
HAL Id: hal-02499326
https://inria.hal.science/hal-02499326v2

Preprint submitted on 30 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tornado: An Autonomous Chaotic Algorithm for Large
Scale Global Optimization

Nassime Aslimani, El-Ghazali Talbi, Rachid Ellaia

To cite this version:
Nassime Aslimani, El-Ghazali Talbi, Rachid Ellaia. Tornado: An Autonomous Chaotic Algorithm for
Large Scale Global Optimization. 2020. �hal-02499326v2�

https://inria.hal.science/hal-02499326v2
https://hal.archives-ouvertes.fr


Tornado: An Autonomous Chaotic Algorithm for Large Scale Global
Optimization

N. Aslimani, E-G. Talbi, R. Ellaiac

aUniversity of Lille & Inria, France.
bUniversity of Lille & Inria, France.

cMohammed V University of Rabat, Morocco.

Abstract

In this paper we propose an autonomous chaotic optimization algorithm, called Tornado, for large scale global op-
timization problems. The algorithm introduces advanced symmetrization, levelling and fine search strategies for an
efficient and effective exploration of the search space and exploitation of the best found solutions. To our knowledge,
this is the first accurate and fast autonomous chaotic algorithm solving large scale optimization problems.

A panel of various benchmark problems with different properties were used to assess the performance of the
proposed chaotic algorithm. The obtained results has shown the scalability of the algorithm in contrast to chaotic
optimization algorithms encountered in the literature. Moreover, in comparison with some state-of-the-art meta-
heuristics (e.g. evolutionary algorithms, swarm intelligence), the computational results revealed that the proposed
Tornado algorithm is an effective and efficient optimization algorithm.

Keywords: Global optimization, Chaos optimization algorithm, Levelling, Symmetrization, Fine search, Large scale
optimization.

1. Introduction

Chaos theory is a branch of mathematics dealing on the study of dynamical systems whose apparently-random
states of disorder and irregularities are often governed by deterministic laws [1]. Chaotic behavior exists in many
natural systems, including fluid flow, weather and climate. It also occurs spontaneously in some systems with artificial
components, such as stock market and road traffic. Chaotic systems are characterized by high sensitivity to initial
conditions, an effect which is popularly referred to as the butterfly effect [2]. As a result of this sensitivity, the
behaviour of such systems appears to be stochastic, even though the model of the system is deterministic, meaning
that their future behaviour is fully determined by their initial conditions, with no random elements involved. Another
consequence of the butterfly effect is unpredictability. Small differences in initial input can have radically different
results after several cycles through the system. In recent years, chaos has attracted widespread attention and have been
widely applied in various disciplines such as control [3][4] and optimization [5].

Nowadays, there is a need for more effective and efficient optimization techniques, able to solve large scale prob-
lems with hundreds, thousands, and even millions of continuous variables. State-of-the-art chaos based optimization
algorithms (COAs) are not efficient for large scale optimization problems [6]. They are not even operational for a
dimension greater than 5 [6]. Existing COAs are deficient in terms of:

• Exploration of the search space: indeed, the irregularity of the chaos dynamics grows quickly with the problem
dimension. This is due to the intrinsic imprevisibility of chaotic dynamics [6].

• Exploitation of the best found solutions: the main search mechanism used in existing COAs is not adapted for a
good exploitation. It selects in a random way the direction around the current solution [7].
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This paper is the culmination of an approach that leads to an autonomous COA algorithm. First, the following
strategies have been introduced in a gradient-based chaotic algorithm to improve the regularity and the flexibility of
the algorithm [8]:

• Symmetrization: on the one hand, symmetrization induces a regular structure into the chaotic dynamics for a
better exploration. On the other hand, based on a stochastic decomposition strategy, it enables an efficient and
scalable alternative search mechanisms for a better exploitation in the search space.

• Levelling: in fact, the chaotic dynamics has been restructured by a leveling approach. This allows to generate
different flexible chaotic levels to improve the exploration and the exploitation of the search space.

• Hybridization with local search: a combination with gradient based algorithm has been carried out for continu-
ous differentiable functions.

In this paper, an autonomous Chaos is introduced which speedups the convergence and improves the accuracy
of the search for large scale problems. An autonomous and pure chaotic algorithm has been developed, in which
the combination with a local search algorithm (e.g. gradient descent) has been replaced by a chaotic fine search.
The computational results for many test functions with different properties and levels of complexity has shown the
effectiveness, efficiency, and scalability of the autonomous chaotic algorithm in tackling large scale optimization
problems.

This paper is organized as follows. In section 2, the related work on chaos optimization algorithms and state-of-the
art global optimization algorithms (e.g. evolutionary algorithms, swarm intelligence) are presented. Section 3 details
the novel autonomous chaos optimization, the Tornado algorithm. Section 4 shows the computational experiments of
the proposed algorithm. A comparison has been carried out as well with popular chaos optimization algorithms and
state-of-the-art stochastic metaheuristics (e.g. evolutionary algorithms, swarm intelligence). The conclusion and the
perspectives of this work are made in Section 5.

2. Related work

Consider an optimization problem with bounding constraints1:

Minimize f (X) subject to X ∈
[
L,U], (1)

where

• f : IRn −→ IR, denotes the objective function,

• X = (x1, .., xn) ∈ IRn, the decision vector whose components xi are bounded by lower bounds li and upper bounds ui.

and [L,U] =
n∏

i=1
[li, ui].

Chaos is a universal nonlinear phenomenon with stochastic, ergodic, and regular properties. Ergodicity can be
used as a search mechanism for optimization. The sequence of solutions is generated by means of a chaotic map.
Different chaotic maps exist in the literature [9]. The most popular ones are:

• The logistic map: xk = µ.xk(1 − xk), 0 < x0 < 1, 0 6 µ 6 4

• The Kent map: xk+1 =

{
xk/β if 0 < xk < β

(1 − xk)
/
(1 − β) if β < xk < 1 ,

• The Henon map:
{

xk+1 = a × (1 − x2
k) + b × yk

yk+1 = xk
(x0, y0) ∈ IR2, a, b > 0

1without loss of generality, we consider only minimization problems.
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Chaos has been embedded in the development of novel search strategies for global optimization known as chaos
optimization algorithms (COAs). COAs have the properties of easy implementation, reduced execution time and
robust mechanisms of escaping from local optimum. COA has been used in many applications such as optimization
of power flow problems [10], control systems [11], neural networks [12], cryptography [13] and image processing
[14]. In [9], the best chaotic sequences generated by sixteen different chaotic maps have been analyzed.

Chaos based optimization has been originally proposed in 1997 [5]. It includes generally two main stages:

• Global search: an exploration of the global search space is carried out. A sequence of chaotic solutions is
generated using a chaotic map. Then, the objective functions are evaluated and the solution with the best
objective function is chosen as the current solution.

• Local search: the current solution is assumed to be close to the global optimum after a given number of itera-
tions, and it is viewed as the centre on which a little chaotic perturbation, and the global optimum is obtained
through local search. The above two steps are iterated until some specified stopping criterion is satisfied.

Observations from existing COA algorithms reveal that COA still presents some drawbacks especially with prob-
lems involving large spaces. Furthermore, the exploration ability of the COA decreases with the increase of the
dimension space particularly because of the irregularity and the rigidity of the chaos dynamic which does not always
authorize the exploration of some isolated regions containing the global optimum. Moreover, chaotic search has poor
fine search ability, and then existing COAs suffer from the exploitation aspect. Most of the efficient chaos based
optimization algorithms (COAs), proposed in the literature, are hybrid algorithms. Used generally as a global search
strategy, COA is combined with local search efficient procedures such as gradient descent [8], grey-wolf [15], golden
section search [16], and stochastic metaheuristics (e.g. butterfly [17], particle swarm [18][19], cucko search [20],
firefly [21], genetic algorithms [22]).

Hence, few articles proposed an autonomous COA algorithm for large scale global optimization [23][7][24].
Rather, COA has been widely involved in hybridization strategies, and by contrast, these few autonomous COA
approaches involve only low-dimensional problems, and that reveals their limited efficiency and especially their inca-
pacity in handling higher-dimensional problems [6]. According to the aforementioned difficulties, this paper presents
a new autonomous COA approach based on new strategies including symmetrization, levelling, and fined local search.

