ρ cos θ,

√
ρ sin θ, z) =

100

π
=

1

Cube volume

for P,Θ and Z random variables with distribution P ∼ U [0, (0.1)2], Θ ∼ U [0, π] and Z ∼ U [0, 1]. That is,
the random point (P,Θ, Z) is uniformly distributed in the cube [0, 0.01] × [0, π] × [0, 1]. The idea is then

to apply directly the D2SD method to the transformed sample X̃ = (P (X),Θ(X), Z(X)). With this, the
optimal mesh will be given in cylindrical-type coordinates, so the grid will be better adapted to the data.

Analysis of results. Since the aim of this algorithm is to evaluate agglomeration of particles in complex flows,
the number of agglomeration events generated with and without the current algorithm is assessed. For that
purpose, we compare the total number of agglomeration events obtained using the mesh provided in the CFD
simulation with Code Saturne to the one obtained with the mesh generated by the D2SD method. In our
reduced case, since we consider only primary particles, the total number of agglomeration events is given by:

Aevents =
∑

Cell C∈Mesh
min

{
β
n2
C

VC
∆t,

nC
2

}
, (16)

where VC corresponds to the volume of each cell C, nC is the number of primary particles inside each cell,
∆t is a time-step and β is the agglomeration kernel. In Table 6, we compute the agglomeration events
corresponding to the mesh generated by Code Saturne for n ∈ {955, 1920, 3820, 9580} (at a fixed time t with
a constant time step ∆t = 0.01 and a given rate β = 10−5). This computation, without the addition of
D2SD, is used later on to highlight the effect of a mesh prescribed only for the flow simulation.

Number of particles Agglomeration events
955 285
1920 697
3820 1572
9580 4330

Table 6: Half-pipe case. Number of agglomeration events computed with Formula (16) using the Mesh available in the CFD
simulation with Code Saturne .

In order to assess the accuracy of the method, we consider the sample {X1
t , . . . , X

n
t }, with n = 3820

simulated with Code Saturne within the half-pipe domain. Since the input data is different for each method,
we present here the results obtained with each method, specifying the initial score, the number of bins and
the thresholds with their corresponding distance-to-boundary score:

• Extension of data: The results are displayed in Figure 15. As seen in the top left panel, after
computing the concentration of the sample X and injecting the ghost particles in the exterior of the
half-cylinder, we obtain an extended sample with a number of particles increased by roughly 27%. In
this case, the uniformity test was rejected with an initial distance-to-boundary score S0 = 0.0267532
(see Step 1 in the top center panel). The empirical reduced-cdf visible in the top right panel reveals the
presence of a very high proportion of void regions (close to 60%) and some clustering. The optimal
domain decomposition is generated with the optimal threshold λ∗ = 6.55 and the corresponding new
particle data Xλ

∗

final (with ghost particles) can be seen in the middle right panel. The modified data
being accepted as uniform, the optimal spatial decomposition is shown in the bottom right panel: it
consists in 43× 16× 23 bins, with 7.4% empty plus under-concentrated bins (based on the percentile
Q20). The whole method took 208 seconds of computational time. It should be noted here that most
of the computational time comes from the computation of the uniformity checks (which scale as n2).
Table 7 summarises the resulting score for each threshold in the set threshold range = {6.55, 9.82}.
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This case shows that the D2SD algorithm is able to identify clustering and void regions in a 3D case
(with data points coming directly from a CFD simulation). Moreover, the distance-to-boundary score
is reduced by nearly two orders of magnitude when applying the D2SD algorithm, confirming that the
optimal spatial decomposition respects the spatially-uniform condition much better than the initial
spatial distribution. However, Fig. 15 also highlights one of the drawback of the method with an
extension of the particle data: the generated mesh follows typical Cartesian coordinates and is not
necessarily adapted to the cylindrical coordinates of the half-pipe here. This will be improved using
the second method with a change of coordinates (described below).

Input data:

Step 1:
(uniformity check)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centered discrepancy
 Star discrepancy

Step 2:
Data-driven spatial decomposition

x

Step 3:
(uniformity check)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centered discrepancy
 Star discrepancy

✓

x
x
x

✓
✓
✓
✓
✓

Extended set of particles in cartesian coordinates

Empirical cdf and corresponding thresholds

Sample after injection of ghost particles

Optimal spatial decomposition

Output data:

x
x

Figure 15: Half-pipe case with extension of data method. Processing elements and post-processing results for an initial
sample X with n = 3820 fluid particles and extended with 1015 ghost particles completing the boxed domain.

