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Hamiltonian Decomposition
of Cayley Graphs of Degree 4

J.-C. BERMOND, O. FAVARON, AND M. MAHEO

LRI UA 410 du CNRS, Bdt 490, Université Paris-Sud, 91405 Orsay-Cedex, France

We prove that any 4-regular connected Cayley graph on a finite abelian group
can be decomposed into two hamiltonian cycles. This answers a partial case of
Alspach’s conjecture concerning hamiltonian decompositions of 2k-regular
connected Cayley graphs. As a corollary we obtain the hamiltonian decomposition
of 2-jump circulant graphs, also called double loops. * Tac,

1. INTRODUCTION

This paper is motivated by a problem, posed by Bermond, Illiades, and
Peyrat in [4], on double loops. Let a, b, n be three integers with
0<as#b<n/2; the vertices of the double loop graph DLG(a, b) are the
integers modulo 7, the vertex i being joined to the four vertices i+ a, i + b.
These graphs are also known in the literature as 2-jump circulant graphs
(see, for example, the survey of Boesch and Tindell [5] on circulant
graphs). DLG(a, b) is connected if and only if the greatest common divisor
gcd(a, b, n) is 1. The problem posed in [4] was to prove that if DLG(aq, b)
is connected, then it is decomposable into two hamiltonian cycles (two
loops). Such a property is interesting because routings on a hamiltonian
cycle are easy; these graphs are good fault-tolerant networks because
in case of edge failure one can always find a simple routing. This problem
was also posed by Liang Sun [10]. It also appears as a special case of a
conjecture of Alspach [1] concerning Cayley graphs.

Let G be a finite group (the operation being denoted by +) and S a
symmetric subset of G (i.e., se€ S= —seS). The vertices of the Cayley
graph Cay(S, G) are the elements of G and there is an edge between x and
y if and only if x — y € S. Note that Cay(S, G) is connected if and only if .S
generates the group G. It is known (although this was quoted as a problem
in [5]) that any connected Cayley graph on an abelian group is
hamiltonian (for the problem of the existence of a hamiltonian cycle in a
general Cayley graph, see the survey of Witte and Gallian [11]). In [1]



Alspach posed the following problem: can the edges of every connected 2k-
regular Cayley graph on a finite abelian group be partitioned into &
hamiltonian cycles? The problem of [4] corresponds to the particular case
where G is the cyclic group Z, of the integers modulo » and
S={+a, +b}. In that case the graph Cay(S, G) is regular of degree 4. The
aim of this paper is to settle Alspach’s conjecture for degree 4 and therefore
the original problem. Partial results were obtained by Yixiu Huang [87,
Loo Saoping [9], and Liang Sun [10].

MAIN THEOREM. Every 4-regular connected Cayley graph on a finite
abelian group can be decomposed into two hamiltonian cycles.

2. NOTATION

Let the set S={+a, +b} be a generating set of the finite abelian group
G and let us suppose a#0 and b#0. The associated Cayley graph I is
connected. It is a simple 4-regular graph if 2a#0, 2b#0 and a# +b.

Remark. The case a= +b is not interesting; indeed the graph consists
of a double cycle, which can be viewed as two hamiltonian cycles. In the
case 2a=0, there exist double edges; one can consider the associated
Cayley multigraph, but it is not always true that it can be decomposed into
two hamiltonian cycles (see Remark 2 at the end of Sect.3). We will
therefore suppose in what follows that /" is a simple graph.

Let us call an a-edge (resp. b-edge) an edge of I" joining two vertices x
and x+a (resp. x and x+ b). Then the partial graph generated by the
a-edges (resp. b-edges) is a disjoint union of cycles called a-cycles (resp. b-
cycles) each of length k(resp k), the order of a (resp. the order of b). Note
that the a-edges, b-edges, a-cycles, and b-cycles have a natural orientation.
Let o be the number of a-cycles and P the number of b-cycles. Then the
number # of vertices satisfies: n = ak, = fk,.

In what follows we will use a particular representation of /. First note,
as I" is connected, that 0, b,..., ib,..., (2 —1)b belong to different a-cycles
denoted C,, Cy, ..., C,, ..., C,_,. Indeed suppose that the vertex rb belongs
to Cy, for some r, such that 0 <r <o. That means that rb = pa for some
integer p and therefore every vertex of the graph can be written
x=2Aa+ub=21a+ u'b with 0<pu’<r and the vertices of the graph will be
included in at most r a-cycles with r < a, a contradiction. Similarly one can
show that ab is in C,. Let ¢ be defined by ab = ca with 0<c<k,.

Furthermore every vertex x of I can be uniquely written x = ib + ja with
0<i<aand 0<j<k,. Indeed if x=ub + Aia then x =ib + ja with

i=u (mod. ) and j=Ei+c-(u—i)/a (mod. k,).