In the last two decades, many efficient metaheuristics have been developed for tackling continuous optimization
problems. Most of state-of-the-art algorithms are stochastic metaheuristics:

• Differential evolution (DE): DE has two main control parameters that are required to be fixed by a user before
the evolutionary process starts: the scaling factor F, and the crossover control parameter CR. Many adaptive
and self-adaptive DE variants have been developed (e.g. L-SHADE [25]). jSO [26] and SHADE-cnEpSin [27]
are DE-based winners of the CEC’2017 competition. SALSHADE-cnEpSin [28] and LSHADE-RSP [29] are
the DE-based winners of the CEC’2018 competition.

• Evolution strategies (ES): CMA-ES (Covariance Matrix Adaptation-Evolution Strategy) represents an efficient
algorithm for global optimization [30]. CMA-ES is a population based multivariate sampling algorithm, in
which new candidate solutions are sampled according to the multivariate normal distribution, which is imple-
mented by using the adaptation of covariance matrix.

• Particle swarm optimization (PSO): designing learning methods that can use previous search information more
efficiently was one of the most salient PSO research topics. The Orthogonal Learning PSO (OLPSO) [31]
and the heterogeneous CLPSO [32] represent one of the most efficient PSO-based algorithms to solve global
optimization problems. In OLPSO, orthogonal learning (OL) strategy is used to discover useful information
and guide particles to fly in better directions by constructing a much promising and efficient exemplar [31].
In CLPSO, the swarm population is divided into two subpopulations. Each subpopulation is assigned to focus
solely on either exploration or exploitation. Comprehensive learning (CL) strategy is used to generate the
exemplars for both subpopulations [32].
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• Estimation of distribution algorithms (EDA): the principle of EDA is to explore the space of potential solutions
by generating and sampling promising solutions [33]. The main stage is the construction of an explicit proba-
bilistic model that tries to capture the probability distribution of the promising solutions by using tree-structured
or Bayesian networks [34]. As the univariate EDAs assume that all the variables are independent, it is widely
used to solve separable problems [35]. It has been shown that univariate EDAs such as univariate marginal
distribution algorithm continuous (UMDAc) is efficient for solving some multimodal nonseparable problems
[36][37].

• Hybrid metaheuristics: the hybrid metaheuristic LSHADE SPACMA (Semi-Parameter Adaptation Hybrid with
CMA-ES) shows its efficiency for solving the CEC’2017 benchmark problems [38]. The HS-ES (Hybrid
Sampling Evolution Strategy) is the general winner of the CEC’2018 competition on real parameter bound-
constrained optimization [39]. It combines CMA-ES and univariate sampling UMDAc algorithms. Univariate
sampling is very effective for solving multimodal nonseparable problems. As the CMA-ES has obvious advan-
tages for solving unimodal nonseparable problems, the proposed HS-ES tries to take advantages of these two
complementary algorithms to improve the performance of the search.

3. The Tornado algorithm

The proposed Tornado algorithm is composed of three main procedures:

• The chaotic global search (CGS): CGS is a full exploration-based Chaotic search procedure. Its goal is to pro-
duce initial solutions that will be improved and refined by other exploitation-based chaotic search procedures.

• The chaotic local search (CLS): CLS is an exploitation-based Chaotic search procedure. Starting from an initial
solution given by CGS, it exploits the neighborhood of the solution. By focusing on successive promising
solutions, CLS allows also the exploration of promising neighboring regions.

• The chaotic fine search (CFS): CFS is a full exploitation-based Chaotic procedure. It uses a coordinate adaptive
zoom strategy to intensify the search around the current optimum.

The structure of the proposed Tornado approach is given in Algorithm 1. In this work, we use the Henon
map as a generator of a chaotic sequence. We consider a sequence (Zk)1≤k≤Nh of normalized Henon vectors Zk =

(zk,1, zk,2, .., zk,n)∈ IRn through the following linear transformation of the standard Henon map (2) (Fig. 1):

zk,i =
yk,i − αi

βi − αi
, ∀ (k, i) ∈ [[1,Nh]] × [[1, n]], (2)

where αi = mink(yk,i) and βi = Maxk(yk,i). Thus, we get ∀ (k, i) ∈ [[1,Nh]] × [[1, n]], 0 6 zk,i 6 1. In this work,
the sequence of normalized Henon map vectors (Zk) is defined as: a = 1.5, b = 0.2, ∀k ∈ [[1, n]], (xk,0 , yk,0 ) =

(rk, 0), rk ∼ U(0, 1).

Algorithm 1 : The Tornado algorithm structure
1: Initialisation of the Henon chaotic sequence ;
2: Set k = 1 ;
3: Repeat
4: Chaotic Global Search (CGS);
5: Set s = 1 ;
6: Repeat;
7: Chaotic Local Search (CLS);
8: Chaotic Finest Search (CFS);
9: s = s + 1;

10: Until s = Ml ; /* Ml is the number of CLS/CFS by cycle */
11: k = k + 1 ;
12: Until k = M ; /* M is maximum number of cycles of Tornado */
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(a) Henon map attractor (b) Henon map (200 iterations) (c) Henon map dynamic in 2D (200 itera-
tions)

Figure 1: Illustration of Henon Map.

In general, chaos dynamics suffer from irregularity and rigidity, which induces a deficient exploration [9]. Indeed,
the chaos dynamics does not always enable to cover some isolated regions of the search space. For a better exploration
of the search space, the proposd Tornado algorithm uses symmetrization and levelling strategies to better control the
flexibility and the orientation of the chaotic search process. In fact, those proposed strategies provide a distribution of
chaos variables that contains several layers of symmetric solutions.

3.1. Chaotic global search (CGS)

CGS uses the following standard transformation to map chaos variable Z into ranges of design variable X1:

X1 = L + Z(U − L). (3)

In addition, CGS uses two alternative transformations to improve the exploration capability of the decision space and
then remedy the lack of exploration of the dynamic sequence given by the standard transformation (eq.3) (Fig. 2):

X2 = θ + Z(U − θ), X3 = U − Z(U − θ), θ =
1
2

(L + U). (4)

Since ∀i ∈ [[1, n]]: 0 6 zi 6 1 and ui − θi = ui −
li+ui

2 = 1
2 (ui − li) > 0. Then, 0 6 zi(ui − θi) 6 ui − θi and

−ui + θi 6 −zi(ui − θi) 6 0. Hence, θi 6 θi + zi(ui − θi) 6 θi + ui − θi and −ui + θi + ui 6 ui − zi(ui − θi) 6 ui. In other
words, θi 6 θi + zi(ui − θi) 6 ui and θi 6 θi − zi(ui − θi) 6 ui. Thus, X2, X3 ∈ [θ,U] ⊂ [L,U] �

|| | • •|•

X2 X3X1L Uθ

Figure 2: Selection of chaotic variables for CGS.

Those proposed transformations break the inherent rigidity of the chaos dynamics. Furthermore, the presence of
the attractor in the chaos dynamic involves an implicit correlation between certain components of the chaos vector
X because they are all ruled by the intrinsic law of the same involved chaos. To prevent the higher correlation
that reduces significantly the ergodicity and consequently the exploration abilities of these chaotic transformations,
we propose doubling the chaos effect by superposing a second chaos layer to the original chaos vector, that is by
considering ZlZk instead of Zk (Fig.3).
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(a) chaos vector Zk for k=1..200 iterations (b) average of double chaos vectors (ZlZk)16l65 for k=1..200
iterations

Figure 3: Illustration of double chaos effect.

This mechanism involves a restructuring of the chaos dynamic by a levelling approach. Each chaos dynamic given
by Zl provides a new chaos level.

• Levelling approach: the CGS procedure generates three chaotic variables for each iteration k, and in each level,
l ∈ [[1,Nc]] according to Figure2:

X1 = L + ZlZk× (U − L) (5)
X2 = θ + ZlZk× (U − θ) (6)

X3 = U − ZlZk× (U − θ). (7)

Note that we drop k from the subscript in the notation Xi,k for sake of simplicity.

