N

N
N

HAL

open science

Dependent Type Theory in Polarised Sequent Calculus
(abstract)

Etienne Miquey, Xavier Montillet, Guillaume Munch-Maccagnoni

» To cite this version:

Etienne Miquey, Xavier Montillet, Guillaume Munch-Maccagnoni. Dependent Type Theory in Po-
larised Sequent Calculus (abstract). TYPES 2020 - 26th International Conference on Types for Proofs

and Programs, Mar 2020, Torino, Italy. pp.1-3. hal-02505671

HAL Id: hal-02505671
https://inria.hal.science/hal-02505671
Submitted on 11 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-02505671
https://hal.archives-ouvertes.fr

Dependent Type Theory in Polarised Sequent Calculus

Etienne Miquey', Xavier Montillet?, and Guillaume Munch-Maccagnoni?

I CNRS, LSV, ENS Paris-Saclay, Inria, Cachan, France
2 Tnria, LS2N CNRS, Nantes, France

Thanks to several works on classical logic in proof theory, it is now well-established that continuation-
passing style (CPS) translations in call by name and call by value correspond to different polarisations of
formulae (Girard, 1991; Danos, Joinet, and Schellinx, 1997; Laurent, 2002). Extending this observation
and building on Curien and Herbelin’s abstract-machine-like calculi (2000), the last author proposed a
term assignment for a polarised sequent calculus (where the polarities of formulae determine the eval-
uation order) in which various calculi from the literature can be obtained with macros responsible for
the choices of polarities (Munch-Maccagnoni, 2013). It aims to explain several CPS translations from
the literature by decompositing them through a single CPS for sequent calculus. It has later proved to
be a fruitful setting to study the addition of effects and resource modalities (Curien, Fiore, and Munch-
Maccagnoni, 2016), providing a categorical proof theory of Call By Push Value semantics (Levy, 2004).

We propose to bring together a dependently-typed theory (ECC) and polarised sequent calculus, by
presenting a calculus Ly, suitable as a vehicle for compilation and representation of effectful computa-
tions. As a first step in that direction, we show that Lg,, advantageously factorize a dependently typed
continuation-passing style translation for ECC+call/cc. To avoid the inconsistency of type theory
with control operators, we restrict their interaction. Nonetheless, in the pure case, we obtain an un-
restricted translation from ECC to itself, thus opening the door to the definition of dependently typed
compilation transformations.

Overview of L4, Recall that the key notion of term assignments for sequent calculi is that of a com-
mand, written (t || e), which can be understood as a state of an abstract machine, representing the evalua-
tion of an proof (or expression) t against a counter-proof e that we call context. Their typing judgements
areof theformI' ¢ : A| AandT' | e: A+ A, which correspond respectively to underlying sequents
' A,AandT, A+ A, in which A is in both cases the principal formula of the sequent. The command
(t || e) is the result of applying the cut rule with ¢ and e as premises: {t || e) : (I' - A). It represents a cut
rule with no principal formula.

But, in comparison to other presentations of sequent calculi, and like in Girard’s original formulation
of LC, our logic features a negation operator - which is involutive strictly: A = A+*. This involution
allows us to represent any sequent ¢ : (I' = A) (resp. I' 7 : A | A) as a sequent ¢ : (- 'L, A) (resp.
FTL, A | t: A) with all formulae on the right. Thus, we are able to use a single grammar to describe
both expressions and contexts.

The sequent calculus we propose is, in term of expressiveness, an extension of Luo’s ECC. Namely,
ECC contains dependent products II(x : A).B (becoming here a dependent %) and dependent sums
2(x : A).B (becoming here a dependent ®), a cumulative hierarchy of universes []; and an impredicative
propositional universe [P, the inductive type of booleans with dependent elimination B, and equalities
between terms ¢ = u:

Atoms C:==x|B|P |0 |t=u | Values Vi=x|A|Ve,V'|true|false|refl
Types' P:=C|A®x.B|lA | u(x® 4p).c | u®x.c | uley | ea] | u=c | fic
Types® N :=C1|A®x.B|MA Terms tu=ptxe|~| Ve

Types A=P|N Commands ¢ == (¢t|| V)"

where the notations y*x.c/u®x.c distinguish the binder according to the polarity of the corresponding
type.

Dependent Type Theory in Sequent Calculus Style E. Miquey, X. Montillet and G. Munch-Maccagnoni

Since sequent calculi allow us to manipulate classical logic, we need to restrict dependencies to
avoid logical inconsistencies (Herbelin, 2005). Following previous works (Herbelin, 2012; Miquey,
2019), we only allow negative-elimination-free (NEF) terms within types, which are thunkable (value-
like) terms. In fact, we relax this constraint into that of Girard’s stoup (Girard, 1991), which similarly
implies thunkability/linearity (Munch-Maccagnoni, 2013, IV.6). We take advantage of delimited control
operators (in the form of fic and ~) to separate regular and dependent typing modes:

FL|t:P FT|V:Pt FT|t: P kgl |V Pt
. T t € NEF
(V)T (=D (V)" (kg 1)
c:(FILx:N) c:(FxD) c:(Fgyx: N) «¢ B
FT| u®xc: N FT|jfic: N Fp Tl uCx.c: N Fpl|~: Bt
Regular mode Dependent mode

Observe that in the latter, the turnstile is annotated with a return type whose dependencies evolve
with the typing derivation (see Miquey 2019 for more details). For instance, considering the type:

T®) = px.(b || W@ 1|)" | (B 1| %))
which verifies that T'(true) = P and T'(false) = B, we can inhabit it with the following term:

HII(X : P).X : T (true) F| true : T (false)
(MX 2 PYX N (Firrme) (true || 1) 1 (Fyr(eare)
Fb:BY|b:B Foare b1 B | u[(TIX @ P).X || ~)® | (true | ~)°] : B

(b]| HTIX : P).X |)®] (brue | 1)°1)" & (Fyrg b2 B
Fb: B | A || nl(IX 2 P).X|[~)€ | (true | A>@])+ :MT(b)

CPS translations for ECC Following the approach advocated in Boulier, Pédrot, and Tabareau (2017),
the soundness of our system is proved by means of a syntactic model. In other words, we define a typed
translation from our system to (an extension of) Luo’s ECC (1990). In broad lines, this translation
follows the structure of the call-by-value continuation-passing style translation highlighted in Miquey
(2019): we use dependent and parametric return types for continuations, and we translate NEF terms ¢ at
two different levels [t]; and [¢]; in a way that is reminiscent of parametricity translations. For instance,
the translations of a (closed and NEF) b boolean verify:

[6], : TI(R : B — P).((T(x : B).Rx) > R[bly))

Observe that by parametricity, this implies in particular that for any continuation k of parametric return
type R, we have [b]; Rk = k[b]y, emphasizing that such a translation is only compatible with NEF
terms that observationally behave like values.

Insofar as we can easily embed ECC+call/cc (evaluated in call by value) in our system, this trans-
lation allows us to factorize a CPS translation from this calculus to the (pure) ECC:

macros

CPS
ECC + call/cc —— —— ECC

dep

Interestingly, by considering only the pure (by-value) ECC, we can define a dependently typed transla-
tion to itself without any kind of restriction on dependent types'. Our translation improves over Bowman,
Cong, Rioux, and Ahmed (2017) in that no extra assumption (in particular, we do not require an exten-
sional type theory) are necessary to prove its soundness.

! A Coq development formalizing some aspects of these ideas is available at: https://www.irif.fr/~emiquey/content/CPS_ECC.v

https://www.irif.fr/~emiquey/content/CPS_ECC.v

Dependent Type Theory in Sequent Calculus Style E. Miquey, X. Montillet and G. Munch-Maccagnoni

References

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The Next 700 Syntactical Models of
Type Theory. In CPP. https://doi.org/10.1145/3018610.3018620

William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. 2017. Type-Preserving CPS Trans-
lation of X and IT Types is Not Not Possible. Proc. ACM Program. Lang. 2, POPL, Article Article 22,
33 pages. https://doi.org/10.1145/3158110

Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni. 2016. A Theory of Effects
and Resources: Adjunction Models and Polarised Calculi. In Proceedings of POPL ’16. https:
//doi.org/10.1145/2837614.2837652

Pierre-Louis Curien and Hugo Herbelin. 2000. The duality of computation. ACM SIGPLAN Notices 35
(2000), 233-243.

Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. 1997. A new deconstructive logic: linear
logic. Journal of Symbolic Logic (1997). https://doi.org/10.2307/2275572

Jean-Yves Girard. 1991. A new constructive logic: classic logic. Mathematical Structures in Computer
Science (1991). https://doi.org/10.1017/50960129500001328

Hugo Herbelin. 2005. On the Degeneracy of Sigma-Types in Presence of Computational Classical Logic.
In Proceedings of TLCA 2005 (LNCS), Pawel Urzyczyn (Ed.), Vol. 3461. Springer, 209-220. https:
//doi.org/10.1007/11417170_16

Hugo Herbelin. 2012. A Constructive Proof of Dependent Choice, Compatible with Classical Logic.
In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012,
Dubrovnik, Croatia, June 25-28, 2012. IEEE Computer Society, 365-374. https://doi.org/
10.1109/LICS.2012.47

Olivier Laurent. 2002. Etude de la polarisation en logique. These de Doctorat. Université Aix-
Marseille II. https://tel.archives-ouvertes.fr/tel-00007884

Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis (Semantics Struc-
tures in Computation, V. 2). Kluwer Academic Publishers. https://doi.org/10.1007/
978-94-007-0954-6

Zhaohui Luo. 1990. An Extended Calculus of Constructions. PhD Thesis. University of Edinburgh.
https://era.ed.ac.uk/bitstream/handle/1842/12487/Luo1990.Pdf

Etienne Miquey. 2019. A Classical Sequent Calculus with Dependent Types. ACM Transactions on
Programming Languages and Systems 41 (2019). https://doi.org/10.1145/3230625

Guillaume Munch-Maccagnoni. 2013. Syntax and Models of a non-Associative Composition
of Programs and Proofs. Theses. Université Paris-Diderot - Paris VIL https://tel.
archives-ouvertes.fr/tel-00918642

https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/3158110
https://doi.org/10.1145/2837614.2837652
https://doi.org/10.1145/2837614.2837652
https://doi.org/10.2307/2275572
https://doi.org/10.1017/S0960129500001328
https://doi.org/10.1007/11417170_16
https://doi.org/10.1007/11417170_16
https://doi.org/10.1109/LICS.2012.47
https://doi.org/10.1109/LICS.2012.47
https://tel.archives-ouvertes.fr/tel-00007884
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1007/978-94-007-0954-6
https://era.ed.ac.uk/bitstream/handle/1842/12487/Luo1990.Pdf
https://doi.org/10.1145/3230625
https://tel.archives-ouvertes.fr/tel-00918642
https://tel.archives-ouvertes.fr/tel-00918642