In fact this representation follows from a result of finite group theory: G
is isomorphic to Z?/K, where K is the kernel of the homomorphism ¥ from
Z? to G defined by ¥(u, 1) = Aa + ub. This kernel is a subgroup of G with
basis (0, k,) and («, —c). We will use the uniqueness of the representation
to label the vertices (i, j) with 0 <i< o and 0<j <k, where the first coor-
dinate indicates the label of the cycle C; containing the vertex and the
second coordinate indicates the position of the vertex on the cycle.

DEFINITION. [ (e, ). Let I'(a, f) denote the class of simple graphs such
that:

— there exist integers «, k, ¢ with a>1, k>3, 0<c<k, and
p = ged(k, c). |

— the ak vertices of the graph can be labelled (i, j) with i taken
modulo « and j taken modulo k.

— the edges are all the pairs:
first kind: {(4, /), (5, j+ 1)}

second kind: {(3, /), (i+1,/)} for 0<i<a—2, and {(ax—1,)),
(0,j+¢)}.

Note that the edges of the first kind form « cycles each of length k. Let
us denote by B’ the number of cycles of the second kind and by /4 their
common length. We will show that ' = f = gcd(k, c). Clearly &= za where
zc is equal to the least common multiple of £ and ¢. Thus z-gcd(k, ¢)=k
and B’ =ak/h=gecd(k, ).

One can have a pictorial representation of a graph of I'(«, f) as « ver-
tical disjoint cycles C;, 0<i<w®, with a natural orientation and o —1
horizontal “parallel matchings” between the cycles C;, and C,,, for
0<i<a—1 and a particular “parallel matching” between C,_, and C,
(drawn in heavy lines in the figures).

Remark. 1In the case a =2, a graph of I'(2, f) consists in fact of two
cycles plus two perfect matchings between them (see Fig. 1). In the case
o =1, a graph of I'(1, ) consists in fact of a cycle plus the chords joining
(0, /) to (0,j+c) (see Fig. 2).

PROPOSITION. The class I'(o, p) consists of the 4-regular connected
Cayley graphs on a finite abelian group with a generating set {a, b}, where o
is the number of a-cycles and f the number of b-cycles.

Proof. The labelling of the Cayley graph associated to a group G given
above has exactly the required properties in the definition of the class



G as element of T'(2,3) G as element of T(3,2)

FIGURE 1

I'(a, B); k is the order k, of a and c is defined by ab = ca, with 0<c<k,.
The a-edges (resp. b-edges) are those of the first kind (resp. second kind).
Conversely a graph of I'(a, f) can be considered as the Cayley graph on
the abelian group isomorphic to Z?/K where K is the subgroup with basis
(0, k), (¢, —c) and where a and b are the images of (0, 1) and (1, 0) in the
isomorphism Z?/K — G. It is shown furthermore in [6] that the Cayley
graph determines the group G and the generators a and b up to a group
isomorphism stabilizing {+a, +b} with only one family of exceptions:
G=2,,, a=1, b=2n—1 whose Cayley graph is isomorphic to that of
G=Z,,xZ,, a=(1,0) and b= (1, 1).

Remarks. (1) A graph of I'(a, f) can also be considered as a graph of
I'(, o).



(2) The cartesian sum of two cycles is a special case. It corresponds
to G=Z,xZs,a=(0,1),b=(1,0), thatis c=0, a=k,, f=k,.

ExaMpLE 1. Figure 1 shows the Cayley graph associated to G=Z,
with a=2 and b=3. Here « =2 and f=3. A first representation shows it
as an element of (2, 3); the vertex (i, j) corresponds to the vertex 3i+ 2j.
The vertex (0,/) is joined to the vertex (1,j) and the vertex (1,j) to
(0, 7+ 3) (edges in heavy lines). Here ¢ =3, k=9. A second representation
shows it as an element of I'(3,2); the vertex (i,j) corresponding to the
vertex 2i + 3j. The vertex (0, j) is joined to (1, ), (1,/) to (2,/), and (2, ) to
(0,74 2) (these last edges are drawn in heavy lines). Here ¢ =2, k=6.

ExampLE 2. Figure 2 shows the Cayley graph associated to G = Z;
with a=1, b=2. Here a=1, f=2. We give its representation as an

element of 77(1, 2).

3. PROOF OF THE THEOREM

We will prove that any graph of I'(a, ) can be decomposed into 2
hamiltonian cycles.