• Symmetrization approach: the exploration of all the dimensions in a high-dimensional space is not practical
because of combinatorial explosion. Instead of that, we have introduced a new strategy consisting of a stochastic
decomposition of the search space Rn into two vectorial subspaces: a vectorial line D and its corresponding
hyperplaneH :

IRn = D⊕H , D = IR × ep, H = vect(ei)i,p. (8)

By consequence,
∀X = (x1, x2, . . . , xn) ∈ IRn: X = Xd + Xh, (9)

where
Xd = (0, ··, 0, xp, 0, ··, 0) ∈ D, Xh = (x1, ··, xp−1, 0, xp+1, ··, xn) ∈ H . (10)

The symmetrization approach based on this stochastic decomposition of the design space has two main conse-
quences:

• Reduces significantly the complexity of the high dimensional problem in a way as if we were dealing with a 2D
space with four directions.

• The symmetric chaos is more regular and more ergodic than the basic one (Fig. 4).

Consider the axial symmetries Sθ+D, Sθ+H defined as follows:

Sθ+D(X) = Xd + (2θh − Xh) (11)
Sθ+H (X) = (2θd − Xd) + Xh (12)
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(a) Henon map dynamic in 2D (200 iterations) (b) Symmetrized Henon map (200 iterations)

Figure 4: Illustration of symmetrisation approach in 2D.
Therefore, based on the stochastic decomposition (eq.8), in each chaotic level l ∈ [[1,Nc]], CGS generates four

symmetric chaotic points using axial symmetries Sθ+D, Sθ+H (Fig. 5):

Xi,1 = Xi, Xi,2 = Sθ+D(Xi,1),
Xi,3 = Sθ+H (Xi,2), Xi,4 = Sθ+D(Xi,3) = Sθ+H (Xi,1). (13)

In other words, ∀i ∈ {1, 2, 3}:

Xi,1 = Xi = Xi,d + Xi,h, Xi,2 = Xi,d + 2θh − Xi,h,
Xi,3 = 2θ − Xi,1, Xi,4 = 2θ − Xi,2.

(14)

IRn = D⊕H

XSθ+H (X)

Sθ+H (X)

θ

θ +H

θ +D

H

Lh

Uh

D
UdLd

Xh

Xd2θd − Xd

2θh − Xh

||

−

−

•
ORn

Figure 5: Illustration of axial symmetries Sθ+D and Sθ+H .
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At last, the best solution among these all generated chaotic points is selected as illustrated by Fig.6.

IRn = D⊕H

Xi,1 = Xi

Xi,2

Xi,4

Xi,3

θ

θ +H

θ +D

H

Lh

Uh

D
UdLd

Xh

Xd2θd − Xd

2θh − Xh

||

−

−

•
ORn

Figure 6: Generation of chaotic variables by the symmetrization approach in CGS.

Note that, in each chaotic level η of CGS, a new direction D is randomly selected with its corresponding hyper-
plane H . This dynamic character of this stochastic decomposition through the search process is a key point for the
efficiency of the CGS because this ensures the regularity, and the diversity of the chaotic dynamics, and as a con-
sequence, it makes the exploration more equitable and so more efficient. The code of CGS is detailed in Algorithm
3.

Algorithm 2 Chaotic global search (CGS).
1: Input: f , U, Z, Nc, k
2: Output: Xc

3: Y = +∞; θ = 1
2 (U + L)

4: for l = 1 to Nc

5: Generate three chaotic variables X1, X2, and X3 according to the following:
6: X1 = θ + Zl Zk× (U − θ), X2 = U − Zl Zk× (U − θ), X3 = L + Zl Zk× (U − L)
7: for i = 1 to 3
8: Select randomly an index p ∈ {1, · · · , n} and decompose Xi according to (eq.9)
9: Generate the four corresponding symmetric points (Xi, j) 16 j64 according to (eq.13) and (eq.14)

10: for j = 1 to 4
11: if Y > f (Xi, j)
12: Xc = Xi, j; Y = f (Xi, j)
13: end if
14: end for
15: end for
16: end for
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3.2. Chaotic local search (CLS)

The CLS procedure allows to refine the search by exploiting the neighbourhood of the solution ω found by the
chaotic global search CGS. However, CLS contributes also to the exploration of the decision space by looking for
potential solutions relatively far from the current solution. In fact, the CLS conducts the search process near the
current solution ω within a local search area Sl of radius Rl = r × R focused on ω (see Fig.7a), where r ∼ U(0, 1)

is a random parameter corresponding to the reduction rate, and R denotes the radius of the search area S =
n∏

i=1
[li, ui]

defined as follows:
R =

1
2

(U − L) =
(1
2

(u1 − l1), . . . ,
1
2

(un − ln)
)

(15)

The CLS procedure uses the following strategy to produce chaotic variables:

• Like the CGS, the CLS also uses a levelling approach by creating Nl chaotic levels focused on ω. In each
chaotic level η ∈ [[ 0,Nl − 1]], the local search process is limited to a local area Sl,η focused on ω (see Fig.7b)
characterized by its radius Rη defined by the following:

Rη = γη × Rl = r × γη × R, (16)

where γη is a decreasing parameter trough levels which we have formulated in this work as follows:

γη =
10−2rη

1 + η
(17)

where r ∼ U(0, 1) is a random number distributed uniformly within the range [0, 1].

ω

ω +H

ω +D

θ

ORn

H

Lh

Uh

D
UdLd

ωh

ωd
||

−

−

Sl,0

Sl,1

Sl,2

Sl,3

(b) Zoom on current solution ω

using the levelling approach

•

•

•

4 chaotic
levels
f ocuses
on ω
}

•
ω

IRn = D⊕Hω +H

ω +D
ω

Rl,h

Rl
Rl,d

θ

ORn

H

Lh

Uh

D
UdLd

ωh

ωd
||

−

−

Local search
area Sl

S earch area S

(a): Illustration of local search area Sl of

radius Rl

R

Rd

Rh

•

•

Figure 7: Illustration of the CLS mechanism.

In fact, the levelling approach used by the CLS corresponds to a progressive zoom focus on the current solution ω
carried out through Nl chaotic levels, and γη is the factor (decreasing throughout the chaotic levels η) that controls the
speed of this zoom process (γη↘ 0). The aim is to look for potential optimal points in the area delimited by Rl but
with much interest for the immediate neighbourhood of the current solution ω (see Fig.7b).
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Rη

ω − Rη ω + Rη

ω + X1 ω + X2
L U

ω
|| | |

Figure 8: Selection of symmetric chaotic variables in CLS.

Indeed, once the CGS provides an initial solution ω, the CLS intensifies the search around this solution, through
several chaotic layers. In each cycle of the Tornado algorithm, a given number (i.e. Ml) of CLS procedures is applied.
Hence, the CLS participates also to the exploration of neighboring regions by following the zoom dynamic as shown
in Fig.9.
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Figure 9: Illustration of the selection of symmetric chaotic variables in CLS.

Moreover, in each chaotic level η, CLS generates two symmetric chaotic variables X1, X2 according to Figure 8:

X1 = Z×Rη, X2 = (1 − Z)×Rη = Rη − X1 . (18)

We select randomly an index p ∈ {1, .., n} and generate the corresponding stochastic decomposition of IRn:

IRn = D⊕H , D = IR × ep, H = vect(ei)i,p. (19)

Then, we get the corresponding decomposition of each chaotic variable Xi,(i=1,2) :

Xi = Xi,d + Xi,h. (20)

Finally, we generate from each chaotic variable Xi, (i=1,2), Np symmetric chaotic points (Xi, j)16 j6Np
using the polygonal

model (Fig.10):
Xi, j = ω + Xi = ω + cos(2π. j/Np)Xi,d + sin(2π. j/Np)Xi,h, (21)
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X1

X2X3

X4

X5 X6

ω

ω +H

ω +Dωh

ωd

·

ORn

H

Lh

Uh

D
UdLd
|| | ||

−

−

−

Figure 10: Illustration of the generation of Np = 6 symmetric chaotic points in CLS.

Moreover, the local area selection process by reduction (via reduction factor r) requires some precautions in order
to avoid the ”sideeffect”, because if ω is close enough to the borders of the search area S, the search process risks to
leave it and then it may give an infeasible solution localized outside S.