• Transformation of data: The results are displayed in Figure 16. As seen in the top left panel, the
particle data set X = {X1

t , . . . , X
n
t } (with a size n = 3820) is transformed through the change of

coordinates defined in (15). In this case, the uniformity test was rejected with an initial distance-
to-boundary score S0 = 0.1131566 (see Step 1 in the top center panel). The empirical reduced-cdf
visible in the top right panel reveals the presence of a very high proportion of void regions (close to
80%). The optimal domain decomposition is generated with the optimal threshold λ∗ = 6.95 and the
corresponding new particle data Xλ

∗

final (with ghost particles) can be seen in the middle right panel (note
that it is plotted in the Cartesian coordinates system to see the uniformity of the data). The modified
data being accepted as uniform, the optimal spatial decomposition is shown in the bottom right panel:
it consists in 15× 59× 15 bins, with 7.6% empty plus under-concentrated bins (based on the percentile
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Q20). The whole method took 38 seconds of computational time, which appears more reasonable in the
context of CFD simulations (note again that a significant time is devoted to the uniformity checks).
Table 7 summarises the resulting score.

As previously, the D2SD algorithm is able to identify clustering and void regions in a 3D case (with
data points coming directly from a CFD simulation) and the distance-to-boundary score is reduced
by nearly two orders of magnitude when applying the D2SD algorithm. In addition, the use of a
transformation of coordinates provides an optimal spatial decomposition that better suits the original
volume (here a half-pipe).

Input data:

Step 1:
(uniformity check)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centered discrepancy
 Star discrepancy

Step 2:
Data-driven spatial decomposition

x

Step 3:
(uniformity check)

 Henze-Zirkler
 Pearson correlation
 Symmetric discrepancy
 Centered discrepancy
 Star discrepancy

✓

x
x
x

✓
✓
✓
✓
✓

Set of particles in cylindrical coordinates

Empirical cdf and corresponding thresholds

Sample after injection of ghost particles

Optimal spatial decomposition

Output data:

x
x

Figure 16: Half-pipe case with transformation of data method. Processing elements and post-processing results for an
initial sample X with n = 3820 fluid particles.

Finally, we compute the number of agglomeration events generated using the mesh provided by the D2SD
method in Equation (16) and compare it to the initial one obtained using the mesh from Code Saturne
simulation. Table 8 summarises the results obtained for various number of particles n, together with the initial
score of the sample S0, the optimal threshold λ∗ with its corresponding score 〈S(λ∗)〉ghosts, the total number
of bins, the number of high-concentrated regions and the void regions associated with the optimal mesh.
Additionally, the last column in Table 8 represents the ratio between the number of agglomeration events
computed with D2SD and the number of agglomeration events computed for the grid used in Code Saturne
(see values in Table 6). In particular, it can be seen that agglomeration computed at a given time in a CFD
simulation depends strongly on the mesh. The D2SD algorithm allows to compute agglomeration without
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Half-pipe processing with extension of the data
Threshold λ 〈S(λ)〉ghosts×104 Fraction of highly-concentrated cells (in %)

6.55 6.96160 2.02
9.82 6.62342 1.57

Half-pipe processing with transformation of the data
Threshold λ 〈S(λ)〉ghosts×103 Fraction of highly-concentrated cells (in %)

6.95 3.4174 2.52

Table 7: Half-pipe case. Domain processed through an extension of the data (method 1) and a transformation of the data
(method 2).

Half-pipe processing with extension of the data
n N. bins λ∗ S0×102 〈S(λ∗)〉ghosts×104 Fraction Fraction of Agglomeration

of clusters void regions ratio

(in %) (in %)

955 27× 10× 14 6.17 1.876 16.33 2.41 7.96 1.392982
1920 34× 13× 18 9.73 2.371 11.75 1.65 7.96 1.078910
3820 42× 16× 22 9.84 2.677 6.985 2.05 7.94 0.973919
9580 57× 23× 31 9.98 2.401 4.265 1.57 6.95 0.895381

Half-pipe processing with transformation of the data
n N. bins λ∗ S0 〈S(λ∗)〉ghosts×103 Fraction Fraction of Agglomeration

of clusters void regions ratio

(in %) (in %)

955 10× 37× 9 6.97 0.1031 2.341 2.91 8.05 1.340351
1920 12× 48× 12 7.20 0.1134 3.145 2.50 7.58 1.084648
3820 15× 59× 15 6.95 0.1131 3.494 2.52 7.62 0.957379
9580 20× 78× 21 6.84 0.1096 2.233 3.42 7.49 0.876905

Table 8: Numerical results for half-pipe case. Optimal thresholds, scores and grids versus the number of particles in
n = {955, 1920, 3820, 9580}.

mesh dependence, providing results that may differ up to 40 % from the initial results obtained with the
mesh used in the CFD simulation. It should be noted here that uniform samples are obtained after only one
iteration of the D2SD algorithm.