The idea of the proof is to build one hamiltonian cycle from the a-cycles
by deleting some of their edges and adding some edges of the parallel
matchings. This must be done in such a way that the remaining edges form
a hamiltonian cycle. One can see in Fig. 3a (on the right) what happens in
Example 1 considered as an element of /7(3, 2) and (on the left) what hap-
pens in Example 2. In Example 1 we delete from the cycles of the first kind
the edges {(0,0), (0, 1)}, {(0,2), (0,3)}, {(1,0), (1, 1)}, {(L,5), (1,0)},
{(2,0), 2 1)}, {(2,5), (2,0)}, and add {(2,0), (0,2)}, {(2,1), (0,3)},
{(0,0), (1,0)}, {(0, 1), (1, 1)}, {(1,0), (2,0)}, {(L,5), (2,5)}. Figure 3b
represents the second hamiltonian cycle on the same representation. Figure

0

FIGURE 2
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F1G. 3. Decompositions into hamiltonian cycles of Examples 1 and 2.

3c represents the second hamiltonian cycle of Example 1 on the represen-
tation with the cycles of the second kind.

The following lemma will reduce the problem to small values of « and f.

Let I" be a graph of I'(a+ 2, f) and let I be the reduced graph, obtained
from I” by deleting the vertices of the cycles C, and C, . ,, that is, the ver-
tices («,j) and («+ 1, /), and by adding the edges (« — 1, ), (0,/+ ¢) join-
ing C,_, and C,, where ¢ is given in the definition of I'(« + 2, f). I might
in some cases (see the end of the proof) be a multigraph, but if it is a
simple graph, it is an element of I(«, f) (k and ¢ being unchanged). For
example the graph of Fig. 2 is the reduced graph of that of Fig. 1
considered as an element of I(3, 2).



DErFINITION. We say that a hamiltonian decomposition of a graph
belonging to (e, ) has the property P between C;and C,,;, 0<i<a—1
(with C,=C,), if both hamiltonian cycles use at least one edge of the
matching between C; and C,, ;.

If «=2, it is necessary to distinguish the matching between C,_;=C,
and C, and that between C, and C,.

LEMMA 1. Let I" be a graph of I'(o.+2,B). If the reduced graph I
admits a hamiltonian decomposition having the property P between C,_, and
Cy, then I' admits a hamiltonian decomposition having the property P
between C, ., and C,.

Proof. The idea is similar to one given in the article of M. Foregger
[7]. Let H} and H’ be the two hamiltonian cycles of the decomposition of
I'". Let the m, edges joining C,_, and Cyin H' be {(¢—1,,,), (0,/,,+¢)}
where 0 <m <m;— 1. By property P, m; > 1.

Then replace each of these edges by the path of length 2 (5, —j,.) + 1:
(OC— 1, Jm)a (OC, .]m): (O‘, Jm+ 1)5 weey (OC, jm+1 - 1)5 (OC-I- 19 jm+1 - 1),
(c+1,jme1—2), . (@41, j,), (0,7, +c) (see Fig. 4). Note that if j,,, , =
Jm+ 1 the path is simply: (¢ — 1, ,,), (& j,), (@+1,/,.), (0,/,,+ ).

In that way one clearly obtains a hamiltonian cycle A, in I'. The same
construction with the hamiltonian cycle H of I"' using the m, edges of H
between C,_, and C, gives rise to a hamiltonian cycle H, of I. We claim
that H, and H, are edge-disjoint. Indeed an edge of the type {(x—1,j),
(@, )} or {(x+1,j), (0,j+c)} belongs to H, (resp. H,) if {(x—1,})),
(0,j+¢c)} belongs to Hy (resp. H3). The edge {(a,/), («+1,/)} belongs to
H, (resp. H,) if {(a—1,j+1), (0,j+c+ 1)} belongs to H (resp. H,). The
edges {(aj), (¢j+1)} and {(a+1,/),(¢+1,j+1)}) belong to
H(resp. H,) if {(«¢—1,j+1), (0,j+c+1)} does not belong to H

_’ S—
— o o—
® *—
2 9
_.' ’____
Coc -1 Co

FIGURE 4



(resp. H5). The other edges of H(resp. H,) are those of Hj (resp. H5).
Therefore H, and H, form a hamiltonian decomposition of the original
graph having property P between C, . ; and C,. Indeed H, (resp. H,) con-
tains the edges {(a + 1,/), (0, 7+ c)} such that {(«—1,/), (0,j+ c)} belong
to H (resp. H).

ExAMPLE. Figures 3a and 3b show the cycles H, and H, of Example 1
constructed from a hamiltonian decomposition A} and H of the reduced
graph of Example 2.

LEMMA 2. For 1<a<f <2, there exists a hamiltonian decomposition,
having the property P between two cycles of the first kind and also between
two cycles of the second kind, of any graph of I'(«, ).