Rη,i > dB(ωi)

R̃η,i = dB(ωi)
ωi − Rη,i ωi + Rη,ili

ui

ωi
• || | |

Figure 11: Illustration of overflow:Rη,i > dB(ωi).

In fact, that occurs when Rη,i > dB(ωi) for at least one component ωi (Fig.11), where dB(ωi) denotes the distance
of the component ωi to borders li, ui defined as follows:

dB(ωi) = min(ui − ωi, ωi − li). (22)

To prevent this overflow, we consider the improved radius R̃η instead of Rη, given by the following:

R̃η = min
(
Rη, dB(ω)i

¯
g), (23)

where dB(ω) = (dB(ω1), . . . , dB(ωn)). This guarantees R̃η,i 6 dB(ωi), ∀i ∈ [[1, n]]. Hence, equations (18) become

X1 = Z×R̃η, X2 = (1 − Z)×R̃η. (24)

Finally, the algorithm of the chaotic local search (CLS) is described in Algorithm 3.

3.3. Chaotic fine search (CFS)
Chaotic search has limited fine search ability. The proposed CFS procedure allows to speed up the intensification

process and refines the accuracy of the search. Suppose that the solution X obtained by the method CLS is close to
the global optimum Xo with precision 10−p, p ∈ IN. Then, we have:

X = Xo + ε, ‖ε‖ < 10−p (25)
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Algorithm 3 : Chaotic Local Search (CLS)

1: Input: f, ω, L, U, Z, Nl, Np
2: Output: Xl: best solution among the local chaotic points
3: R = 1

2 (U − L); Rl = r × R;
4: X = ω;
5: Xl = ω; Y = f (ω);
6: for η = 0 to Nl − 1
7: Set Rη = γη × Rl, and then compute R̃η = min

(
Rη, dB(ω)

)
8: Generate 2 symmetric chaotic variables X1, X2 according to (24)
9: for i = 1 to 2

10: Select an index p ∈{1, .., n} randomly and decompose Xi according to (20)
11: Generate the Np corresponding symmetric points Xi, j according to (21)
12: for j = 1 to Np

13: if Y > f (Xi, j) then
14: Xl = Xi, j; Y = f (Xi, j);
15: end if
16: end for
17: end for
18: end for

Thus, the distance ε can be interpreted as a parasitic signal of the solution, which is sufficient to filter in a suitable
way to reach the global optimum, or the distance to which is the global optimum of its approximate solution. We carry
out a chaotic search in a local area in which the radius adapts to the distance ε = X − Xo, component by component.
However, in practice, the global optimum is not known a priori. To work around this difficulty, knowing that as the
search process proceeds the resulting solution X is supposed to be close enough to the overall optimum, the trick found
is to consider instead of the relation (25) the difference between the current solution X and its decimals fractional parts
of order η, (η ∈ IN):

εη = |X − Xη|

where the fractional of order η, Xη is the closest point of X to the precision 10−η defined by: Xη = 10−ηround(10ηX).

For instance, Table 1 illustrates the fifth fractional parts as well as the corresponding errors for X = (2.854732, 1.384527).

Order k k− Fractional part Error of order k

0 X0 = (3, 1) ε0 = (0.145268, 0.384127)
1 X1 = (2.9, 1.4) ε1 = (0.045268, 0.084127)
2 X2 = (2.85, 1.38) ε2 = (0.004732, 0.004127)
3 X3 = (2.855, 1.384) ε3 = (0.000268, 0.000127)
4 X4 = (2.8547, 1.3841) ε4 = (0.000032, 0.000027)

Table 1: Illustration of 5 first fractionnal and their corresponding errors.

12



•
X

•X0

Zoom with power 10 on X

0 1 2 3 4 5
0

1

2

3

4

5

•
•X1

X

2.5 2.6 2.7 2.8 2.9 3
1.1

1.2

1.3

1.4

1.5

1.6

2.83 2.84 2.85 2.86 2.87 2.88
1.35

1.36

1.37

1.38

1.39

2

•
•X2

X

Zoom with power 102 on X

Figure 12: Illustration of the 10 power zoom via the successive fractional parts.

Moreover, in order to perturb a potential local optima we propose to add a stochastic component in the round
process, in fact we consider the stochastic round [.]st formalised as:

[X]st =

round(X) + P , i f mod(k, 2) = 0
round(X) , otherwise

(26)

where P ∼ U(−1, 1)d is a stochastic perturbation operated on X alternatively during the process. Thus, we get a new
formulation of the η−error of X:

ε̃η(X) = |X − 10−η[10ηX]st )| (27)

The chaotic fine search CFS has a structure similar to the CLS local chaotic search. Indeed it operates by levelling
on N f levels, except the fact that the local area of level η is defined by its radius Rη proportional to the η−error εη and
given by:

Rη =
1

1 + η2 R̃, η ∈ [[0,N f − 1]] (28)

This way the local area search is carried out in a narrow domain that allow a focus adapted coordinate by coordinate
unlike the uniform local search in CLS. The modified radius R̃ is defined by the following:

R̃ =

 s × R · ε̃η , i f r > 0.5
T · R · ε̃η , otherwise

(29)

where r, s ∼ U(0, 1) and T ∼ U(0, 1)d.
—–

The Rη radius design allows to zoom at an exponential rate of decimale over the levels. Indeed, we have:

‖Rη‖ 6 ‖εη‖.R < 10−η × R (30)

Thus, the fine chaotic search allows an ultra fast exploitation of the immediate neighbourhood of the current solution
and allows in principle the refinement of the global optimum with a good precision.
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(a) Illustration of the uniform local search area in CLS using
uniform reduction factor
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(b) Illustration of the coordinate adaptative local search area
in CFS based on the fractionnal error information εη

Figure 13: Illustration of the coordinate adaptative local search in CFS.

The Fine Chaotic Search (CFS) algorithm is the following:

Algorithm 4 : Chaotic Fine Search (CFS)

1: Input: f, ω, L, U, Z, N f , Np

2: Output: Xl: the best solution among local chaotic points
3: R = 1

2 (U − L);
4: X = ω;
5: Xl = ω; Y = f (ω);
6: for η = 0 to Nl − 1 do
7: Compute the η−error ε̃η and then evaluate R̃η using equations (28)−(30)
8: Generate two symmetrical chaotic variables X1, X2 according to (24)
9: for i = 1 to 2

10: Choose randomly p in {1, · · · , n} and decompose Xi using (20)
11: Generate Np symmetrical points Xi, j according to (21)
12: for j = 1 à Np

13: if Y > f (Xi, j) then
14: Xl = Xi, j; Y = f (Xi, j);
15: end if
16: end for
17: end for
18: end for

14



Finally the Tornado algorithm is detailed by the following algorithm:

Algorithm 5 Tornado Pseudo-Code.

1: Given : f , L, U, Z, M, Ml, Nc, Nl, N f , Np

2: Output : X,Y
3: k = 1; Y = +∞;
4: while k 6 M do
5: Xc = CGS ( f , L,U,Zk,Nc)
6: if Y > f (Xc) then
7: X = Xc; Y = f (Xc);
8: end for
9: s = 1;

10: while s 6 Ml do
11: Xl = CLS ( f , X, L,U,Zs+k,Nl,Np)
12: if Y > f (Xl) do
13: X = Xl; Y = f (Xl);
14: end if
15: X f = CFS ( f , X, L,U,Zs+k,N f ,Np)
16: if Y > f (Xl) do
17: X = X f ; Y = f (X f );
18: end if
19: s = s + 1;
20: end while
21: k = k + 1;
22: fin tant que

4. Computational experiments

In this section, computational experiments are carried out in order to assess the performance of the proposed
Tornado algorithm for large scale problems (i.e. 50, 100, and 200 variables). All the experiments were run using
Intel(R) Core(TM) i3 4005U CPU 1.70 GHz with 4 GB RAM. The implementation of all used algorithms was done
in MatLab. Upon recommendation from CEC conference competitions2, a set of 24 well known benchmark problems
were selected with diverse properties and different levels of complexity (i.e. unimodal, multimodal, separable, non
separable, shifted, rotated, noisy) as illustrated by Table 2. Unimodality shows the exploitation capability of the
developed algorithms, while multi-modality confirms the exploration capabilities. The shifted global optimum for all
the functions is provided as o = (o1, o2, .., oD) and the functions are defined as z = x − o for shifted functions and
z = (x − o).M for shifted rotated functions where M is the transformation matrix for the rotating matrix. For instance,
F1 − F6 are shifted functions and F7 − F12 are shifted and rotated functions.