5. Conclusion

5.1. Summary of the key findings

A new data-driven spatial decomposition (D2SD) algorithm has been described in this paper. It allows
the detection of non-homogeneous concentrations in a set of particles (point data) within a regular volume.
For that purpose, the D2SD algorithm relies solely on the information coming from the particle set, without
requiring other input parameters. More precisely, lower and higher concentration regions are detected by
computing the pdf associated with the sample of particles and by comparing the values obtained to a
threshold. The optimal spatial decomposition is then obtained by iterating on several values of the threshold
(across a range of possible values coming from the quantiles of the distribution) and by looking for the result
giving the score closest to the ideal targeted case (using either distance-to-boundary or projection score).
The D2SD algorithm has been coupled here with a-priori and a-posteriori uniformity tests to check whether
the input and output data satisfy the condition of uniformly-distributed particles.

This algorithm has been tested in several 2D cases, which confirmed that the D2SD algorithm is able to
detect spatial inhomogeneities such as: slightly higher concentrations of particles; high clustering regions of
complex shapes; symmetric cases with void regions. Besides, all these tests have shown that the present
method converges in a few iterations toward a spatial decomposition that respects the uniformity test. Indeed,
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except in the 2D symmetric case where 2 iterations of the D2SD algorithm were required, one iteration of
the D2SD algorithm was enough in all other cases to obtain an accurate spatial decomposition.

The D2SD algorithm has been then adapted to be applied to study particle agglomeration. For that
purpose, particle agglomeration was computed in each region identified by the D2SD algorithm. Comparison
of the numerical results with theoretical values/estimations in non-uniform cases have shown the accuracy
of the algorithm to evaluate the number of agglomeration events. Even when the population of particles
is uniformly distributed in the domain (and thus the spatially-uniform condition is satisfied) the D2SD
algorithm has proven to have better results, compared to an arbitrary choice of mesh. Several variations of
the D2SD algorithm have been tested to show that, depending on the specific requirements of CFD codes,
less complex and faster algorithms can be designed but at the cost of a lower accuracy of the results. Finally,
the algorithm has been applied to data on particle positions coming from a realistic 3D CFD simulation: it
has been shown that the agglomeration can be significantly over- or under-estimated using the mesh used for
CFD simulations. This highlights the robustness and accuracy of the algorithm and the need to apply it when
computing particle agglomeration in complex 3D industrial/environmental cases where the spatially-uniform
condition is not necessarily respected.

Finally, although the D2SD algorithm has been designed to address the spatial uniformity hypotheses
behind PBE-based methods, the proposed method can be translated to different state variables (e.g.,
temperature) where we only need to adapt the construction of the pdf associated with the variable of interest.

5.2. Perspectives for future work

These promising results pave the way for future developments/refinements of the current algorithm. In
particular, we have identified several issues that need to be addressed:

• First, it should be noted that the D2SD algorithm has been coupled here with a-priori and a-posteriori
uniformity checks. However, these two uniformity tests are not in line with the objective (iv) described
in Section 1.4 since they rely on the computation of inter-particle distances. These uniformity tests
were used here to demonstrate the robustness and efficiency of the D2SD algorithm. Since they have
shown that the method converges very quickly to an optimal spatial decomposition, one could decide
to apply recursively the algorithm 2 or 3 times without performing any uniformity test. This requires
further testing of the algorithm in complex situations to identify how many times the algorithm needs
to be applied to obtain results in line with objective (v). Moreover, the computation of the uniformity
tests is very time-consuming and the overall method can be significantly faster if such tests are not
performed. Further works are also needed to speed up the D2SD algorithm, especially to couple it
with standard CFD codes, where D2SD will be applied (and thus the domain will be decomposed
accordingly) when certain criterion, responding to how different the distribution is between one time
step and another, is met.