Proof. In this proof we consider the graph as a Cayley graph with two
generators a and b (by the proposition). The first hamiltonian cycle H, is
obtained from the partial graph generated by the unique cycle (¢ =1) or
the two cycles («¢=2) by deleting the edges (0, a) and (—b,a—b) and
adding the edges (—b,0) and (a— b, a). The remaining edges form H,,
which is obtained in a symmetric way from the partial graph generated by
the b-cycles.

As the graph is simple, k is greater than or equal to 3 and H, and H,
contain at least one edge of the particular matching between C,_, and C,.

End of the Proof of the Theorem

The proof is by induction. Let I” be a graph of I'(«, f); by successive
reductions, we find a reduced graph in [I(a—24, f—2u) such that
I<a—21<2and 1 <f—2u<2. If this graph is simple, by Lemma 2 it has
a hamiltonian decomposition satisfying property P between two cycles of
the first kind and also of the second kind. By applying Lemma 1, 4 times,
we obtain a hamiltonian decomposition of the reduced graph in
I'(a, B—2u). The graph considered as an element of I'(f—2u, ) has
property P between two cycles of the first kind (previously cycles of the
second kind). By applying Lemma 1, p times, we have a hamiltonian
decomposition of 7.

Thus, we have to examine when the reduced graph is not simple (in this
case, we have to stop the reduction one or two steps before). That happens
only in three cases:

— a=3 and ¢=0; in that case we obtain loops in I

— a=4 and ¢=0; then the edges in I’ between C, and C, and
between C, and C, are the same.

— o=3 and c¢=k/2; then the edges are again double edges.



Note that the two first cases correspond to the cartesian sum; in that
case c=0 and k=f. If f>=5 we reduce according to f3; therefore to start
the induction, we have to decompose C;+ C5, C3+ C,, C,+ C,, the only
elements of I7(3, 3), I(3, 4), I'(4, 4) with ¢=0. These graphs can easily be
decomposed in hamiltonian cycles (see for example [7]). Let us consider
the last case o =3, ¢ =k/2. Then f=c; as I is simple, then k>3 and > 2.
If >4 we first reduce according to . Thus, to start the induction we have
to consider the two cases f=2 and f=3. These cases contain only two
graphs, one in (3, 3) (Fig. 5) and one in I'(3,2) (Fig. 6); each of these
graphs can be decomposed into hamiltonian cycles satisfying property P
between two cycles of the first kind and second kind.

(1,5) - (2,5)

(0.9) (0.5)

(0,4) (0,4)

(0,3) (0,3)

(0,2) (0,2) I\
(0,1) (0,1) i

FIGURE 5



Note that the decompositions of these two last graphs are in fact
obtained from Lemma 1 by using a hamiltonian decomposition of the mul-
tigraph shown in the left part of the Figs. 5 and 6.

Remarks. (1) There are many different possible decompositions of a
graph of I'(«, f) according to the order in which we apply the reduction,
the manner we apply Lemma 1, and from what graph we start. Other con-
structions can also be obtained directly according to divisibility cases (such
constructions can be sent to any interested reader).

(2) In the case of multigraphs, we can still apply Lemma 1, but
Lemma 2 is not necessarily valid. Suppose 2a =0, then o =n/2. The order

2,3)

(0,3)

FIGURE 6



of b being greater or equal to « can only be #n/2 or n and then f=2 or
p = 1. The multigraph admits a hamiltonian decomposition if and only if:

(i) a=n/2is odd and f =1,
(i) a=n/2 is even and =2,
(i) #=2 =1,

Conclusion. This paper supports Alspach’s conjecture; maybe one can
solve the case of 6-regular graphs (decomposition in three cycles) by using
the work of Aubert and Schneider [2]. However the general case seems dif-
ficult. It implies the following conjecture: if the graphs G;, 1 <i<p, can be
decomposed into »;, hamiltonian cycles, then the cartesian sum of these
graphs can also be decomposed into hamiltonian cycles (see the survey
[3] or the recent survey by B. Alspach, J.-C. Bermond, and D. Sotteau,
Decompositions into cycles I: Hamilton decompositions in cycles and rays,
in “Proc. Workshop Montreal April 1987,” Reidel ASI series, in press).

Finally let us note an interesting corollary to the main theorem which
answers a problem asked by M. Laurent. Let the pth power of a cycle be
the graph whose vertices are the integers modulo # and where vertex i is
joined to vertex j if |i —j| < p. Then this graph can be decomposed into p
hamiltonian cycles. Indeed if p is even this graph is the union of p/2 double
loop graphs with a=2i+1 and b=2i+2, 0<i<p/2—1.If p is odd it is
the union of the cycle plus (p —1)/2 double loop graphs with a=2i and
b=2i+1,1<i<(p—1)/2
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