2Competition on single objective real-parameter numerical optimization.
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Table 2: High dimensional Benchmark functions used in our experiments.

B.Function Expression C Search region Optimum

Shifted Bent
Cigar

f1 = y2
1 + 106

D∑
i=2

y2
i + bias, y = x − o, bias = 100 US [−100, 100]D bias

Shifted Rastrigin f2 =
D∑

i=1
[y2

i − 10 cos(2πyi) + 10] + bias, y = x− o, bias =

200

MS [−5, 12, 5, 12]D bias

Shifted Non Con-
tinuous Rastrigin

f3 =
D∑

i=1
[z2

i − 10 cos(2πzi) + 10] + bias, z = y − o, yi =xi if |xi | ≤ 0.5

round(2xi)/2, if |xi | > 0.5
bias = 300

MS [−5, 12, 5, 12]D bias

Shifted Discuss f4 = 106y2
1 +

D∑
i=2

y2
i + bias, y = x − o, bias = 600 US [−100, 100]D bias

Shifted Levy f5 = sin2(πy1) +
D−1∑
i=1

(yi − 1)2)
[
1 + 10 sin2(πyi + 1)

]
+ (yD −

1)2[1 + sin2(2πyD )
]
+ bias, y = x − o, bias = 500,

MN [−50, 50]D biais

Shifted Rotated
H.C Elliptic

f6(x) =
D∑

i=1

(
106) i−1

D−1 y2
i + bias, y = M(x − o), bias = 400 UN [−100, 100]D bias

Shifted Rotated
Rosenbrock

f7(x) =
D−1∑
i=1

(100(yi+1 − y2
i )2 + (yi − 1)2) + bias, y = M(x −

o), bias = 700

MN [−30, 30]D bias

SR Expended
Schaffer F6

f8 = g(y1, y2) + g(y1, y2) + · · · + g(yD, y1) + bias, y = M(x −

o), g(u, v) = 0.5 +
sin2(u2 + v2) − 0.5(
1 + 0.001(u2 + v2)

)2 , bias = 800,

MN [−100, 100]2 biais

S.R. HappyCat f9 = |
D∑

i=1
y2

i − D|
1
4 + 0.5

D (
D∑

i=1
yi)2 −

D∑
i=1

yi) + 0.5, y = M(x − o) MN [−5, 10]D biais

S.R. Zakharov f10 =
D∑

i=1
x2

i + (
D∑

i=1
0.5ixi)2 + (

D∑
i=1

0.5ixi)4 + biais y = M(x −

o) biais = 1000

UN [−5, 10]D 0

S.R. Ackley f11 = −20 exp(−0.2

√
1
D

D∑
i=0

y2
i )− exp

( 1
D

D∑
i=0

cos(2πyi
)
+ 20 +

e + biais, y = M(x − o), bias = 1100

MN [−32.768, 32.768]D biais

S.R HGBat f12 = |(
D∑

i=1
x2

i )2 − (
D∑

i=1
xi)2 |

0.5
+ 0.5(

D∑
i=1

xi)2 −
D∑

i=1
xi)/D + 0.5 +

biais y = M(x − o) bias = 1200

UN [−5, 10]D biais

Quartic f13 =
D∑

i=1
ix4

i + rand(0, 1) MS [−1.28, 1.28]D 0

Inverted cosine
wave

f14 =−
D−1∑
i=1

exp
(
−yi/8

)
cos(4

√
yi
)
, yi = x2

i + x2
i+1 + 0.5xi xi+1 MN [−5, 5]D −n + 1

Penalized 1 f15 = π
D { 10 sin2(3πx1) +

D−1∑
i=1

(yi − 1)2)
[
1 + 10 sin2(πyi+1)

]
+

(yD−1)2} +
D∑

i=1
u(xi, 10, 100, 4) (∗), yi = 1 + 1

4 (xi + 1)

MN [−50, 50]D 0

Himmelblau f16 = 1
D

D∑
i=1

(x4
i − 16x2

i + 5xi) MS [−5, 5]D -78.3323

Alpine f17 =
D∑

i=1
|xi sin(xi) + 0.1xi | MS [−10, 10]D 0

PowerSum f18 =
D∑

i=1

( 4∑
k=1

xk
i − bk

)2 / b = (8, 18, 44, 114) MN [0, n]D 0

Cosine Mixture f19 =
D∑

i=1
x2

i − 0.1
D∑

i=1
cos(5πxi) MS [−1; 1]D −0.1n

Schwefel 2.22 f20 =
D∑

i=1
|xi | +

D∏
i=1
|xi | UN [−10, 10]D 0

Powell sum f21 =
D∑

i=1
|xi |

i+1 MS [−100, 100]D 0

Easom f22 = −(−1)D
( D∏

i=1
cos(xi)

)
exp

(
−

D∑
i=1

(xi − π)2) UN [−10, 10]D -1

Mishra 2 f23 =
(
1 + χD

)χD , χD = D − 1
2

D−1∑
i=1

xi + xi+1 MN [0, 1]D 2

Brown f24 =

D−1∑
i=1

(x2
i )(x2

i+1+1) + (x2
i+1)(x2

i +1) UN [−1, 4]D 0

C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable.
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For the proposed Tornado algorithm, we have used the same set of values of the parameters (e.g. number of
chaotic levels) for all experiments. The algorithm is not very sensitive to those parameters. In the current study, the
parameters were set as follows:

• The number of CGS chaotic levels (Nc): Nc = 5.

• The number of CLS chaotic levels (Nl): Nl = 5.

• The number of CFS chaotic levels (N f ): N f = 10.

• The number of CLS-CFS per cycle (Ml): Ml = 100.

4.1. Comparison with other Chaotic optimization algorithms

In order to show the effectiveness of our new chaotic optimization strategy, this section presents a comparison of
the Tornado algorithm with state-of-the-art COA variants such as ICOLM [7] and ICOMM [24]. We have adopted the
suggested parameters by the authors of those algorithms, as illustrated in Table 3. Three set of parameters have been
suggested by the authors.

Configuration Mg Ml Mgl1 Mgl2 λ λgl1 λgl2

C1 800 400 6 6 0.1 0.04 0.01
C2 800 400 6 6 0.01 0.04 0.01
C3 800 400 6 6 0.001 0.04 0.01

Table 3: The set of parameters used by ICOLM and ICOMM approaches.

where Mg is the maximum number of iterations of chaotic global search, Mgl1 is maximum number of iterations
of first chaotic Local search in global search, Mgl2 is the maximum number of iterations of second chaotic local
search in global search, Ml is the maximum number of iterations of chaotic local search, λgl1 is the step size in first
global–local search, λgl2 is step size in second global–local search, and λ is the step size in chaotic local search. The
other specific parameters of algorithms are given below:

• ICOLM uses Lozi map with: a = 1.7, b = 0.5.

• ICOMM uses Henon map with: a = 4, b = 0.9.