• The D2SD algorithm has been successfully applied to regular geometries (2D or 3D boxes or cylinders)
but is not easily applicable to complex geometries. This is mainly due to the computation of the score
(either through distance-to-boundary or projection methods) as well as to the computation of the pdf,
which is based on a regular domain decomposition. To apply the method to a more general geometry,
new score measurements are thus needed. This can be done relying on the existing theoretical literature
on the distance-to-boundary or developing dedicated scores from the existing literature on distance on
measure space. Besides, as was the case for the 3D data from the half-pipe, transformations (e.g. using
cylindrical coordinates) are required to use a regular domain decomposition that fits the initial domain.
However, such transformations need to conserve the uniformity of the initial distribution (otherwise the
D2SD algorithm will not be applicable). Since this extra condition on the transformation of the data
can be quite restrictive, the method based on the extension of the data to regular geometries (where
the D2SD algorithm can be safely applied) seems more suitable to complex geometries (the drawback
being then that the mesh is not necessarily adapted to the initial geometry).

• The D2SD algorithm has been applied here to static situations, i.e. the data points (particle positions)
were fixed and were generated by a CFD simulation. In future developments, the aim will be to couple
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the D2SD algorithm with the particle dynamics in order to assess the robustness and efficiency of the
algorithm when the number and location of particles evolves in time. This will require further work
to improve the numerical efficiency of the approach (especially to use parallel computation) and to
properly couple the approach to the chosen CFD software (and its libraries). Another lead to reduce
the numerical costs associated to the creation of a new spatial decomposition is to apply the D2SD
algorithm only when deemed necessary (and not every time step as in a ’brute-force’ manner). More
precisely, a new criteria could be added, which measures either how far the spatial distribution of the
particles is from uniformity or how different the particle positions at the current time step are from
those at the previous one (a criteria on their motion). Such additional criteria can easily be included in
step 1 of the algorithm, for example through the DBS, and will be directly related to the context of
the application. It should be noted that the use of two different meshes for the fluid phase and the
particle phase requires an extrapolation between these two meshes (which is not accounted for in the
computational costs described in the present paper but should be evaluated in a proper implementation
within a CFD code).

• We are also planning to adapt the current algorithm to the tracking of parcels, i.e. numerical elements
that actually represent a large number of real particles. For that purpose, we may rely on some of the
notions introduced by Pischke et al. [40], especially the parcel diameter estimator which represents the
space available per parcel.

• The present D2SD algorithm can be applied in a wide range of contexts, both in particle clustering
and in different frameworks of machine learning focussed on data clustering. In particular, it can be
applied to detect clusters of particles in DNS simulations coupled with particle-tracking approaches. In
that case, even when particles are homogeneously distributed at the system scale, local fluctuations of
particle concentrations can occur due to turbulent fluctuations and particle inertia: this is referred
to as preferential concentration (see for instance [52, 53] and references therein). Such non-uniform
distribution of particles in space can significantly impact the agglomeration rate (which is directly
proportional to the local particle concentration in PBE formulations). The present algorithm can
then be used to identify these regions with intense clustering and to help design efficient models that
accurately reproduce the agglomeration and clustering statistics in turbulent flows.

• Finally, the D2SD algorithm has also implications in the general context of Lagrangian one-particle pdf
approaches. One-particle pdf approaches are indeed mean-field approaches that rely on the evaluation
of mean quantities related to particles in cells (e.g. particle volume fraction or velocity). Yet, accurate
statistics and converged statistical data are only possible if sufficient particles are present within each
cell. In that context, the D2SD algorithm appears as a promising tool to perform such statistical
evaluations on a mesh generated by the spatial decomposition technique presented here, which will be
naturally adapted to the concentration of particles.

Appendix A. Quick assessment of existing clustering methods

The issue of identifying regions with non-homogeneous repartition of particles has been long studied
in the context of image analysis and signal processing [43, 44]. In particular, several clustering techniques
exist to process data points, including: algorithms based on space partition (e.g. the K-means algorithm),
algorithms based on distributions (e.g. the DBCLASD algorithm) or algorithms based on density (e.g. the
DBSCAN algorithm).

One of the most common clustering algorithms is the DBSCAN algorithm (see, for instance, [54]). It
consists in identifying cluster regions, i.e. points within a distance ε having enough neighbours (the minimum
size of a cluster), and noise regions, i.e. points that lie in low-density regions. Although the results for
DBSCAN can be very accurate in the identification of the clusters, the parameters used for the DBSCAN
algorithm have a strong impact on the final clustering. Thus, the selection of the parameters of the model
requires extra attention. Figure A.17 illustrates the sensitivity of the DBSCAN algorithm in the case of a 2D
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set of particles non-uniformly distributed in space (here composed of uniform particles in a box together
with particles along the diagonal). More precisely, the parameters of the model have been chosen following
the rule of thumb MinPts = 2d and ε taken from a k-distance graph. It appears that ε = 0.045 gives here
the most accurate results for cluster identification but the clusters identified with other values of ε differ
significantly from the expected result.