We choose the number of function evaluations (FEs) as a stopping criteria. The maximum number of function
evaluations was 104 for all functions. Since the algorithms are stochastic in nature, 30 independent runs of each
algorithm are carried out. The performance indicators used are the mean and the standard deviation. The comparison
results for functions ( f1 − f15) on moderate dimension D = 10 are shown in Table 4. It is observed from the results
presented in Table 4 that the performance of our Tornado algorithm strongly dominates the existing COA approaches
for all functions. Indeed, the computational results show clearly the deficiency of the classical COA approaches (here
ICOLM and ICOMM) to even deal with moderate 10-dimensional problems whereas Tornado succeeds systematically.
Therefore, it is needless to show the carried comparisons for large scale problems.
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No Stats Tornado ICOLM(1) ICOLM(2) ICOLM(3 ) ICOMM(1) ICOMM(2) ICOMM(3)

F1 Mean 5,30E-08 2,58E+08 2,28E+06 3,21E+04 2,44E+08 3,19E+06 8,98E+06
Std 6,10E-08 6,23E+07 9,28E+05 1,13E+04 9,28E+07 3,66E+06 2,40E+07

F2 Mean 1,24E+00 4,76E+02 2,99E+01 1,87E+03 1,36E+03 4,14E+02 1,04E+03
Std 4,97E-01 9,73E+01 7,04E+00 7,64E+02 4,88E+02 9,11E+01 2,94E+02

F3 Mean 2,75E+00 1,93E+01 7,05E+01 8,39E+01 2,82E+01 1,74E+01 2,21E+01
Std 9,58E-01 8,05E+00 2,15E+01 2,18E+01 9,00E+00 9,14E+00 1,11E+01

F4 Mean 5,62E-09 6,13E+02 9,92E+00 1,89E+04 1,99E+04 1,15E+04 8,33E+03
Std 8,96E-09 4,47E+02 3,44E+00 9,36E+03 9,79E+03 3,26E+03 5,34E+03

F5 Mean 0,00E+00 3,85E+00 3,31E+00 4,30E+00 4,99E-01 1,29E-01 1,26E-01
Std 1,14E-13 9,93E-01 1,76E+00 1,40E+00 1,71E-01 9,85E-02 1,05E-01

F6 Mean 3,14E-04 2,35E+05 3,91E+03 3,77E+01 7,84E+04 7,97E+03 2,35E+02
Std 7,54E-04 1,51E+05 2,55E+03 1,89E+01 2,96E+04 9,05E+03 2,29E+02

F7 Mean 8,51E+00 7,39E+01 1,82E+01 1,70E+01 1,93E+02 4,13E+01 1,21E+01
Std 2,09E+01 4,28E+01 2,90E+01 2,89E+01 1,21E+02 3,22E+01 2,26E+01

F8 Mean 5,10E-05 1,45E-01 4,46E-02 4,65E-03 8,78E-02 3,38E-02 6,78E-04
Std 1,55E-04 1,01E-01 8,97E-02 8,41E-03 5,14E-02 3,39E-02 9,88E-04

F9 Mean 1,99E+00 8,39E-01 8,80E-01 7,51E-01 1,04E+00 1,01E+00 9,08E-01
Std 3,25E-02 1,99E-01 1,22E-01 2,24E-01 1,74E-01 1,93E-01 1,61E-01

F10 Mean 8,87E+07 1,45E+04 8,59E+00 1,87E+05 9,09E+05 3,47E+05 9,42E+05
Std 2,80E+08 2,88E+04 2,90E+00 1,51E+05 7,93E+05 3,83E+05 4,43E+05

F11 Mean 2,00E+01 2,05E+01 2,06E+01 2,03E+01 2,04E+01 2,05E+01 2,04E+01
Std 5,84E-03 7,42E-02 4,20E-02 1,03E-01 1,05E-01 9,15E-02 5,20E-01

F12 Mean 4,87E-01 4,53E-01 4,75E-01 4,63E-01 4,92E-01 4,94E-01 4,99E-01
Std 1,89E-02 3,36E-02 1,62E-02 1,58E-02 8,58E-03 6,69E-03 4,75E-03

Table 4: Comparison results for f1 − f12 on dimension D = 10 over 30 runs.

4.2. Comparison with state-of-the-art algorithms

We have also compared the obtained results with three state-of-the-art algorithms from different families of
stochastic optimization algorithms:

• CMA-ES3: a Covariance Adaptation Evolution Strategy (ES) based algorithm [30]. It is a ES algorithm in
which the Covariance matrix is deterministically adapted from the last move of the algorithm.

• L-SHADE4: SHADE is an adaptive Differential Evolution (DE) which incorporates success-history based pa-
rameter adaptation and one of the state-of-the-art DE algorithm. L-SHADE is an extension of SHADE using
Linear Population Size Reduction (LPSR) [25].

• CLPSO5: a comprehensive learning particle swarm optimizer (CLPSO) embedded with local search (LS) is
proposed to pursue higher optimization performance by taking the advantages of CLPSO’s strong global search
capability and LS’s fast convergence ability [32].

The choice of the algorithms in the computational study is mainly driven by the high-quality of their results
and the availability of code. We avoid the risk of non-optimal implementations and hence unfair comparisons. The
maximum number of function evaluations is set to 2 × 103 × D for all algorithms and tested functions. We have
adopted the suggested parameters by the authors of those algorithms. The computational results (i.e. error mean,
standard deviation) are presented in Tables 5-7 for 30 independent runs. The obtained results show that the Tornado

3Available in the MATLAB library Yarpiz.
4Available at sites.google.com/site/tanaberyoji/software.
5Available in github.com/hmofrad/Adaptative-CLPSO.
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algorithm dominated the other algorithms for most evaluated functions. The same conclusion has been observed for
all dimensions of the functions (i.e. 50, 100, 200). For inherently separable benchmark functions and all dimensions
(i.e. 50, 100 and 200), the Tornado algorithm is always better than the three other algorithms CLPPSO, CMA-ES and
LSHADE. For the functions f9 (multimodal, non-separable) and f10 (unimodal, non-separable), the CMA-ES (resp.
CLPPSP) algorithm shows better performance for D = 50 ad D = 100 (resp. D = 200). For the shifted Levy function
f5 (multi-modal, non-separable), the algorithm LSHADE dominates the other algorithms.
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No CLPPSO CMAES Lshade Tornado

Mean Std Mean Std Mean Std Mean Std

f1 7,17E+01 2,28E+01 2,44E+03 1,69E+03 3,48E−03 3,36E−03 3,00E−12 2,46E−12

f2 2,51E+03 2,50E+03 3,23E+02 1,20E+01 3,60E+01 8,43E+00 5,97E−01 1,33E+00

f3 1,54E-03 1,22E-03 2,82E+02 1,26E+01 1,11E+02 1,29E+01 2,20E+00 8,36E−01

f4 1,97E+01 1,97E+01 2,75E+03 1,01E+03 1,00E−11 5,55E−12 2,73E−12 4,40E−13

f5 1,87E-02 5,33E-03 9,80E−11 3,16E−11 4,55E−13 1,14E−13 1,24E−12 1,80E−13

f6 7,42E-08 1,60E-08 3,33E−06 1,02E−06 9,00E−11 6,72E−11 9,09E−13 1,80E−13

f7 4,89E+02 1,55E+01 3,86E+01 5,28E−01 4,38E+01 2,32E−02 3,00E−02 3,16E−02

f8 4,08E-01 3,66E-02 1,00E−02 2,10E−03 5,00E−02 1,44E−02 8,67E−02 9,17E−03

f9 3,44E+00 0,00E+00 2,30E−01 2,97E−02 2,95E+00 6,44E−05 2,95E+00 2,62E−04

f10 1,93E+00 1,57E-01 0,00E+00 1,51E−04 0,00E+00 4,81E−04 2,70E−01 5,61E−02

f11 2,13E+01 1,75E-02 2,12E+01 8,01E−02 2,09E+01 3,04E−01 2,00E+01 1,16E−02

f12 4,92E-01 2,46E-03 4,90E−01 4,29E−02 4,90E−01 1,12E−03 5,00E−01 2,32E−03

f13 3,85E-02 6,78E-03 6,51E−03 1,87E−03 3,15E−03 9,47E−04 6,70E−04 3,96E−04

f14 1,24E+01 1,65E+00 1,37E+01 5,56E−01 3,55E−14 1,23E−14 0,00E+00 1,07E−14

f15 3,49E-07 2,62E-07 1,81E−10 4,35E−11 2,68E−15 1,44E−15 9,42E−33 0,00E+00

f16 1,51E-07 6,05E-08 1,47E+00 6,45E−01 9,00E−02 8,79E−02 1,56E−09 3,26E−14

f17 1,42E-14 1,55E-14 1,22E−04 1,26E−04 0,00E+00 0,00E+00 0,00E+00 0,00E+00

f18 3,36E-04 9,86E-05 3,03E−07 1,80E−07 2,96E−02 6,61E−02 0,00E+00 0,00E+00

f19 2,66E+00 2,74E-02 2,80E+00 1,57E+00 2,56E+00 1,43E+00 2,04E−15 5,96E−16

f20 8,68E+00 2,45E+00 2,21E−04 6,51E−05 3,26E−06 1,92E−06 6,04E−170 0,00E+00

f21 2,94E-04 1,51E-05 4,44E+10 7,46E+10 3,32E−16 5,81E−16 2,52E−196 0,00E+00

f22 1,00E+00 0,00E+00 1,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 9,61E−17

f23 0,00E+00 0,00E+00 1,33E+00 3,18E−08 4,00E−08 1,87E−08 0,00E+00 0,00E+00

f24 2,54E-07 1,30E-07 2,32E−11 1,09E−11 6,59E−15 5,40E−15 4,99E−77 2,16E−77

Table 5: Comparison results for f1 − f24 problems on dimension D = 50 over 30 runs.

The final ranking of the evaluated algorithms is performed by using all the obtained results. The algorithms are
sorted for each test function. The ranking are summed up and are presented in Tables 8-10. Clearly the Tornado
algorithm is the winner, while LSHADE is the runner-up. We notice also that the performance of the CMA-ES
algorithm decreases function of the dimension of the problem.
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No CLPPSO CMAES Lshade Tornado

Mean Std Mean Std Mean Std Mean Std

F1 1,86E+06 4,33E+05 1,10E+01 8,96E+00 1,10E+01 8,96E+00 6,37E−12 2,96E−12

F2 1,38E+02 1,13E+01 1,97E+02 2,19E+01 1,97E+02 2,19E+01 1,10E+00 4,22E−01

F3 2,69E+01 1,27E+01 1,27E+02 7,72E+00 1,27E+02 7,72E+00 5,61E+00 2,10E+00

F4 1,63E+00 3,66E-01 3,95E−08 2,34E−08 3,95E−08 2,34E−08 4,32E−12 3,94E−13

F5 2,15E+02 4,34E+01 7,92E−07 5,44E−07 7,92E−07 5,44E−07 1,59E−12 2,60E−13

F6 1,84E-03 2,24E-04 3,25E−11 1,56E−11 3,25E−11 1,56E−11 1,59E−12 1,97E−13

F7 4,89E+02 1,55E+01 8,70E+01 9,60E−01 1,22E+02 1,75E+00 2,58E−02 8,84E−03

F8 4,08E-01 3,66E-02 3,45E−03 7,91E−04 2,08E−02 3,51E−03 1,56E−04 3,77E−04

F9 3,44E+00 0,00E+00 2,00E−01 2,42E−02 3,44E+00 2,51E−04 3,44E+00 9,72E−04

F10 1,93E+00 1,57E-01 1,76E−05 7,07E−06 4,29E−03 1,09E−03 9,48E−01 1,12E−01

F11 2,13E+01 1,75E-02 2,13E+01 1,93E−02 2,13E+01 3,64E−02 1,98E+01 4,31E−02

F12 4,92E-01 2,46E-03 5,04E−01 3,16E−02 4,92E−01 1,40E−03 5,00E−01 3,73E−02

F13 5,86E-02 1,02E-02 1,37E−02 2,18E−03 7,72E−03 2,03E−03 5,40E−04 5,52E−05

F14 3,04E+01 4,94E-01 2,82E+01 1,99E+00 1,33E−11 4,26E−12 0,00E+00 2,25E−14

F15 5,52E-08 2,69E-08 4,39E−12 1,86E−12 3,54E−12 2,16E−12 4,71E−33 0,00E+00

F16 4,79E-08 1,47E-08 2,83E+00 1,26E+00 5,35E+00 3,54E−01 1,41E−06 1,00E−14

F17 1,88E-17 1,59E-17 8,46E−05 8,67E−05 2,02E−28 1,24E−28 0,00E+00 0,00E+00

F18 1,03E-04 2,37E-05 5,10E−09 1,89E−09 7,98E−01 2,88E−01 0,00E+00 0,00E+00

F19 3,47E+00 3,12E-02 3,50E+00 8,60E−16 3,50E+00 1,25E−11 5,33E−15 1,54E−15

F20 9,26E+00 5,79E+00 3,35E−03 8,92E−04 3,02E−01 7,29E−02 4,20E+00 1,59E+00

F21 2,23E-04 2,59E-05 4,12E−05 7,78E−06 4,56E−04 3,56E−04 0,00E+00 0,00E+00

F22 1,00E+00 0,00E+00 1,00E+00 0,00E+00 1,00E+00 0,00E+00 9,99E−16 1,57E−16

F23 0,00E+00 0,00E+00 9,77E−01 2,33E+01 8,53E−05 3,07E−05 0,00E+00 0,00E+00

F24 2,49E-07 7,74E-08 1,63E−12 9,08E−13 1,47E−10 1,02E−10 4,99E−148 4,20E−148

Table 6: Comparison results for f1 − f24 problems on dimension D = 100 over 30 runs.
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No CLPPSO CMAES Lshade Tornado

Mean Std Mean Std Mean Std Mean Std

F1 2,44E+03 1,69E+03 1,19E+00 3,52E-01 3,48E-03 3,36E-03 3,00E-12 2,46E-12

F2 3,23E+02 1,20E+01 7,86E+01 5,67E+00 3,60E+01 8,43E+00 5,97E-01 1,33E+00

F3 2,82E+02 1,26E+01 2,38E+01 4,97E+00 1,11E+02 1,29E+01 2,20E+00 8,36E-01

F4 2,75E+03 1,01E+03 1,04E+04 4,40E+03 1,00E-11 5,55E-12 2,73E-12 4,40E-13

F5 9,80E-11 3,16E-11 0,00E+00 0,00E+00 4,55E-13 1,14E-13 1,24E-12 1,80E-13

F6 3,33E-06 1,02E-06 4,52E-08 9,63E-09 9,00E-11 6,72E-11 9,09E-13 1,80E-13

F7 3,86E+01 5,28E-01 1,85E+02 3,90E-01 4,38E+01 2,32E-02 3,00E-02 3,16E-02

F8 1,00E-02 2,10E-03 1,00E-05 4,99E-06 5,00E-02 1,44E-02 8,67E-02 9,17E-03

F9 2,30E-01 2,97E-02 2,77E-01 2,64E-02 2,95E+00 6,44E-05 2,95E+00 2,62E-04

F10 0,00E+00 1,51E-04 4,09E+03 6,24E+03 0,00E+00 4,81E-04 2,70E-01 5,61E-02

F11 2,12E+01 8,01E-02 2,15E+01 1,03E-02 2,09E+01 3,04E-01 2,00E+01 1,16E-02

F12 4,90E-01 4,29E-02 5,08E-01 5,40E-02 4,90E-01 1,12E-03 5,00E-01 2,32E-03

F13 6,51E-03 1,87E-03 2,92E-02 2,21E-03 3,15E-03 9,47E-04 6,70E-04 3,96E-04

F14 1,37E+01 5,56E-01 6,12E+01 1,03E+01 3,55E-14 1,23E-14 0,00E+00 1,07E-14

F15 1,81E-10 4,35E-11 2,87E-15 1,54E-16 2,68E-15 1,44E-15 9,42E-33 0,00E+00

F16 1,47E+00 6,45E-01 3,46E+00 1,30E+00 9,00E-02 8,79E-02 1,56E-09 3,26E-14

F17 1,22E-04 1,26E-04 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00

F18 3,03E-07 1,80E-07 1,26E-12 2,71E-14 2,96E-02 6,61E-02 0,00E+00 0,00E+00

F19 2,80E+00 1,57E+00 3,50E+00 0,00E+00 2,56E+00 1,43E+00 2,04E-15 5,96E-16

F20 2,21E-04 6,51E-05 2,14E-03 4,75E-04 3,26E-06 1,92E-06 6,04E-170 0,00E+00

F21 4,44E+10 7,46E+10 1,23E-06 9,76E-08 3,32E-16 5,81E-16 2,52E-196 0,00E+00

F22 1,00E+00 0,00E+00 1,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 9,61E-17

F23 1,33E+00 3,18E-08 1,33E+02 1,54E+02 4,00E-08 1,87E-08 0,00E+00 0,00E+00

F24 2,32E-11 1,09E-11 3,63E-16 2,00E-16 6,59E-15 5,40E-15 4,99E-77 2,16E-77

Table 7: Comparison results for f1 − f24 problems on dimension D = 200 over 30 runs.
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Table 8: The rank of the four algorithms for the functions test on D = 50.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 Mean Rank