(a) k-distance graph (b) DBSCAN clustering with ε = 0.03, MinPts = 4.

(c) DBSCAN clustering with ε = 0.045, MinPts = 4. (d) DBSCAN clustering with ε = 0.06, MinPts = 4.

Figure A.17: DBSCAN clustering algorithm on a set of particles in 2D: comparison of the results obtained with various
parameters MinPts = 4 and ε = 0.03, 0.045, 0.06. Values of ε are chosen from the k-distance graph where, for each data point,
the distance to the 4th nearest point is displayed.

In this study, we are interested in having an algorithm that detects non-homogeneous particle density
regardless of the initial set of particles. The DBSCAN algorithm is thus not appropriate here since it requires
a-priori information on some parameters. Besides, these methods focus on the classification of data points, in
contrast with our more general scope of constructing a separate regions of space, which separates the points
having different concentrations. The computational costs of some of these algorithms (e.g. scaling with n2)
are also not compatible with CFD simulations, which require fast evaluations of the spatial distribution of
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particles for each iteration in time. For these reasons, we have not opted for such clustering algorithms in
the present study.

Appendix B. Detail of the D2SD algorithm

Algorithm 1: The D2SD algorithm.

Data: Input sample X
Result: Optimal spatial decomposition : Optimal Mesh with 8 labels
reject uniformity = uniformity test(X);
Compute bin size;
while reject uniformity do

Compute Sideal;
for i in position of bins do

app pdf(i) = #observations in bin i
n×Volume of bin

end
Compute the reduced-pdf;
Compute the percentiles Q20, Q60 and Q80;
threshold range = unique(sort(app pdf(Q60 < app pdf & app pdf ≤ Q80)));
for λ in threshold range do

Cluster detected =

{
1 if app pdf ≥ λ
0 otherwise.

Deselect bins selected in previous iterations;
Detected anomalies{1:5} = classify clusters by concentrations(Cluster detected);

Detected anomalies{6} =

{
1 if 0 < app pdf ≤ Q20

0 otherwise.

Detected anomalies{7} =

{
1 if app pdf = 0
0 otherwise.

Mesh(λ) = construct mesh(Detected anomalies);
Compute concentration of ambient uniform bins, cunif;
for Cell in Mesh(λ) do

empty cell(Cell);
Inject M = cunif × Volume(Cell) uniform ghosts in Cell;

end
Compute score S(λ);

end

Select optimal threshold: λ∗ = argminλ
|Sideal−S(λ)|

Sideal
, for λ in threshold range;

Update selected bins;
merge grid(Mesh(λ∗),Optimal Mesh);

reject uniformity = uniformity test(Xλ∗

final);

end
Note that the 8th label are cells with ambient concentration which are not detected as anomalies.

36



Once the construction of the optimal spatial decomposition is completed, we compute agglomeration in
each cell following PBE based methods (see Algorithm 2 below), knowing now that well-mixed condition is
locally fulfilled.

Algorithm 2: Compute agglomeration with the D2SD optimal mesh.

Result: Simulation of agglomeration
for j = 1, 2, . . . , N do

Data: Position of n particles {X1
t , . . . , X

n
t }

Optimal mesh = D2SD method(X1
t , . . . , X

n
t );

for Cell in Optimal Mesh do
Compute agglomeration in Cell (applying Formula (3) in [55];

end

end

Remark. A few remarks are due on the D2SD algorithm:

– When we opt for the implementation of the projected score, the computation of the ideal score must be
done for each threshold since its mean value is expected to vary with respect to n, and the variance of
the score is higher (see Fig. 4).

– Due to the randomness of the ghost particles, the chosen threshold will have a random nature. This
randomness can be diminished by taking average on the realization of ghosts and the computation of
the final score S(λ). The averaging will increase the computational time. Nonetheless, given that the
algorithm does not require greater computational effort, the increment of the computational time is
expected to be low.

– Since the score represents a distance between the sample distribution and the uniform distribution,
it can be used as a second phase of the uniformity test. More precisely, in case the test rejects the
uniformity, we evaluate the distance between the ideal score and the score of the observations. If this
distance is too small, we will consider the result of the uniformity test as a false negative, and accept
the uniformity. Therefore, we integrate the distance to the boundary into the battery of tests.
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