CLLPSO 4 4 1 3 4 3 4 4 4 4 4 4 4 3 4 2 4 3 4 3 4 3 3 4 3,52
CMAES 3 2 4 4 3 4 2 1 1 2 3 2 3 4 3 4 1 2 3 4 3 4 4 2 2,76
Lshade 2 3 3 2 1 2 3 2 2 3 2 1 2 2 2 3 1 4 2 1 2 1 2 3 2,12
Tornado 1 1 2 1 2 1 1 3 3 1 1 3 1 1 1 1 1 1 1 2 1 2 1 1 1,48

Table 9: The rank of the four algorithms for the functions test on D = 100

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 Mean Rank

CLLPSO 4 2 4 4 4 4 3 4 4 4 2 2 3 3 4 3 4 3 3 3 4 3 3 4 3,40
CMAES 3 3 3 3 3 2 1 1 1 2 3 3 4 4 3 4 1 2 4 4 3 4 4 2 2,72
Lshade 2 4 2 2 2 3 2 2 2 3 4 1 2 2 2 2 1 4 2 2 1 1 2 3 2,20
Tornado 1 1 1 1 1 1 4 3 3 1 1 4 1 1 1 1 1 1 1 1 2 2 1 1 1,56

Table 10: The rank of the for algorithms four the functions test on D = 200

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 Mean Rank

CLLPSO 4 1 4 3 4 4 2 2 1 1 3 2 3 3 4 3 4 3 4 3 4 3 3 4 3,04
CMAES 3 4 3 4 1 3 4 1 2 4 4 4 4 4 3 4 1 2 3 4 3 4 4 2 3,12
Lshade 2 3 2 2 2 2 3 3 3 2 2 1 2 2 2 2 1 4 2 1 2 1 2 3 2,12
Tornado 1 2 1 1 3 1 1 4 4 3 1 3 1 1 1 1 1 1 1 2 1 2 1 1 1,62

Table 11: Total of Mean time (per run) consumed by the for algorithms on dimensions D = 50, D = 100 and D = 200.

CLLPSO Lshade CMAES Tornado

Total of mean Time for D = 50 247,2 s 95,1 s 902,2 s 109,2 s
Total of mean Time for D = 100 536,4 s 328,3 s 2640,3 s 215,1 s
Total of mean Time for D = 200 1415,4 s 1385,4 s 10425,6 s 614,8 s

Table11 shows the execution time of the algorithms for the same number of evaluated objective functions. Clearly,
the Tornado algorithm is the fatest one, while CMA-ES is the slowest one. Indeed, at each iteration the CMA-ES
algorithm computes the covariance matrix which is a time-consuming task. Figure shows the convergence of the
algorithms for functions f1 − f10 on dimension D = 50 and D = 100. The obtained results show a fast convergence for
the Tornado algorithm for most of the functions. Other carried experiments show the same trend for problems with
D = 200.
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Tornado Lshade CMAES CLPSO

Figure 14: Convergence performance of the four different methods for functions f1 − f6 on dimensions D = 50 (left) and D = 100 (right).
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Tornado Lshade CMAES CLPSO

Figure 15: Convergence performance of the four different methods for functions f7 − f10 on dimensions D = 50 (left) and D = 100 (right).

5. Conclusions and perspectives

In the big era, there is a need for developing optimization algorithms able to effectively solve problems with
hundreds, thousands, and even millions of variables. In this paper we have proposed an autonomous chaotic opti-
mization algorithm, called Tornado, for large scale global optimization problems. The algorithm introduces advanced
symmetrization, levelling and fine search strategies for an efficient and effective exploration of the search space and
exploitation of the best found solutions. To our knowledge, this is the first accurate and fast autonomous chaotic
algorithm solving large scale optimization problems.

The obtained results has shown the scalability of the algorithm in contrast to chaotic optimization algorithms
encountered in the literature. Moreover, in comparison with some state-of-the-art metaheuristics (e.g. evolutionary
algorithms, swarm intelligence), the computational results revealed that the proposed Tornado algorithm is an ef-
fective and efficient optimization algorithm. The Tornado algorithm shows promising capabilities in balancing the
exploitation and the exploration of the search space.

We will investigate the application of the Tornado algorithm to large scale real-life optimization problems such
as learning of deep neural networks, the optimization of the hyper-parameters of deep convolution neural networks,
and demand energy management in smart grids. An extension of the Tornado algorithm to solve multi-objective
optimization problems using scalarization and Pareto approaches is also under study.

A parallel implementation of the algorithm on heterogeneous parallel architectures, composed of multi-cores and
clusters of GPUs, will be also investigated. We are also interested in the design of Fractals based decomposition
strategies. The Chaotic approach will be combined to a Fractal based decomposition model, in which chaotic search
is applied in each Fractal. This combination will generate highly parallel approaches to be implemented on exascale
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parallel architectures composed of millions of GPU cores. The parallel model will also improve the exploration
capabilities of the Tornado algorithm.

References

[1] X. Wu and Z. Chen, “Introduction of chaos theory, shanghai science and technology,” 1996.
[2] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the atmospheric sciences, vol. 20, no. 2, pp. 130–141, 1963.
[3] D. Auerbach, C. Grebogi, E. Ott, and J. A. Yorke, “Controlling chaos in high dimensional systems,” Physical review letters, vol. 69, no. 24,

p. 3479, 1992.
[4] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical review letters, vol. 64, no. 8, p. 821, 1990.
[5] B. Li and W. Jiang, “Chaos optimization method and its application,” Control Theory & Applications, vol. 4, 1997.
[6] D. Yang, G. Li, and G. Cheng, “On the efficiency of chaos optimization algorithms for global optimization,” Chaos, Solitons & Fractals,

vol. 34, no. 4, pp. 1366–1375, 2007.
[7] T. Hamaizia and R. Lozi, “Improving chaotic optimization algorithm using a new global locally averaged strategy,” in Emergent Properties

in Natural and Artificial Complex Systems, pp. pp–17, 2011.
[8] N. Aslimani and R. Ellaia, “A new chaos optimization algorithm based on symmetrization and levelling approaches for global optimization,”

Numerical Algorithms, vol. 79, no. 4, pp. 1021–1047, 2018.
[9] J. Feng, J. Zhang, X. Zhu, and W. Lian, “A novel chaos optimization algorithm,” Multimedia Tools and Applications, vol. 76, no. 16,

pp. 17405–17436, 2017.
[10] L. Shengsong, W. Min, and H. Zhijian, “Hybrid algorithm of chaos optimisation and slp for optimal power flow problems with multimodal

characteristic,” IEE Proceedings-Generation, Transmission and Distribution, vol. 150, no. 5, pp. 543–547, 2003.
[11] J. Wang and X. Wang, “A global control of polynomial chaotic systems,” International Journal of Control, vol. 72, no. 10, pp. 911–918, 1999.
[12] S. Ishii and M.-a. Sato, “Constrained neural approaches to quadratic assignment problems,” Neural Networks, vol. 11, no. 6, pp. 1073–1082,

1998.
[13] K.-w. Wong, K.-P. Man, S. Li, and X. Liao, “A more secure chaotic cryptographic scheme based on the dynamic look-up table,” Circuits,

Systems and Signal Processing, vol. 24, no. 5, pp. 571–584, 2005.
[14] H. Gao, Y. Zhang, S. Liang, and D. Li, “A new chaotic algorithm for image encryption,” Chaos, Solitons & Fractals, vol. 29, no. 2, pp. 393–

399, 2006.
[15] R. A. Ibrahim, M. A. Elaziz, and S. Lu, “Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and

disruption operator for global optimization,” Expert Systems with Applications, vol. 108, pp. 1–27, 2018.
[16] J. A. Koupaei, S. M. M. Hosseini, and F. M. Ghaini, “A new optimization algorithm based on chaotic maps and golden section search method,”

Engineering Applications of Artificial Intelligence, vol. 50, pp. 201–214, 2016.
[17] S. Arora and S. Singh, “An improved butterfly optimization algorithm with chaos,” Journal of Intelligent & Fuzzy Systems, vol. 32, no. 1,

pp. 1079–1088, 2017.
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